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The authors performed a time-series analysis to test the association between air pollution and daily numbers of
hospitalizations for headache in 7 Chilean urban centers during the period 2001–2005. Results were adjusted for
day of the week and humidex. Three categories of headache—migraine, headache with cause specified, and
headache not otherwise specified—were all associated with air pollution. Relative risks for migraine associated
with interquartile-range increases in specific air pollutants were as follows: 1.11 (95% confidence interval (CI): 1.06,
1.17) for a 1.15-ppm increase in carbon monoxide; 1.11 (95% CI: 1.06, 1.17) for a 28.97-lg/m3 increase in nitrogen
dioxide; 1.10 (95% CI: 1.04, 1.17) for a 6.20-ppb increase in sulfur dioxide; 1.17 (95% CI: 1.08, 1.26) for a 69.51-
ppb increase in ozone; 1.11 (95%CI: 1.00, 1.19) for a 21.51-lg/m3 increase in particulate matter less than 2.5 lm in
aerodynamic diameter (PM2.5); and 1.10 (95% CI: 1.04, 1.15) for a 37.79-lg/m3 increase in particulate matter less
than 10 lm in aerodynamic diameter (PM10). There was no significant effect modification by age, sex, or season.
The authors conclude that air pollution appears to increase the risk of headache in Santiago Province. If the relation
is causal, the morbidity associated with headache should be considered when estimating the burden of illness and
costs associated with poor air quality.

air pollution; environment; headache

Abbreviations: ICD-10, International Classification of Diseases, Tenth Revision; PM2.5, particulate matter less than 2.5 lm in
aerodynamic diameter; PM10, particulate matter less than 10 lm in aerodynamic diameter.

Acute and chronic exposure to urban air pollution in
North America and Europe has been associated with in-
creased respiratory symptoms, reduced lung function, and
hospitalization and death from cardiac and respiratory
diseases (1–5).

Headache is an important cause of morbidity in modern
society. There are many self-reported triggers for migraines,
including weather, fatigue, stress, food, menstruation, and
infections (6, 7). There have been few studies of the effect of
air pollution on headache. A daily diary study of 32 head-
ache sufferers in Turin, Italy, revealed that the severity and
frequency of headache was related to numbers of days with
increased carbon monoxide and nitrogen dioxide levels (8).
Reported headache was more common in a neighborhood
with a pulp mill than in one without one (9). Among 29
women aged 19–27 years who were studied in an environ-
mental chamber, headache, eye irritation, and nasal irrita-

tion were significantly worse (P < 0.05) when the women
were exposed to ozone at 60–80 ppb as compared with <2
ppb (10). Between 1992 and 2000, the daily number of
headache-related visits to an Ottawa, Canada, hospital
emergency department increased by 4.9% (95% confidence
interval: 1.2, 8.8) with each 3.9-ppb increase in sulfur di-
oxide level, lagged by 2 days (11). The same author also
reported an increase in headache-related visits in Montreal,
Canada, associated with increases in nitrogen dioxide and
carbon monoxide levels (12).

We studied the association between gaseous and particu-
late air pollution and hospitalization for headache in San-
tiago Province, Chile. Santiago is densely populated and is
situated in a valley surrounded by the Coastal and Andes
mountains (13–15). In 2001, Kavouras et al. (16) observed
that concentrations of particulate matter less than 10 lm in
aerodynamic diameter (PM10) in several Chilean cities were
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high by US and European standards, making it easier to
detect adverse effects of air pollution.

MATERIALS AND METHODS

Air pollution data

Daily air pollution data from 2001–2005 for the urban
centers that make up Santiago Province were obtained from
7 monitoring stations in 7 regions: Las Condes, Cerrillos, El
Bosque, La Florida, Independencia, Santiago, and Pudahuel.
The Las Condes, Santiago, and Pudahuel stations measured
the pollutants ozone, nitrogen dioxide, sulfur dioxide, carbon
monoxide, PM10, and particulate matter less than 2.5 lm in
aerodynamic diameter (PM2.5). Nitrogen dioxide was not
measured in Independencia, La Florida, or El Bosque.
PM2.5 was not measured in Independencia.

Headache hospitalization data

Headache was coded using the International Classifica-
tion of Diseases, Tenth Revision (ICD-10). Daily numbers
of hospitalizations for migraine (ICD-10 code G43), other
specified headache (tension, cluster, vascular, posttraumatic,
drug-related, or other specified cause; ICD-10 code G44),
and headache not otherwise specified (ICD-10 code R51)
were obtained from the Instituto Nacional de Estadisticas,
the official source of statistical data in Chile from 2001
through 2005. Atypical facial pain and trigeminal neuralgia
were not included.

Statistical methods

We assumed a Poisson distribution and used time-series
analyses. A linear association between ambient air pollution
and headache on the logarithmic scale was assumed (17).
Natural splines were created with 1 knot for each of 15, 30,
60, 90, 120, 180, and 365 days of observation. We selected
a model with the number of knots that minimized Akaike’s
Information Criterion, a measure of model prediction. We
then maximized the evidence that the model residuals did
not display any type of structure, including serial correlation
using Bartlett’s test (18). We also plotted model residuals
against time, searching for visual signs of a pattern or cor-
relation. Having selected the optimal model for time, we
assessed the 24-hour mean values for temperature, humidity,
barometric pressure, and humidex (a measure of the com-
bined effect of temperature and humidity; Environment
Canada, unpublished data, 2002 (http://www.msc-smc.ec.
gc.ca/cd/brochures/humidity_e.cfm)) to determine the best
weather predictors of headache. We accounted for potential
nonlinear associations with headache by using natural spline
functions with 4 knots. The model that minimized Akaike’s
Information Criterion used humidex, both on the day of the
hospital admission for headache and on the day prior.

Lag times of 0–5 days were examined for the air pollut-
ants. We also used unconstrained distributed lags as de-
scribed by Schwartz (19).

In this paper, we present the increase in relative risk of
headache for an interquartile-range increase in the level of

each pollutant, using the optimal lags—those that maxi-
mized the observed effect size. The interquartile range,
the middle 50% of the exposure data, provides a realistic es-
timate of day-to-day changes. It is nonparametric, so it will
not be influenced by skewed data. It excludes extreme
values and outliers which are unstable and infrequently
seen. Results from each region were pooled using a ran-
dom-effects model.

RESULTS

Regional population sizes varied more than 3-fold, from
421,000 in Independencia to 1,335,000 in La Florida
(Table 1). The numbers of hospital admissions for headache
varied 2- to 4-fold between Santiago and Independencia. In
the total population of 5.37 million people, there was an
average of 2.5 hospital admissions daily for headache, half
of which had no specified cause and one-third of which were
for migraine. Twenty-four-hour mean concentrations of air
pollutants varied by approximately 50%–100% between re-
gions. El Bosque had the greatest concentrations of PM10

and sulfur dioxide and the second-greatest concentration of
sulfur dioxide. Las Condes had the greatest concentration of
ozone.

The greatest and smallest regional pairwise correlation
coefficients for each 2-pollutant combination are presented
in Table 2. Those greater than or equal to 0.7 are identified
with a footnote. The greatest positive correlations were be-
tween carbon monoxide and nitrogen dioxide and PM2.5,
which is consistent with a common source, mobile combus-
tion. Sulfur had somewhat lower positive correlations with
the other pollutants, whereas ozone tended to have small and
often negative correlations with other pollutants.

Associations between headache and single pollutants

The majority of relative risks for the relation between head-
ache and air pollution were greater than 1 for each of the 7
areas and each of the 3 headache classifications (Table 3).
Of all of the relative risks calculated for each pollutant
by region and by headache type, ozone had greater relative
risks than the other pollutants for 14 of the 21 comparisons.
Of the 3 headache types, relative risks were greater for
migraine for approximately 50% of the comparisons. The
95% confidence interval excluded 1 for 15 of the 21 com-
parisons with ozone, 7 of the 12 comparisons with nitrogen
dioxide, and 6 of the 12 comparisons with PM2.5. For other
pollutants, fewer than 50% of the comparisons were signif-
icant. The number of times the 95% confidence interval
excluded 1 was 22 for migraine, 9 for nonspecified head-
ache, and 7 for specified headache. Las Condes and Santiago
had the greatest numbers of significant relative risks. There
were significant associations between migraine and ozone in
all regions.

When the regions were pooled, the relative risk estimates
were greater than 1 for all pollutant-headache type combi-
nations. Using models with a single lag structure, the 95%
confidence interval excluded 1, except for the associations
between PM2.5 and migraine and headache of specified
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cause and the association between nitrogen dioxide and
headache of specified cause (Table 4). The largest risk esti-
mate was 1.17 for the relation between ozone and migraine
headache, and the second-largest was 1.13 for the relation
between nitrogen dioxide and headache of specified cause.
Effect sizes seen with a distributed lag structure pointed in
the same direction but tended to be greater than with the
single lag structure. With distributed lags, the only 95%
confidence interval not excluding 1 was that for the associ-
ation between migraine and PM2.5. There was no consistent
effect modification of the headache-pollution associations
by age, sex, or season (Table 5). Compared with younger
persons, those over age 64 years had nonsignificantly larger
relative risks for headaches other than migraine.

Associations for headache in 2-pollutant models

For migraine, the relative risk point estimates for nitrogen
dioxide remained stable and statistically significant after
adjustment for each of the other pollutants (Figure 1). When
other pollutants were adjusted for nitrogen dioxide, their
point estimates decreased and statistical significance was
lost. The point estimate for PM10 remained stable despite
adjustment for pollutants other than nitrogen dioxide. Car-
bon monoxide, sulfur dioxide, and ozone lost significance
when adjusted for nitrogen dioxide or PM2.5. For both head-
ache–not otherwise specified and headache–specified cause,
the results from 2-pollutant models were similar. The rela-
tive risk point estimate for carbon monoxide remained sig-
nificant when adjusted for other gases but lost significance

Table 2. Minimum and Maximum Pearson Pairwise Correlations

Between Air Pollutants for 7 Urban Centers, Santiago Province,

Chile, 2001–2005

Pollutant
Carbon

Monoxide
Ozone

Sulfur
Dioxide

Nitrogen
Dioxide

PM10

Ozone

Minimum �0.514**

Maximum �0.176

Sulfur dioxide

Minimum 0.418** �0.088*

Maximum 0.821 0.129

Nitrogen dioxide

Minimum 0.788a,** �0.339** 0.416**

Maximum 0.844a �0.085 0.797

PM10

Minimum 0.512** �0.003** 0.387** 0.614**

Maximum 0.835 0.169 0.839 0.787

PM2.5

Minimum 0.729a,** �0.310** 0.390** 0.716a,** 0.712a,**

Maximum 0.915a �0.069 0.825 0.823a 0.917a

Abbreviations: PM2.5, particulate matter less than 2.5 lm in aerody-

namic diameter; PM10, particulate matter less than 10 lm in aerodynamic

diameter.

* P < 0.05; **P < 0.005.
a Pearson pairwise correlation coefficient of 0.7 or greater.
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Table 3. Relative Risk of Hospitalization for Headache AssociatedWith an Interquartile-Range Change in Pollutant Concentrations, by Urban Center, Santiago Province, Chile, 2001–2005a

Urban Center Headache Type

Carbon Monoxide
(1.15 ppm)b

Ozone (69.51 ppb)
Sulfur Dioxide

(6.20 ppb)
Nitrogen Dioxide

(28.97 ppb)
PM10 (37.79 mg/m3) PM2.5 (21.51 mg/m3)

RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI

Las Condes NOS 1.128 1.047, 1.215 1.058 0.764, 1.464 1.127 0.993, 1.279 1.104 1.034, 1.179 1.129 1.041, 1.225 1.111 1.038, 1.189

Migraine 1.121 1.045, 1.202 1.161 1.007, 1.339 1.141 0.959, 1.357 1.136 1.036, 1.245 1.131 1.056, 1.211 1.130 1.056, 1.209

Specified cause 1.144 0.904, 1.448 1.123 1.023, 1.232 1.128 1.005, 1.266 1.132 1.020, 1.256 1.115 0.998, 1.245 1.106 1.009, 1.212

Cerrillos NOS 1.120 0.970, 1.294 1.160 1.034, 1.301 1.120 0.967, 1.297 1.138 0.999, 1.297 1.059 0.940, 1.193 NA

Migraine 1.107 1.009, 1.215 1.167 1.047, 1.301 1.132 0.994, 1.289 1.141 1.018, 1.279 1.106 1.022, 1.197 NA

Specified cause 1.111 0.943, 1.309 1.137 1.085, 1.191 1.128 0.984, 1.293 1.106 0.987, 1.240 1.068 0.988, 1.155 NA

El Bosque NOS 1.032 0.991, 1.074 1.001 0.999, 1.003 1.128 0.925, 1.376 NA 1.034 0.949, 1.127 NA

Migraine 1.088 1.007, 1.176 1.134 1.011, 1.272 1.084 0.934, 1.258 NA 1.117 0.979, 1.275 NA

Specified cause 1.104 0.902, 1.351 1.061 0.943, 1.194 1.113 0.946, 1.310 NA 1.025 0.975, 1.077 NA

La Florida NOS 1.128 0.983, 1.294 0.993 0.852, 1.157 1.129 0.945, 1.348 NA 1.056 0.967, 1.153 1.097 0.972, 1.238

Migraine 1.129 0.992, 1.285 1.118 1.007, 1.241 1.070 0.873, 1.312 NA 1.133 0.987, 1.300 1.142 0.978, 1.333

Specified cause 1.069 0.884, 1.292 1.050 0.923, 1.195 1.143 0.849, 1.539 NA 1.045 0.913, 1.196 1.022 0.989, 1.056

Independencia NOS 1.093 0.986, 1.212 1.139 1.039, 1.249 0.997 0.819, 1.213 NA 1.056 0.909, 1.227 NA

Migraine 1.037 0.999, 1.076 1.194 1.004, 1.419 1.053 0.979, 1.133 NA 1.084 0.990, 1.187 NA

Specified cause 1.021 0.986, 1.057 1.122 1.011, 1.245 0.997 0.743, 1.338 NA 1.105 0.988, 1.236 NA

Santiago NOS 1.046 0.995, 1.099 1.123 1.046, 1.205 1.100 0.964, 1.256 1.121 0.978, 1.285 1.050 0.995, 1.108 1.071 1.018, 1.127

Migraine 1.111 1.006, 1.227 1.199 1.014, 1.418 1.136 1.026, 1.258 1.117 1.038, 1.202 1.058 1.005, 1.114 1.112 1.009, 1.226

Specified cause 1.127 0.930, 1.366 1.183 1.021, 1.371 1.129 0.921, 1.383 1.138 0.876, 1.478 1.152 0.951, 1.395 1.096 1.003, 1.197

Pudahuel NOS 1.066 0.953, 1.192 1.117 1.034, 1.206 1.086 0.953, 1.237 1.131 0.977, 1.309 1.093 0.941, 1.270 1.050 0.927, 1.189

Migraine 1.074 0.955, 1.208 1.198 1.041, 1.379 1.115 0.953, 1.304 1.085 1.000, 1.177 1.049 1.004, 1.096 1.047 0.993, 1.104

Specified cause 1.148 0.949, 1.389 1.153 0.879, 1.512 1.143 0.868, 1.506 1.072 1.012, 1.133 1.054 0.984, 1.128 1.129 0.908, 1.404

Abbreviations: CI, confidence interval; NA, not applicable; NOS, not otherwise specified; PM2.5, particulate matter less than 2.5 lm in aerodynamic diameter; PM10, particulate matter less

than 10 lm in aerodynamic diameter; RR, relative risk.
a Results were adjusted for long-term trends, day of the week, and average humidex on the day of hospitalization and the day before. Optimal lags were 1 day for all RRs.
b One-interquartile-range change in the specified pollutant.
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when adjusted for particulate air pollution (Figures 2 and 3).
The ozone effect remained stable and significant after ad-
justment for carbon monoxide, sulfur dioxide, and PM10

(Figures 2 and 3) but lost significance at P ¼ 0.05 after
adjustment for nitrogen dioxide or PM2.5. The other 2 pol-
lutants that were significant in single-pollutant models, sul-
fur dioxide and PM10, lost significance when adjusted for
either carbon monoxide or PM2.5. Adjusting for sulfur di-
oxide increased the point estimates for carbon monoxide,
nitrogen dioxide, PM10, and PM2.5.

DISCUSSION

Summary of findings

In this study, numbers of headaches severe enough to re-
quire hospitalization were increased on days of greater air
pollution. This finding was robust in that the association was
present for all 3 headache classifications and for all gaseous
and particulate air pollutants tested. Migraine was the type
of headache most consistently associated with individual air
pollutants across regions of Santiago Province. Ozone was
the pollutant most consistently associated with headache in
single-pollutant models across Santiago. With the exception
of ozone, the high correlations between pollutants—a result
of their common source, fossil fuel combustion—made it
difficult to isolate the effect of 1 pollutant from that of the
others. However, for migraine, the effect of nitrogen dioxide
was independent of each of the other pollutants in 2-pollut-
ant models. Nitrogen dioxide is a good marker for mobile
combustion sources or urban traffic (20). Whether nitrogen
dioxide per se contributes to headache directly or is simply
the best marker of exposure to other toxic pollutants cannot
be determined.

Biologic plausibility of a causal relation between air
pollution and headache

A causal association between air pollution and headache
is biologically plausible. Nociceptive stimuli may trigger
headache, and neural and vascular changes are thought to
be important in the pathophysiology of headache. Sulfur
dioxide and ozone are irritants, and air pollution influences
neural and vascular activity.

Observed dilation of temporal arteries during migraine
headaches and symptomatic improvement with administra-
tion of vasoconstrictors suggest a vascular role in headache.
Increased pulsation may stimulate stretch receptors and
perivascular nerves (21). A more recent central neurologic
theory supported by neuroimaging is that a trigeminovascu-
lar reflex may lead to peptide release and subsequent in-
flammation, vasodilation, and pain (22).

The influence of air pollution on the brain is unknown, but
there is evidence that air pollutants exert both vascular and
neurologic effects on the cardiovascular system. Exposure
to fine particulate pollution influences autonomic innerva-
tion of the heart. Acute cerebrovascular effects have not
been well studied, but air pollution exposure is associated
with increased risks of stroke and heart attack and influences
peripheral vascular tone. Brook et al. (23) reported thatT
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Table 5. Pooled Estimates of the Relative Risk of Hospitalization for Headache AssociatedWith an Interquartile-Range Change in Pollutant Concentrations in 7 Urban Centers, by Age, Sex,

and Season, Santiago Province, Chile, 2001–2005a

Headache Type Category

Carbon Monoxide
(1.15 ppm)b

Ozone (69.51 ppb)
Sulfur Dioxide

(6.20 ppb)
Nitrogen Dioxide

(28.97 ppb)
PM10 (37.79 mg/m3) PM2.5 (21.51 mg/m3)

RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI

Not otherwise
specified

Age, years

�64 1.066 1.016, 1.118 1.028 0.963, 1.097 1.069 1.005, 1.137 1.092 1.042, 1.206 1.046 1.019, 1.112 1.073 1.006, 1.170

>64 1.092 1.029, 1.158 1.089 1.039, 1.141 1.099 1.042, 1.159 1.121 1.001, 1.006 1.065 1.001, 1.003 1.085 1.021, 1.149

Sex

Male 1.071 0.987, 1.162 1.029 0.906, 1.081 1.122 1.016, 1.239 1.040 0.931, 1.162 1.070 0.994, 1.152 1.073 0.956, 1.205

Female 1.058 0.999, 1.121 1.097 0.991, 1.212 1.035 0.967, 1.108 1.083 1.004, 1.168 1.069 1.018, 1.122 1.015 0.939, 1.097

Season

April–September 1.041 0.970, 1.117 1.099 1.023, 1.181 1.044 0.857, 1.231 0.963 0.862, 1.064 1.133 1.025, 1.240 1.199 1.006, 1.430

October–March 1.130 1.065, 1.199 1.009 0.941, 1.082 1.059 0.959, 1.170 1.054 1.013, 1.118 1.092 1.022, 1.167 1.092 0.990, 1.205

Migraine Age, years

�64 1.091 1.028, 1.158 1.064 0.981, 1.154 1.100 1.024, 1.181 1.072 0.990, 1.161 1.094 1.038, 1.153 1.114 1.015, 1.223

>64 1.079 1.007, 1.156 1.123 1.034, 1.219 1.110 1.009, 1.220 1.100 1.009, 1.199 1.097 1.008, 1.194 1.060 0.988, 1.137

Sex

Male 1.087 0.969, 1.219 1.151 1.061, 1.241 1.110 0.949, 1.298 1.119 0.958, 1.307 1.041 0.948, 1.144 1.120 0.968, 1.296

Female 1.097 1.021, 1.179 1.058 0.996, 1.120 1.123 1.035, 1.219 1.017 0.925, 1.118 1.092 1.028, 1.160 1.127 1.027, 1.236

Season

April–September 1.132 1.039, 1.233 1.058 1.014, 1.102 1.095 0.996, 1.194 1.048 0.918, 1.197 1.149 1.025, 1.288 1.096 0.972, 1.236

October–March 1.138 1.061, 1.221 1.037 0.944, 1.139 1.036 0.881, 1.218 1.140 1.027, 1.265 1.075 0.985, 1.173 1.076 0.945, 1.225

Specified cause Age, years

�64 1.084 1.000, 1.175 1.083 0.965, 1.216 1.035 0.941, 1.138 1.085 0.964, 1.221 1.063 0.997, 1.133 1.074 0.974, 1.184

>64 1.045 0.991, 1.101 1.120 1.010, 1.242 1.092 0.989, 1.205 1.132 1.009, 1.270 1.069 0.992, 1.151 1.076 0.993, 1.165

Sex

Male 1.085 0.939, 1.253 1.110 1.008, 1.199 1.122 0.978, 1.286 1.039 0.864, 1.249 1.075 0.970, 1.191 1.072 0.908, 1.266

Female 1.085 0.979, 1.202 1.094 0.940, 1.273 1.091 0.945, 1.259 1.102 0.956, 1.270 1.049 0.971, 1.133 1.024 0.908, 1.154

Season

April–September 1.078 0.961, 1.209 1.109 0.993, 1.238 1.067 0.922, 1.235 1.030 0.886, 1.198 1.030 0.892, 1.168 1.019 0.880, 1.180

October–March 1.066 0.982, 1.157 1.001 0.911, 1.093 0.951 0.769, 1.176 1.065 0.920, 1.233 1.097 0.992, 1.213 1.032 0.884, 1.204

Abbreviations: CI, confidence interval; PM2.5, particulate matter less than 2.5 lm in aerodynamic diameter; PM10, particulate matter less than 10 lm in aerodynamic diameter; RR, relative

risk.
a Results were adjusted for long-term trends, day of the week, and average humidex on the day of hospitalization and the day before. Optimal lags were 1 day for all RRs.
b One-interquartile-range change in the specified pollutant.
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exposure to concentrated urban air pollution in Toronto,
Canada, increased resting brachial artery tone but did not
alter the ability to respond to ischemia. Recently, O’Neill
et al. (24) reported a decrease in flow-mediated vasodilata-

tion associated with an increase in ambient sulfates among
persons with diabetes.

Following inhalation, air pollutants may affect an organ
by stimulating the release of mediators from the lung tissue
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Figure 1. Adjusted log relative risk of hospitalization for migraine headache associated with an interquartile-range change in pollutant concen-
trations in 7 urban centers, Santiago Province, Chile, 2001–2005. CO, carbon monoxide; NO2, nitrogen dioxide; SO2, sulfur dioxide; PM10,
particulate matter less than 10 lm in aerodynamic diameter; PM2.5, particulate matter less than 2.5 lm in aerodynamic diameter. Bars, 95%
confidence interval.
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Figure 2. Adjusted log relative risk of hospitalization for headache from a specified cause associated with an interquartile-range change in
pollutant concentrations in 7 urban centers, Santiago Province, Chile, 2001–2005. CO, carbon monoxide; NO2, nitrogen dioxide; SO2, sulfur
dioxide; PM10, particulate matter less than 10 lm in aerodynamic diameter; PM2.5, particulate matter less than 2.5 lm in aerodynamic diameter.
Bars, 95% confidence interval.
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into the circulation. Alternatively, fine particulate air pollu-
tion may penetrate the alveolar-capillary wall and travel
directly to the end organ hematogenously. In a study by
Nemmar et al. (25), ultrafine technetium-99m-carbon parti-
cles (similar in size to some particulate air pollution) could
be detected in the systemic circulation of adult volunteers
within 1 minute after inhalation. In rats, following intratra-
cheal instillation of albumin nanocolloid particles less than
100 nm in diameter labeled with 100 lCi of technetium-
99m, radioactivity was subsequently detected in several or-
gans, including the brain (26).

Strengths and limitations of the present study

Apart from biologic mechanisms which may explain the
air pollution-headache association, diagnostic misclassifica-
tion may have caused an artifactual association in this study
if air pollution caused sinusitis that was misdiagnosed as
headache. We found evidence supporting air pollution as
a risk factor for rhinitis but not sinusitis (27–31). Further,
facial pain was specifically excluded from the classification
of headache. Finally, to account for the observed findings,
a misdiagnosis of sinusitis would have had to enter all 3
diagnostic classes of headache, since all 3 were associated
with air pollution.

The relatively high level of air pollution in Chile increases
the power to detect statistically significant associations and
reduces the probability of false-negative results. Although
there were only 2.5 hospital admissions daily in our study,
the findings were based on several thousand days of obser-
vations and admissions for headache. This large sample size

also contributed to the power to detect small changes. The
error in estimating personal exposure from fixed-site moni-
tors would tend to reduce the probability of detecting an
effect and would bias air pollution-headache associations
towards the null (32). This suggests that the magnitude of
the true effect may be larger than what we measured. Fixed-
site monitoring has been shown to correlate with both indoor
and personal exposure. During the winters of 1988 and 1989,
Rojas-Bracho et al. (33) carried out an exposure study of
Santiago children aged 10–12 years. Personal, indoor, and
outdoor PM2.5 concentrations were all within 5% at 69.5 lg/
m3, 68.5 lg/m3, and 68.1 lg/m3, respectively. In the present
daily time-series analysis, we examined the effects of day-
to-day differences in air pollution, not absolute values.
Therefore, even if there were significant differences between
absolute concentrations of indoor and outdoor pollutants,
values from fixed-site monitors would still be useful as long
as personal exposure was higher on days with higher ambi-
ent pollution than on days with lower ambient pollution.
There remains a question common to population-based stud-
ies of air pollution; whether the identified individual pollut-
ants account for the majority of the observed effect or
whether they are a proxy for other pollutants coming from
the same source, fossil fuel combustion. Combustion parti-
cles may also coexist with pathogens from noncombustion
sources. For example, diesel particles may carry aeroaller-
gens, which may enhance the observed association between
diesel exhaust and health (34). The question of how to iden-
tify independent effects of individual air pollutants could
perhaps be better answered by studying headache in regions
with different combinations of air pollutants.

Headache—Cause Not Specified
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Figure 3. Adjusted log relative risk of hospitalization for headache not otherwise specified associated with an interquartile-range change in
pollutant concentrations in 7 urban centers, Santiago Province, Chile, 2001–2005. CO, carbon monoxide; NO2, nitrogen dioxide; SO2, sulfur
dioxide; PM10, particulate matter less than 10 lm in aerodynamic diameter; PM2.5, particulate matter less than 2.5 lm in aerodynamic diameter.
Bars, 95% confidence interval.
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Administrative hospital data provide a large number of
observations, provide a population-based sample, and iden-
tify health outcomes with associated morbidity and financial
cost. These databases lack personal information that may
influence headache, but these factors would not be expected
to confound the observed relation. To be a potential con-
founder, a factor would have to be a risk factor for the
disease; in addition, day-to-day changes in the risk factor
would have to be associated with day-to-day changes in the
concentrations of air pollutants.

Summary

We found that in Santiago Province, acute increases in
ambient air pollution were associated with increases in num-
bers of hospital admissions for headache. If this association
proves to be causal, the morbidity from headache should be
included when estimating the illness burden and economic
costs of air pollution, and recommending that headache suf-
ferers remain indoors on days with high air pollution levels
may reduce morbidity. We recommend that further studies
be conducted in different geographic regions to test the
consistency of this finding.
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