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Abstract: Elevations in the circulating concentration of androgens are thought to have a positive
effect on the anabolic processes leading to improved athletic performance. Anabolic-androgenic
steroids have often been used by competitive athletes to augment this effect. Although there has been
concerted effort on examining how manipulating training variables (e.g., intensity and volume of
training) can influence the androgen response to exercise, there has been much less effort directed at
understanding how changes in both macronutrient and micronutrient intake can impact the androgen
response. Thus, the focus of this review is to examine the effect that manipulating energy and
nutrient intake has on circulating concentrations of testosterone and what the potential mechanism is
governing these changes.
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1. Introduction

Testosterone, together with its potent metabolite, dihydrotestosterone (DHT), are the
principal androgens in the circulation of mature male mammals, including humans. They
are important hormones for various biological processes and are vital for the development
and maintenance of secondary male characteristics. They are also crucial for reproductive
functions, body composition, and muscle and bone health [1,2].

As the primary anabolic steroid, testosterone promotes an increase in protein produc-
tion as well as stimulating both anabolic and anti-catabolic functions in skeletal muscle and
neuronal tissue leading to increased muscle strength, power, endurance, and hypertrophy
in a dose-dependent manner [3]. Testosterone is also responsible for the mass, density, and
strength of bone. As for its androgenic effects, testosterone mediates the development of
male primary and secondary male characteristics such as sexual organ growth, deepening
of the voice, and growth of facial and body hair [4].

Structurally, testosterone has a characteristic four ring C18 steroid structure and is
synthesized from cholesterol through an enzymatic multistep process primarily within the
Leydig cells (~95%), which are located in the interstitium of the testes. The adrenal glands
also produce small amounts (~5%) of androgens [5]. In women, testosterone is produced in
much smaller amounts, primarily from the adrenal glands and the ovaries [2,6]. There are
two metabolic pathways, the progesterone (delta-4) and dehydroepiandrosterone (DHEA)
(delta-5) pathways [6]. Once synthesized, testosterone is secreted into the bloodstream
and delivered to target tissues [7]. In the blood, most testosterone is transported bound
to several proteins, mainly serum albumin and sex hormone-binding globulin (SHBG).
A small amount is transported unbound, referred to as free testosterone (FT) [8]. FT is
the active form of testosterone while protein-bound testosterone is inactive [9]. When
testosterone reaches its target tissues it diffuses through the cells’ fatty membrane, where it
can interact with its receptor stimulating its biological effects or it can be reduced into DHT
by the cytoplasmic enzyme 5α-reductase, which is highly expressed in male reproductive
organs, skin, and the brain [8].
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Testosterone is synthesized under control of the hypothalamic-anterior pituitary-
gonadal axis. Gonadotropin-releasing hormone (GnRH), released from the hypothalamus,
stimulates the release of luteinizing hormone (LH) from the anterior pituitary gland into the
circulation. LH then stimulates the Leydig cells within the testes to synthesize testosterone.
Increasing circulating concentrations of testosterone will result in an inhibition of the
release of the gonadotrophins (GnRH and LH) via a negative feedback loop mechanism.
GnRH functions under the control of several hypothalamic neuropeptides [5].

The classical biological effects of androgens are primarily mediated by FT binding to
the androgen receptor (AR). DHT binds to the same AR even more strongly than testos-
terone, so that its androgenic potency is about five times more potent than testosterone [10].
The AR complex undergoes a structural change that allows it to move into the cell nucleus
and bind directly to specific nucleotide sequences of DNA, resulting in the transcription of
certain genes. The AR complex itself serves as a transcription factor [7,11]. Testosterone
can also be converted to estradiol (E2) by the aromatase enzyme and then activate certain
estrogen receptors. Bone, adipose tissue, and the brain are tissues in humans where the
primary effect of testosterone is via aromatization to E2 [4,12]. The enzyme aromatase is
a member of the cytochrome P450 enzyme superfamily that catalyzes the conversion of
androstenedione and testosterone to the aromatic estrogenic steroids estrone and estra-
diol, respectively [9]. These are the last key steps in the catalyzation of androgens into
estrogens, hence inhibition of aromatase activity can elevate androgen concentrations.
There are numerous natural substances that have been scientifically tested or suggested to
inhibit aromatase activity, alongside pharmaceutical compounds whose non-medical use is
considered illegal [2,6].

Manipulation of testosterone concentrations without the use of anabolic steroids has
been a highly investigated topic because of the known effect testosterone has on enhancing
athletic performance [2,6]. While the use of androgens in competitive athletics is illegal, it
has not stopped the search for “natural” ways to increase testosterone concentrations. In
this review, we will examine the specific effect of various macronutrients and micronutri-
ents on enhancing circulating testosterone concentrations at rest and during exercise. In
addition, we will also discuss the role of low energy availability, a growing condition in the
athletic population, and its effect on testosterone concentrations. While other reviews have
previously discussed the effect of nutrition on testosterone status [13–16], most of these
papers have examined the role of single nutrient (macro/micro) or food/food groups. To
the best of our knowledge, this review is the first to focus on the nutrient influence on circu-
lating testosterone concentrations. Its purpose is to provide an evidence-based assessment
of how specific nutrients found in the diet or specific dietary manipulation can enhance the
androgen response, with the assumption being that elevation in circulating androgens will
enhance the anabolic response and potentially improve exercise performance.

1.1. Natural Product Extracts and Aromatase Inhibition

Extracts of many natural sources and nutrients, part of them used by traditional
medicine, have been tested and found to possess aromatase inhibition activity. Figure 1
provides an overview of the effect that these various compounds have on aromatase activity.
These natural sources include Brassaiopsis glomerulata from the Araliaceae plant family
(i.e., ginseng). This species has several reported medicinal uses in south and southeast
Asia, such as treatment of rheumatism and back pain, aiding in digestion and alleviating
constipation, treating bone fractures and sprains, and other health issues [17]. Balunas and
colleagues [18] reported strong aromatase inhibition of the hexane extract of Brassaiopsis
glomerulata, coupled with the possibility of a favorable safety profile. Cycads have been
used by numerous cultures for medicinal purposes such as the treatment of certain tumors,
treating wounds, hemorrhoids, and more [19]. Kowalska and colleagues [19] reported five
different species of cycad folia to have aromatase inhibition activity. These investigators
reported that several other plant species also possess aromatase inhibition capabilities
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similar to the potent aromatase inhibitor, l0-propargylestr.4-ene-3,17-dione, including
members of the Loranthaceae, Santalaceae and Zingiberaceae families, all flowering plants [20].
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Isodon excisus var. coreanus, a member of the Lamiaceae family, is one of the endemic
plants in Korea, and has been used for the treatment of the anorexia, indigestion, stom-
achache, inflammation, and esophageal carcinoma [21]. Jeong and colleagues [22] reported
four compounds isolated from this plant, including diethyl ether extract, inflexin, urso-
lic acid, and ursolic acid 3-O-acetate that have significant aromatase inhibitory activity.
Lee and colleagues [23] reported that extracts from Euonymus alatus, a member of the
Celastraceae family, also has potent aromatase inhibition.

The health benefits of red wine have been well-examined, and in recent decades
studies have reported that red wine consumption has antioxidant, lipid regulating, and
anti-inflammatory effects [24]. Interestingly, red wine has also been reported to result in
aromatase inhibition. There have been five red wine varieties that have been reported to
have aromatase inhibition activity, with the most active being cabernet sauvignon [25–27].
Consistent with the anti-aromatase benefits associated with red wine, Kijima and col-
leagues [28] reported that grape seed extract is a potent aromatase inhibitor and suppressor
of aromatase expression. Shufelt and colleagues [29] reported that red wine consumption
resulted in significantly higher FT concentrations and lower SHBG and E2 concentrations in
women. This may have important implications regarding breast cancer risk. Interestingly,
red wine was significantly more beneficial than white wine. Whether this same response is
seen in men is not well understood.

Other food groups have also been reported to have anti-aromatase activity. White
button mushrooms are known for their innate immune response enhancement [30,31]
and their role in fat metabolism resulting in a decrease in cholesterol concentrations [31].
Grube and colleagues [32] reported that white button mushroom consumption can inhibit
aromatase activity and breast cancer cell proliferation in women. However, there is limited
evidence of this in men. Red clover flower extract, often used to improve hair and skin
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texture [33,34], has also been reported to inhibit 5-α-reductase activity [35]. Interestingly,
Almstrup and colleagues [35] reported that red clover flowers inhibit aromatase activity at
low concentrations, but become estrogenic at higher concentrations, resulting in a U-shaped
dose–response curve.

Balunas and colleagues [36] reported that an extract from a tropical fruit called man-
gosteen had strong inhibitory capabilities of the aromatase enzyme. Although this research
team was primarily focused on the role that this fruit had on preventing or treating breast
cancer, others have examined the ergogenic effect of this fruit. Konda and colleagues [37]
examined the ergogenic effects of Garcina mangostana on both rodents and humans. Mice
supplemented with Garcina mangostana experienced significantly greater swim times, swim
distance, and grip strength than control mice. In addition, resistance-trained men were
provided 42 days of the supplement (800 mg·day−1) and experienced significant greater
increases in maximal strength in the bench press and leg press exercise compared to a
placebo-controlled group. In addition, the group consuming the supplement performed
significantly more repetitions on the leg extension exercise and realized significantly greater
increases in lean body mass and arm circumference than the placebo group. Significant
improvements were reported in FT concentrations in the supplement group compared to
the placebo group. To the best of our knowledge, this is the only study that has examined
the anabolic effects of Garcina mangostana in humans. Further research on this extract
appears warranted.

Sultan and colleagues [38] reported that an extract from saw palmetto (Serenoa repens),
a type of a palm tree, decreases in vitro 5α-reduction of androgens. Saw palmetto has been
used to treat urinary tract infections and prostatic diseases [39]. Sudeep and colleagues [39]
investigated 12 weeks of saw palmetto oil supplementation on androgen-deficient men
and reported significant increases in both FT concentrations and quality of life in the
supplemented men compared to placebo-treated men. Others have reported that two weeks
of saw palmetto supplementation can significantly increase total testosterone and decrease
DHT and E2 concentrations using both low (800 mg·day−1) and high (2000 mg·day−1)
doses [40]. Although the efficacy of saw palmetto has been demonstrated in androgen-
deficient men, there is limited data on younger, eugonadal men.

There are numerous other plant extracts from collards, tomato leaves, tea, coffee, cocoa,
kale, potato leaves that have been reported to have high aromatase inhibition activity [41].
However, most of the research has been conducted on clinically relevant populations, and
not on young, athletic men to enhance androgen response. Regardless, the mechanism
responsible for much of the aromatase inhibition attributed to these products is attributed
to the flavonoid content of these nutrients.

1.2. Flavonoids

Several compounds belonging to the class of flavonoids have been suggested to act
as aromatase inhibitors [38]. Flavonoids are a group of natural substances with variable
phenolic structures. They belong to a class of plant secondary metabolites and are widely
found in fruits, vegetables, and certain beverages [42]. These natural products are well
known for their beneficial effects on health due to their antioxidative, anti-inflammatory,
anti-mutagenic, and anti-carcinogenic properties coupled with their capacity to modulate
key cellular enzyme functions [42] including aromatase inhibition [43]. Most of the biolog-
ical activities of flavonoids are attributed to a catechol group in their B-ring, 2,3-double
bond conjugated with the 4-oxo function and a 3- (and 5-) hydroxy group that scavenge
superoxide anions, hydroxyl, peroxyl, alkoxyl and the nitric oxide radicals, and by that
eliminate lipid peroxidation [44].

There are numerous types of flavonoids found in various foods, providing potential
anti-aromatase activity in many of the nutrients common in one’s diet. Apigenin is a
flavonoid found in many fruits and vegetables, but commonly found in parsley, celery,
celeriac, and chamomile tea [45]. Flavonoids are also found in beer. Xanthohumol-rich
stout beer contains a high concentration of prenylflavonoids and is noted for its ability
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to inhibit aromatase activity [46]. Other flavonoids such as catechins exist in high con-
centrations in cocoa [47], prune juice [48], and Açaí oil [49]. Neves and colleagues [50]
identified several flavonoids as equal or better aromatase inhibitors in comparison to the
anti-aromatase drug aminoglutethimide, including flavones, flavanones, resveratrol, and
oleuropein. Flavones and flavanones are found in many fruits and green tea, resveratrol
is one of the main components of red wine, and oleuropein is found in olive oil. Several
studies have reported high anti-aromatase activity in chrysin, a flavonoid present in high
concentrations in honey and propolis [48,51,52]. However, others reported no change in
testosterone concentrations in men consuming honey and propolis for 21 days [53]. Con-
suming foods or dietary supplements containing nutrients with aromatase inhibitors may
provide an ergogenic effect by inhibiting the conversion of testosterone to estradiol, indi-
rectly increasing testosterone concentrations. Unfortunately, most studies that have focused
on the effect of various foods on aromatase inhibition have been primarily interested in the
potential clinical use for treatment or prevention of various diseases such as breast cancer,
and not on the ergogenic potential that they may have for competitive athletes. Additional
research is needed to investigate the potential ergogenic effect aromatase inhibitors have
on testosterone concentrations in athletic populations.

1.3. Other Nutrients

There have been other naturally occurring nutrients that have been suggested to have
a potential anabolic effect by increasing testosterone concentrations. A multi-ingredient
supplement consisting of indole-3-carbinol (an extract from cruciferous vegetables), chrysin,
saw palmetto, and Tribulus terrestris, a plant of the Caltrop family, consumed in combination
with the pro-hormones androstenedione and dehydroepiandrosterone increased FT con-
centrations to a greater extent in middle-aged men compared the pro-hormones only [54].
Others have examined the capability of the element boron on its testosterone-boosting capa-
bility [55–57]. Evidence does indicate significant elevations in testosterone concentrations
in post-menopausal women [55] and in healthy men [56] following boron supplementation,
but other examining weightlifters showed no difference between athletes supplementing
with boron compared to placebo [57]. The mechanism suggested that enhancing testos-
terone concentrations from boron intake is related to boron’s role in the hydroxylation step
during testosterone formation [58], and by its ability to decrease SHBG [59]. A decrease in
SHBG levels would result in an increase in FT concentrations. Various foods such as fruits,
tubers, wine, cider, beer, coffee, milk, dried and cooked beans, potatoes, and legumes con-
tain the largest amounts of boron [60]. Additional research appears warranted regarding
boron’s efficacy in increasing testosterone concentrations.

Phosphatidylserine (PS) has also been proposed to enhance the anabolic response to
exercise. However, there is only limited human evidence supporting this hypothesis. PS
is a phospholipid found in the cell membrane of a variety of tissues, including the brain,
lungs, heart, liver, and skeletal muscle. The best dietary sources of PS are organ meats such
as brain, liver, heart, and kidney. Fatty fish, meats, and white beans can also provide PS in
smaller amounts. In a study on healthy, young men, Starks and colleagues [61] reported
that PS supplementation significantly increased the testosterone to cortisol ratio during a
bout of moderate intensity exercise on a cycle ergometer. Despite these positive results,
there does not appear to be any additional research supporting the role of PS on changes in
testosterone concentrations. However, other investigators examining another phospholipid
(i.e., phosphatidic acid) reported an increase in both strength and muscle thickness in
young, healthy men [62]. However, the mechanism that was suggested was related to the
role that phosphatidic acid may have on stimulating the mTor protein signaling pathway
and not to an augmented androgen response. However, the latter was not measured.

There appears to be an abundance of testosterone boosters that are marketed to the
consumer. Balasubramanian and colleagues [63] recently examined the efficacy of the
five top-ranked products and reported that the number of human studies conducted
provided no definitive evidence for the efficacy of these products. Similarly, Clemesha
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and colleagues [64] reported that only ~25% of the 50 products they tested claiming to be
testosterone boosters had scientific data to support their claims. This is an area of study
that has much appeal to competitive strength/power athletes, but the evidence to support
the use of these nutrients is often lacking.

2. Macronutrient Effects on Changes in Testosterone Concentrations
2.1. Low Energy Availability and Calorie Intake

Competitive athletes focusing on enhancing their athletic performance often strive
to improve their body composition by increasing lean body mass and decreasing fat
mass [65–67]. In the absence of appropriate guidance (e.g., consultation from a sport
nutritionist), many athletes alter their dietary intake potentially creating an energy deficit,
which is often associated with low energy availability [68]. Energy availability is defined
as the difference between energy intake and energy expenditure, relative to an individual’s
fat-free mass (FFM) [69]. Low energy availability may reduce the body’s energy reserves,
limiting its ability to support normal physiological function needed to maintain optimal
health [68]. For example, an athlete training at a high intensity or prolonged duration, while
attempting to lose fat mass by reducing caloric intake, may cause a low energy availability.
It is recommended that athletes have an energy availability of >45 kcal·kg FFM·day−1. Low
energy availability is defined as <30 kcal·kg FFM·day−1 [69–71]. The impact of low energy
availability on various physiological systems in the body is not the primary scope of this
paper, instead, the focus is directed on the effect of low energy availability on circulating
testosterone concentration and testosterone biosynthesis.

Several studies have demonstrated that a low energy availability can decrease LH con-
centrations, subsequently affecting testosterone synthesis. Initial investigations reported
that a low energy availability (i.e., 13 kcal·kg FFM·day−1) significantly altered LH pulse
frequency and amplitude [72]. Subsequent research, examining an even lower energy avail-
ability (i.e., 10 kcal·kg FFM·day−1) also reported significant decreases in LH production and
LH pulse frequency [73]. Another investigation, comparing study participants experiencing
a low energy availability of <30 kcal·kg FFM·day−1 to study participants with an energy
availability of 45 kcal·kg FFM·day−1 reported a significant reduction in LH production and
pulse frequency in the lower energy available group [74]. These studies clearly indicate the
negative effect that low energy availability has on the hypothalamic-pituitary-gonadal axis.

Large energy deficits appear to negatively affect testosterone concentrations. Hu and
colleagues [75] observed a significant decrease in testosterone concentrations when dietary
macronutrient intake was reduced. Others have reported that a 40% reduction in total
caloric intake was associated with significant decreases in circulating testosterone concen-
trations, despite a high percentage of the caloric intake being from protein sources [76].
Situations of low energy availability are reported in both endurance and strength/power
athletes and are especially relevant in sports where competition is based upon weight
class [77]. One investigation examining the effects of energy restriction and training
volume on circulating testosterone concentrations reported a significant reduction in testos-
terone concentrations among physique athletes who increased their training volume, while
being energy-restricted compared to physique athletes who maintained their regular diet
and training volume [78] (described in Table 1). Additional research reported significant
decreases in testosterone concentrations in long-distance runners who were categorized
as “low energy available” (<30 kcal·kg FFM·day−1) compared to runners categorized as
“moderate energy available” (30–45 kcal·kg FFM·day−1) [79]. Others have reported sig-
nificant elevations in cortisol, decreases in testosterone, and a lower testosterone/cortisol
ratio 24-h following an intense exercise session resulting in an energy deficit exceeding
400 kcal in male athletes [80]. These investigations have indicated that low energy avail-
ability has a deleterious effect on various physiological systems in the body, specifically
the endocrine system.



Nutrients 2021, 13, 3375 7 of 22

Table 1. Effect of low energy availability and energy deficits on circulating testosterone concentrations.

Source Participants Duration Intervention Key Findings

[78]
n = 14 men
Elite bodybuilders 11 weeks

• Energy-restricted group (n = 7): decrease calories and increase energy
expenditure through exercise

• Control group (n = 7): energy intake and training volume were
maintained.

• Significant decrease in TT in the
energy-restricted group compared to
the control group

• ES energy-restricted group = 0.49
• ES control group = 0.07.

[76]
n = 34 Healthy adults
(men and women) 31 days

• 40% energy deficit for all protein intake groups
• Group 1 (n = 11; 10 males, 1 female)—0.8 g·kg−1·day−1

• Group 2 (n = 12; 10 males, 2 females)—1.6 g·kg−1·day−1

• Group 3 (n = 10; 8 males, 2 females)—2.4 g·kg−1·day−1

• Significant reduction in TT
compared to the weight
maintenance period in all groups

• ES group 1 = 3.38
• ES group 2 = 0.39
• ES group 3 = 0.36.

[79]
n = 24 males
Elite distance runners 7 days • Low energy available group (n = 6): (<30 kcal·kg FFM·day−1)

• Moderate energy available group (n = 18): (30–45 kcal·kg FFM·day−1)

• Significant reduction in TT in the
low energy available group
compared to the moderate energy
available group ES = 1.3.

FFM = Fat free mass; TT = Total testosterone concentrations; ES = effect size. Effect size was estimated as (mean 2 − mean 1)/pooled standard deviation.



Nutrients 2021, 13, 3375 8 of 22

2.2. High-Fat Diets and Dietary Fats

For the hormonal system to function optimally, fat becomes an important macronutri-
ent as it’s the backbone for steroid hormone production [81]. The minimum recommenda-
tion for dietary fat consumption should be not below 25% for both the general and athletic
populations [82–84]. Cholesterol, a dietary fat component, is one of the building blocks for
testosterone production [81]. Considering that high-fat diets (HFD) increase cholesterol
levels, increases in dietary fat consumption have been suggested to potentially result in
an increase in testosterone production [85]. Several studies have examined the effect of
HFD on circulating testosterone concentrations [85–87]. One study examined the effect
of ketogenic (KD) and non-ketogenic (NKD) diets on strength, body composition, and
hormonal profile in resistance-trained men [84]. Both study groups consumed a diet high
in fat (75% vs. 65% for the KD and NKD, respectively). The primary difference between
the diets was that the KD group ingested a very low amount of dietary carbohydrates (5%)
compared to the NKD (15%). Both groups participated in a 12-week resistance training
program. Results indicated that both groups experienced a significant increase from base-
line in both total testosterone (TT) and FT concentrations during all four assessment times
(weeks 2, 4, 6, and 8) of the study. In addition, TT and FT concentrations at weeks 4, 6, 8
were significantly elevated compared to week 2. Although the investigative team did not
employ a control group consuming a low-fat diet (LFD), the results do suggest that a HFD
rich in cholesterol increased TT and FT in resistance-trained men regardless of the state of
ketosis. A similar study [86] investigated the differences between KD and Western diets
(WD) on body composition, strength, power, and hormonal profiles in resistance-trained
men. In this study, a large difference in carbohydrate and fat consumption was noted
between the two groups. The macronutrient profile for the WD group was 20%, 55%, and
25% for protein, carbohydrate, and fat, respectively, while for the KD group it was 20%, 5%,
and 75%, respectively. Both groups participated in a 10-week resistance training program.
Although both groups had similar increases in muscle thickness, lean body mass, and
strength measures (1RM squat and bench press), only the KD group experienced a signif-
icant increase in TT concentrations. It has been suggested that increases in testosterone
concentrations resulting from a KD are related to the high dietary intake of cholesterol [88].
Another study examining the effect of dietary nutrients on testosterone concentrations in
resistance-trained individuals reported a significant correlation (r = 0.72) between resting
testosterone concentrations and dietary fat consumption [83]. An investigation in women
reported that a diet that included 40% of its calories from dietary fat was superior for in-
creasing testosterone and estrogen concentrations compared to a diet whose total fat intake
was 20% of its total caloric intake [89] (described in Table 2). A recent systematic review
investigated the effect of a LFD on testosterone concentrations in men [85]. The LFD had a
small-to-moderate effect on decreasing total testosterone concentrations compared to the
HFD. Although evidence points to a positive effect of dietary fat on circulating testosterone
concentrations, it should not be dismissed that fat is not the optimal fuel source for athletes
participating in strength/power sports [83,90–92]. As such, sport nutritionists may hesitate
in recommending high-fat diets.

2.3. Dietary Protein and Protein Supplements

Dietary protein intake has an important role in athletic performance. Skeletal muscle,
the site for force production, is predominantly comprised of protein [93]. Dietary protein
supports the replenishment of skeletal muscle protein as it is degraded or damaged by
intense exercise [94,95]. Exercise and inadequate protein intake can result in a catabolic
response of muscle. That is, if protein intake is not adjusted to meet the protein needs of
the body, the ability to maintain or increase muscle mass and muscle performance becomes
challenging. To maintain appropriate muscle protein balance, in which muscle protein
synthesis equals or exceeds muscle protein breakdown, dietary protein intake for athletes
is recommended to be between 1.6–2.2 g·kg−1·day−1 [96–98]. Although dietary protein has
an important role in skeletal muscle size and strength adaptations, the influence of dietary
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protein intake on testosterone concentrations does not appear to have a major role, and
the general recommendations of 1.6–2.2 g·kg−1·day−1 appear to be sufficient to optimize
testosterone concentrations [94].

One type of protein that has received considerable attention regarding its effect on
circulating testosterone concentrations is soy protein. Although soy protein consumption
has been demonstrated to have significant benefits on strength performance following
12 weeks of resistance training [99], its role in androgen biology has made it a topic of
interest. This interest is related to the understanding that soybeans contain biologically
relevant amounts of isoflavones [100]. Isoflavones are also referred to as phytoestrogens
and are compounds that bind to estrogen receptors, causing a cascade of events that exert
estrogen-like effects [101,102]. The popularity of soy protein use among vegan athletes
has resulted in a focus on its effect on sport performance and changes in testosterone
concentrations. Studies on male rodents have resulted in conflicting results. Some inves-
tigations have indicated that rodents fed soy protein exhibited lower serum testosterone
concentrations [103,104], while others reported no negative effects on circulating testos-
terone [105,106]. A meta-analysis examining the effect of isoflavones and soy protein intake
on testosterone concentrations and SHBG in men concluded that there was no negative
effect of soy protein intake on TT, FT, or SHBG [107]. However, subsequent research
continues to still raise the issue that soy protein consumption can result in reductions in
resting testosterone concentrations and response to exercise. Kraemer and colleagues [108]
examined the effect of soy protein supplementation on the testosterone and estradiol re-
sponse in healthy, resistance-trained men. Using a cross-over design, participants were
randomized into three groups: whey protein supplement (WPS), soy protein supplement
(SPS), and maltodextrin (placebo, PLA). Participants were provided each treatment for
14 days. Following the supplementation period, participants performed an acute resis-
tance exercise session consisting of 6 sets of 10 repetitions in the squat exercise at 80%
of the participant’s one repetition maximum. Testosterone and estradiol concentrations
were examined at various time points during and following the acute exercise session.
Although testosterone concentrations were significantly elevated from baseline during and
up to 5-min post-exercise, only the WPS and PLA trials resulted in significant increases
in testosterone concentrations at the 15- and 30-min post-exercise measures. Additionally,
testosterone concentrations were significantly lower during SPS compared to both WPS
and PLA during the post-exercise period. No significant differences were noted in estradiol
concentration between the three groups at any of the time points. Subsequent research,
using the same three groups, albeit for 12 weeks and combined with resistance exercise,
also reported no significant pre- or post-training changes in serum estradiol concentrations
in any of the study groups [109]. Although no significant differences were noted in TT
concentrations in both the SPS and PLA groups, an increase in serum TT was observed
in the WPS group. In addition, muscle androgen-responsive mRNA was increased in
all groups as a result of the training stimulus (significant main effects for time), but no
significant differences were observed between the three groups. The results from these
studies do not provide any conclusive evidence regarding soy protein having a negative
effect on testosterone production. However, they are consistent in demonstrating that
whey protein supplementation may be the superior protein supplement for enhancing the
testosterone response to training. It is also important to note that protein supplementation
regardless of its source (soy or whey), when combined with resistance training can result
in a significant increase in lean body mass [110].
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Table 2. Effect of fat and protein intake on changes in circulating testosterone concentrations.

Source Participants Duration Intervention Key Findings

[89]
n = 48
Premenopausal healthy women 14 weeks • HFD group (n = 24): 40% fat

• LFD group (n = 24): 20% fat

• Significant decrease in TT concentrations
• Significant decrease in estrone concentrations
• Significant decrease in SHBG concentrations

[108]

n = 10
Healthy resistance-trained men
(crossover design) 10 weeks

• WPI (n = 10)
• SPI (n = 10)
• Placebo (n = 10)

• Significant increase in the TT response to resistance
exercise test for all groups.

• Significantly lower TT concentrations in SPI group
post-resistance exercise compared to both WPI and
placebo groups.

[109]

n = 47
Healthy college-aged men
performing a resistance training
program

12 weeks
• WPI (n = 17)
• SPI (n = 15)
• Placebo (n = 15)

• No significant differences in TT concentrations between
SPI and placebo groups

• ES SPI = 0.04
• ES PLA =0.15.
• Significant increase in serum TT concentrations

compared to baseline in the WPI group (ES = 0.63).
• Significant pre to post effects in all groups for muscle

androgen-responsive mRNA, but no significant
differences noted between groups.

• ES PLA = 0.05
• ES SPI = 0.28
• ES WPI = 0.59.

[86]
n = 25
Resistance-trained men 11 weeks

• Ketogenic diet
• (n = 13)
• Western diet
• (n = 12)

• Significant increase in TT concentrations in the ketogenic
diet compared to western diet group

• ES = 0.65.

[111]
n = 18 Experienced,
resistance-trained, middle-aged men 8 weeks

• Ketogenic diet
• (n = 9)
• Non-ketogenic diet (n = 9)

• Significant increase in both TT and FT in both the
ketogenic and non-ketogenic groups.

• ES, KD for TT = 1.98, TF = 1.66
• ES, NKD for TT = 2.27, TF = 2.31

FT = free testosterone; HFD = high-fat diet, LFD = low-fat diet; SHBG = sex hormone binding globulin; SPI = Soy protein isolate; TT = total testosterone; WPI = whey protein isolate; ES = effect size. Effect size
was estimated as- (mean 2 − mean 1)/pooled standard deviation.
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3. Micronutrient Effects on Testosterone Concentrations
3.1. Vitamin D

Vitamin D is a micronutrient that also acts as a prohormone [112]. Vitamin D has gar-
nered considerable attention in the general and competitive athletic populations, primarily
due to its role on various physiological systems in the body, and the effect that vitamin D
deficiency has on many diseases [113,114]. Vitamin D has two biological forms, vitamin D3
(cholecalciferol), and vitamin D2 (ergocalciferol). Vitamin D3 is the most bioavailable and
most supplemented form of Vitamin D and is synthesized in the skin upon exposure to
sunlight. The specific physiological effects of vitamin D and its specific mechanisms are be-
yond the scope of this paper, but readers are encouraged to explore this elsewhere [115,116].
In brief, vitamin D, whether it is synthesized endogenously or consumed as a food or sup-
plement, undergoes hydroxylation to become active. The first hydroxylation step occurs in
the liver where vitamin D is converted to 25-hydroxyvitamin D [25(OH)D]. The second
hydroxylation step is performed primarily in the kidney to form 1,25-dihydroxyvitamin
D3, also referred to as 1,25-dihydroxycholecalciferol, which is the biologically active form
of vitamin D [117,118]. The United States Institute of Medicine has indicated that the range
for vitamin D concentrations should be between 25–50 nmol·L−1 [119]. Studies on athletes
have suggested that the cut-off for vitamin D deficiency should be > 30 nmol·L−1 or even
higher [112,120,121].

The vitamin D receptor, which plays a central role in the biological action of the vitamin,
has been observed in reproductive tissues such as the ovaries, prostate, and testes, as well
as in human sperm [122–125]. Vitamin D receptors are present on the Leydig cells within
the testes, where the synthesis of testosterone from cholesterol occurs [7], suggesting an
important role of vitamin D on testosterone synthesis. Men with vitamin D deficiency have
exhibited significantly lower testosterone concentrations compared to men with normal
vitamin D concentrations [126]. Significant associations were also noted between vitamin
D concentrations and circulating testosterone and SHBG concentrations, as well as the free
androgen index [126]. These findings are consistent with subsequent investigations reporting
significant correlations between vitamin D and testosterone concentrations [126–128].

Athletes in general are at a higher risk for vitamin D deficiency, especially athletes
participating in indoor sports [121,129–131]. Vitamin D supplementation is a potential
option to maintain normal vitamin D status, but also to potentially increase testosterone
concentrations. A double-blind, randomized placebo-control trial of 54 males reported
that the group receiving a daily supplementation of 83 µg (3332 IU) of vitamin D for
12 months experienced significant increases in circulating 25-hydroxyvitamin D, TT, and
FT concentrations compared to the placebo group [132] (described in Table 3). Although it
has been suggested that the daily dose of vitamin D supplementation for athletes should
be 5000 IU·day−1 for improving performance and restoring vitamin D levels [120,133,134],
no consensus exists regarding the optimal range for vitamin D levels [119]. Furthermore,
the effect of vitamin D supplementation on altering resting testosterone concentrations is
still not well understood and requires further research.

3.2. Zinc

Zinc is a mineral that influences and interacts with many biological systems, especially
the endocrine system [16]. Zinc has an important role in immune system function and
in modulating inflammatory processes [135–138]. While zinc can be found in many food
sources, the more bioavailable form of zinc can be found in animal tissues [139–142]. The
daily recommended intake for zinc is between 14–40 mg·day−1 [143]. The physiological
role of zinc regarding testosterone biology is related to its requirement in the synthesis
and secretion of LH. As previously discussed, LH stimulates testosterone synthesis in the
Leydig cells [6,14,144]. Zinc is also important in the conversion of testosterone to DHT [144].
DHT is converted from testosterone by the enzyme 5α—reductase in the cytoplasm of the
cell. DHT is primarily found in peripheral tissues such as prostate, skin, hair follicles, and
the liver [6,145]. As discussed earlier, DHT is thought to have a stronger androgenic affect



Nutrients 2021, 13, 3375 12 of 22

than testosterone due to its four-times greater binding affinity for the androgen receptor
than testosterone and a three-times slower dissociation rate than testosterone [146–148].
DHT has a vital role in the sexual development of males and sexual differentiation of
organs and promotes prostate growth; male pattern baldness; and body, facial, and pubic
hair growth [6,145,149].

Zinc also has an indirect role in testosterone synthesis. Zinc is required for normal
function of angiotensin-converting enzyme (ACE), a zinc-dependent dicarboxypeptidase,
which has a zinc binding site in its cyclitic domain [150,151]. ACE is reported to increase
LH production in pituitary, thus impacting androgen production [152]. Zinc deficiency can
impair testosterone synthesis and has been demonstrated to correlate with reductions in
testosterone concentrations [153–155]. Competitive athletes appear to be at a greater risk
for zinc deficiency compared to the general population [156,157]. Considering that zinc
deficiency appears to be related to hypogonadism, efforts to maintain zinc levels within
normal ranges appears important. Several studies have shown that zinc supplementation
can restore testosterone concentrations to their normal physiological range [153,154,158].
One study examined the effect of zinc supplementation on both TT and FT concentrations
in healthy young adults before and after an exhaustive exercise protocol [159]. Study
participants were supplemented with zinc sulfate (3mg·kg·day−1) for four weeks. Investi-
gators reported that zinc supplementation increased both TT and FT concentrations prior
to and following the exhaustive exercise protocol compared to pre-supplementation results.
In contrast, others reported no difference in either the TT or FT response to exhaustive
exercise between male cyclists supplemented with zinc sulfate (30 mg) for four weeks
compared to a placebo-controlled group [160]. Although zinc has an important role in the
regulation of testosterone production, long-term studies in competitive athletes have not
been conducted. Whether zinc supplementation is effective only during periods of zinc
deficiency or whether it can augment normal testosterone concentrations regardless of
baseline concentrations is not well understood.

3.3. Magnesium

Magnesium is one of the most abundant minerals in the body. It has an important role
in various biological systems including protein synthesis, cellular energy production, cell
growth, and reproduction [161]. From an athletic performance perspective, magnesium
is involved in skeletal muscle function and energy production, suggesting a possible er-
gogenic effect [162]. The recommended dietary allowance for magnesium intake for men is
between 400 to 420 mg·day−1 and 310 to 320 mg·day−1 for women [163]. Several studies
have reported that athletes do not consume enough magnesium from their diet, resulting
in a greater risk for magnesium deficiency [164–167]. Several investigations have reported
a relationship between magnesium and testosterone concentrations [168–170]. One study
indicated that magnesium supplementation in young healthy men in combination with
a four-week endurance training program increased both FT and TT concentrations at
rest and following exhaustive exercise [171]. An additional study conducted on nearly
400 older adult men reported a significant correlation between magnesium status and
testosterone concentrations (r = 0.20, p < 0.05) [169]. The mechanism responsible for this
relationship has yet to be elucidated. However, it is possible that it may be more indirect
than direct. Magnesium is known to have a role in decreasing oxidative stress and inflam-
mation [172–174]. Considering that testosterone concentrations can be strongly influenced
by oxidative stress [175], it is possible that magnesium’s role in decreasing oxidative stress
may provide the stimulus to maintain testosterone concentrations during periods of ox-
idative stress. A strong positive correlation has been reported between total antioxidative
capacity and testosterone concentrations (r = 0.807) [175]. Magnesium has an important
role in maintaining antioxidant capacity and controlling oxidative stress [172–174]. Mag-
nesium deficiency has been demonstrated to increase production of oxygen free radicals,
increase oxidative tissue damage, decrease antioxidant enzyme activity, decrease cellular
antioxidant levels, and increase oxygen peroxide production [176–178]. In contrast, normal
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magnesium levels can prevent oxygen radical formation by removing free radicals and
inhibiting xanthine oxidase and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase elevations [179].

Magnesium deficiency has also been associated with low-grade systemic inflamma-
tion [172,180], and has been shown to increase pro-inflammatory cytokines: tumor necrosis
factor-alpha (TNF-α) and interleukin 1 (IL-1) [180–182]. Low-grade chronic inflammation
has been shown to decrease testosterone concentrations by suppressing testosterone secre-
tion from Leydig cells, resulting in both an inhibitory effect on LH secretion and reduced
LH sensitivity at the Leydig cell [183,184]. Increases in TNF-α activates nuclear factor
κB (NF-κB), a transcription factor that governs the expression of early-response genes
involved in cellular responses to a wide range of signals [185]. NF-κB inhibits the activation
of steroidogenic-enzyme genes such as Nur77 and SF-1, which regulate steroidogenesis
(biosynthesis of testosterone from cholesterol) in the Leydig cells [184]. Rochelson and
colleagues [186] demonstrated, through an in vitro examination, that magnesium sulfate
can reduce the nuclear translocation of NF-κB. Others have demonstrated that magne-
sium supplementation can reduce inflammatory status and decrease levels of TNF-α and
IL-1 [180,187].

Magnesium also appears to reduce the binding of testosterone to SHBG [188]. Most
circulating testosterone is bound to SHBG; however, the bioavailability of testosterone
is related to the free testosterone concentrations, which is only a fraction of circulating
testosterone [189]. Magnesium appears to bind to SHBG resulting in the blocking of
testosterone’s ability to bind to SHBG, subsequently enhancing testosterone bioavailability.
Magnesium deficiency appears to increase testosterone binding to SHBG, potentially
decreasing its bioavailability [188]. Whether magnesium supplementation is effective in
augmenting testosterone synthesis as an anabolic agent is not well understood.
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Table 3. Effect of micronutrient intake on circulating testosterone concentrations.

Source Participants Duration Intervention Key Findings

[159]
n = 10
Healthy college-aged men 4 weeks • Zinc supplementation group

(zinc sulfate 3 mg·kg·day−1)

• Significantly elevation of TT and FT before and after an
exhaustive exercise protocol compared to pre-supplementation.

• ES before the exhaustive exercise protocol TT = 0.59 FT = 1.32
• ES after the exhaustive exercise protocol TT = 0.82, FT = 3.32

[132]
n = 54
Healthy overweight men 12 months

• Vitamin D supplementation
group (n = 31): 83 µg·day−1

(3332 IU)
• Placebo group (n = 23)

• Significant increase in TT and FT in the vitamin D group
compared to baseline.

• ES for TT in the VD group = 0.63
• ES for FT in the VD group = 0.54

[160]
n = 32
Male cyclists 4 weeks

• Zinc supplementation group n
= 8 (30 mg·day−1)

• Selenium supplementation n =
8 (Se, 200 µg sodium selenite)

• zinc–selenium n = 8 (Zn–Se, 30
mg zinc sulfate–200 µg
selenium selenite)

• Placebo group n = 8 (30
mg·day−1)

• No significant differences between groups for TT and FT before
and after the exhaustive exercise test.

[171]

n = 30
Healthy college-aged men
participating in an aerobic -training
program

4 weeks

• Magnesium supplementation +
training group n = 10 (MgSO4
10 mg·kg·day−1)

• Magnesium supplementation
group only n = 10

• Training group only n = 10

• Significant increase in total and free testosterone concentrations
before and after exhaustive exercise in the group who
supplemented with magnesium and trained compared the other
groups.

• ES before TT = 0.37
• ES after TT = 0.46
• ES before FT = 1.11
• ES after FT = 0.45

FT = Free testosterone; TT = total testosterone; ES = effect size. Effect size was estimated as (mean 2 − mean 1)/pooled standard deviation.
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4. Summary

In summary, this article discussed several nutrients that have been proposed to have
anti-aromatase activity. Although evidence has been presented supporting the benefits
of certain nutrients, the evidence supporting most of the nutrients suggested to influence
anti-aromatase activity remain largely inconclusive. Much of this issue is related to the
small sample sizes found in many of these papers, and the limitations that are associated
with examining trained and athletic populations. More effort appears to have been focused
on the effects of energy intake and manipulating macronutrient composition, specifically
protein and fat composition on changes in circulating levels of testosterone at rest and
in response to various exercise stresses. Evidence is consistent in demonstrating that
low energy intake negatively impacts testosterone concentrations that may affect human
performance. In addition, certain vitamins and minerals have important roles in testos-
terone synthesis. The importance of supplementing these vitamins and minerals appears
to become efficacious when the body becomes deficient in these specific micronutrients.
However, evidence supporting any benefits of supplementing with these micronutrients to
augment testosterone concentrations is lacking.
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