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ABSTRACT: The ABC transporter P-glycoprotein (P-gp) actively
transports a wide range of drugs and toxins out of cells, and is
therefore related to multidrug resistance and the ADME profile of
therapeutics. Thus, development of predictive in silico models for
the identification of P-gp inhibitors is of great interest in the field of
drug discovery and development. So far in silico P-gp inhibitor
prediction was dominated by ligand-based approaches because of
the lack of high-quality structural information about P-gp. The
present study aims at comparing the P-gp inhibitor/noninhibitor
classification performance obtained by docking into a homology model of P-gp, to supervised machine learning methods, such as
Kappa nearest neighbor, support vector machine (SVM), random fores,t and binary QSAR, by using a large, structurally diverse
data set. In addition, the applicability domain of the models was assessed using an algorithm based on Euclidean distance. Results
show that random forest and SVM performed best for classification of P-gp inhibitors and noninhibitors, correctly predicting 73/
75% of the external test set compounds. Classification based on the docking experiments using the scoring function ChemScore
resulted in the correct prediction of 61% of the external test set. This demonstrates that ligand-based models currently remain the
methods of choice for accurately predicting P-gp inhibitors. However, structure-based classification offers information about
possible drug/protein interactions, which helps in understanding the molecular basis of ligand-transporter interaction and could
therefore also support lead optimization.

■ INTRODUCTION

The ABC transporter (ATP binding cassette) family is one of
the largest protein families comprising a group of functionally
distinct proteins that are mainly involved in actively trans-
porting chemicals across cellular membranes. Depending on the
subtype, transported substrates range from endogenous amino
acids and lipids, up to hydrophobic or charged small
molecules.1 In total, more than 80 genes for ABC transporters
have been characterized across all animal families, among which
fifty-seven genes were reported for vertebrates. Human ABC
transporters comprise 48 different proteins that can be divided
into seven different subfamilies: ABCA, ABCB, ABCC, ABCD,
ABCE, ABCF, and ABCG.2 The correct function of ABC
transporters is of high importance, as mutations or deficiency of
these membrane proteins lead to various diseases such as
immune deficiency (ABCB2), cystic fibrosis (ABCC7),
progressive familial intrahepatic cholestasis-2 (ABCB11), and
Dubin−Johnson syndrome (ABCC2). Moreover, some highly
polyspecific ABC transporters are known for their ability to
export a wide variety of chemical compounds out of the cell.
Overexpression of these so-called multidrug transporters, which
include P-glycoprotein (P-gp, multidrug resistance protein 1,
ABCB1), multidrug resistance related protein 1 (MRP1,
ABCC1), and breast cancer resistance protein (BCRP,
ABCG2), might lead to the acquisition of multidrug resistance
(MDR), which is one major reason for the failure of anticancer
and antibiotic treatment.3

Furthermore, P-gp plays an essential role in determining the
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) properties of many compounds. Drugs that are
substrates of P-gp are subject to low intestinal absorption,
low blood-brain barrier permeability, and face the risk of
increased metabolism in intestinal cells.4 Moreover, P-gp
modulating compounds are capable of influencing the
pharmacokinetic profiles of coadministered drugs that are
either substrates or inhibitors of P-gp,5,6 thus giving rise to
drug−drug interactions. This urges on the development of
suitable in silico models for the prediction of P-gp inhibitors in
the early stage of the drug discovery process to identify
potential safety concerns. So far the focus of prediction models
was lying on ligand-based approaches such as QSAR,7 rule-
based models8 and pharmacophore models.9−11 Very recently,
also machine-learning methods have been successfully used for
the prediction of P-gp substrates and inhibitors.12,13 In addition,
grid-based methods, for example, FLAP (fingerprints for ligands
and proteins) have been successfully applied to a set of 1200 P-
gp inhibitors and noninhibitors with a success rate of 86% for
an external test set.14 Subsequently, these models were used as
virtual screening tool to identify new P-gp ligands. Also
unsupervised machine learning methods (Kohonen self-
organizing map) were used to predict substrates and non-
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substrates from a data set formed by 206 compounds. In this
study the best model was able to correctly predict 83% of
substrates and 81% of inhibitors.13 Recently, Chen et al.
reported recursive partitioning and naıv̈e Bayes based
classification to a set of 1273 compounds. In this case, the
best model predicted accurately 81% of the compounds of the
test set.15 Because of the lack of structural information,
developing prediction models using structure-based approaches
has not been actively pursued. However, in the recent years the
number of available 3D structures of ABC proteins16,17 and the
performance of experimental approaches18 has paved the way
for the application of structure-based methods to predict drug/
transporter interaction. In that sense, a small number of
structure-based prediction models have been developed in the
last two years. Bikadi et al. built a free web-server for online
prediction of P-gp substrate binding modes based on a SVM
classification model.19,20 Molecular docking into the crystal
structure and a homology model of mouse P-gp were used to
additionally generate possible protein−ligand complexes, but
was not used for classifying compounds. Dolghih et al. used
induced fit docking into the crystal structure of mouse P-gp to
separate P-gp binders from nonbinders on the basis of their
docking score.21 Although the data sets were considerably small
(126 and 64 compounds), an AUC of 0.93 and 0.90,
respectively, could be observed. Very recently also Chen et al.
used a set of 245 P-gp substrates and nonsubstrates to assess
the prediction capability of docking.22 Nevertheless, based on
the Glide docking scores SP and XP, no clear separation of the
two classes could be observed.
However, the above-mentioned machine-learning and

structure-based studies only used data sets of relatively small
size, which might not be sufficient for the correct prediction of
P-gp, which is known for its high polyspecificity. Thus, in the
present study, we applied supervised machine-learning and
structure-based techniques to predict P-gp inhibitors and
noninhibitors, using a large and structurally diverse data set,
comprising 1079 compounds. The methods applied comprised
(1) ligand-based supervised machine learning (ML) methods,
including random forest (RF), decision tree (DT), support
vector machine (SVM), κ nearest neighbor (kNN) and binary
QSAR (BQSAR), and (2) structure-based docking studies
using five different scoring functions (ChemScore, GoldScore,
ASP, ChemPLP, and XScore).

■ COMPUTATIONAL METHODS
P-gp Inhibitors Data Source. The publications from

Broccatelli et al.14 and Chen et al.15 served as starting point for
the present classification studies. A set of 2548 compounds
reported as P-gp inhibitors and noninhibitors was compiled
from both literature sources. In brief, Broccatelli et al. compiled
a data set of 1275 compounds from more than 60 literature
references. Threshold values for inhibitors and noninhibitors
were assigned based on the IC50 values and on the percentage
of inhibition as suggested by Rautio et al.23 Compounds with
an IC50 ≤15 μM, or >25−30% of inhibition were considered as
inhibitors. Conversely, compounds possessing IC50 and % of
inhibition values of ≥100 μM or <10−12% were classified as
noninhibitors. In addition, Tingjun Hou kindly provided us
with the 3D structures of 797 inhibitors and 476 noninhibitors
from their data set, as recently published by Chen et al.15 They
used MDRR (multidrug-resistance ratio) values measured in
adriamycin-resistant P388 murine leukemia cells for classi-
fication. The MDRR is calculated by dividing the compound’s

ED50 in absence of adriamycin by the ED50 in presence of
adriamycin, and thus represents the ability to revert MDR.
Compounds with MDRR values greater than 0.5 were assigned
inhibitors, whereas molecules with lower or equal to 0.4 MDRR
values were considered as noninhibitors.
As for model development only 2D descriptors or finger-

prints have been used, both data sets were analyzed in order to
eliminate duplicated structures using 2D SMILES representa-
tions of each compound. Additionally, in case of stereoisomers,
only one isomer was retained in the data set. While for the
Chen database no duplicates have been found, from the
Broccatelli data set 53 compounds have been removed due to
identical 2D structures. Additionally 429 compounds were
found to be present in both data sets. Among those, 33
compounds were differently annotated in the two data sets, and
17 possessed a permanent charge. Those molecules have been
removed. The residual 346 compounds (132 inhibitors and 214
noninhibitors) were stored as external test set. Finally, the fused
data set comprised 1699 unique compounds, from which 91
permanently charged molecules have been removed. This lead
to a data set of 1608 compounds, comprising 1076 inhbitors
and 532 noninhibitors.

Selection of Training and Test Set. The activity of the
compounds was represented by the introduction of a binary
variable (1 for inhibitor, 0 for noninhibitor). Subsequently, for
assessing the internal predictivity of the models, the data set
was divided into training and test set using D-optimal onion
design (DOOD) as implemented in the MODDE software
(version 7.0).24 DOOD is a multivariate method, used for
selecting training and test sets of reasonable size, which are
representatives for the chemical property space defined by the
molecular structures. The general principle of DOOD can be
found elsewhere.25,26 In the present study we used the scores
from principal component analysis (R2 = 0.99, 25 principal
components) calculated by SIMCA-P.

Molecular Descriptors and Fingerprint Calculation.
The 3D structures of the data set were imported into the
modeling software MOE (Version 2010.10)27 and subsequently
energy minimized using the MMFF94x force field. The energy-
minimized molecules were used to compute 62 2D descriptors
implemented in MOE. The 2D molecular descriptors calculated
comprised physicochemical properties, atom and bond counts,
and pharmacophoric features. In addition, a set of 166 MACCS
fingerprints and a set of 307 substructure fingerprints were
calculated using the freely available software PaDEL (version
1.12).28

Principle Component Analysis (PCA). A PCA of the
whole data set was conducted using the software SIMCA-p
(version 10.5). The descriptors included for PCA have been
selected based on the variable importance (VIP) calculated in
SIMCA. A complete list of descriptors is provided in the
Supporting Information, SI-Table 1.

Machine Learning Methods and Attribute Selection.
For ligand-based classification, a set of representative machine
learning methods such as SVM, kNN, DT, RF, and BQSAR was
used. These classifiers are primarily used for ADMET property
prediction, since they are efficient to handle large compound
sets. The principles of these methods have been described in
detail elsewhere.29,30 SVM, RF, kNN, and DT classification
experiments were performed using the WEKA data mining
software (version 3.6.4),31 which provides a set of classi-
fications, regressions, attribute (variable) selections and
clustering methods. BQSAR was performed using the tool
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“QuaSAR-model” implemented in MOE. For descriptor
selection, an automatic attribute selection procedure called
BestFirst search algorithm, as implemented in WEKA was
used.29 The BestFirst attribute selection has been shown to be a
better attribution selection method as compared to Genet-
icSearch or the use of all the descriptors.32

Docking and Scoring. The atomic coordinates of human
P-glycoprotein required for docking have been obtained by
homology modeling. The model has been built on basis of the
X-ray structure of murine P-gp (PDB ID 3G5U, 3.8 Å) as
described in our previous work.33 The template structure was
chosen because of its high sequence identity and the fact that it
represented the binding competent state of the transporter.
The protein was prepared using the Protein Preparation

Wizard, implemented in the Schrödinger Suite (2011).34

During the process, hydrogen atoms were added, optimal
protonation states and ASN/GLN/HIS flips were determined.
The 3D coordinates of the ligands were built with CORINA
and energy minimized with MOE, using the MMFF94x force
field.
According to our previous study,35 the inhibitory activity of

tertiary amines is due to the H-bond acceptor strength of the
nitrogen rather than its positive charge, which suggested that
the ligands might bind in an unprotonated way. On the other
hand, recent experiments utilizing a charge-repulsion approach
indicate that P-gp ligands probably possess a positive charge.36

Thus, separate docking runs were performed considering
neutral and charged molecules. The correct protonation state
was calculated using the program LigPrep, implemented in the
Schrödinger Suite. Two cyclopeptides could not be processed
by LigPrep and thus have been excluded from the data set.
The remaining 1606 molecules, comprising 1073 inhibitors

and 533 noninhibitors, were used for docking with the genetic
algorithm-based GOLD suite (version 5.1.0).37 The active site
was specified as the entire transmembrane (TM) region of the
protein, thus taking 20 Å around the coordinates of the center
point (21.07, 57.95, −2.31) into consideration. All the docking
runs were performed in high throughput mode as implemented
in GOLD. Concerning the fitness function used during
docking, either ChemScore (CS) or GoldScore (GS) has
been chosen. Together with the different protonation settings
of the ligand database (1606 compounds) this resulted in a
total of four docking runs (Table 1). The resulting docking

poses were subsequently rescored with five scoring functions
implemented in GOLD, which comprised ChemScore, Gold-
Score, Astex Statistical Potential (ASP),38 and Piecewise Linear
Potential (ChemPLP),39 as well as the external scoring function
XScore.40 Altogether there were four different docking runs,
each of which was scored with five different fitness functions,

resulting in 20 models for which the prediction capabilities have
been investigated (Table 1).
To get deeper insights into the binding modes of P-gp

inhibitors and noninhibitors, the protein−ligand interaction
fingerprints (PLIF) of the resultant complexes have been
analyzed. As the standard PLIF tool in MOE does not support
π−π-interactions, a customized svl script has been used that
calculated fingerprints from interactions provided by the ligand
interaction module in MOE. The types of intermolecular
interaction provided comprised ionic, hydrogen bond, and π−π.

Model Evaluation. The quality of the classification models
was evaluated in terms of standard parameters derived from the
confusion matrix (true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN)). The predictive
abilities of inhibitor and noninhibitor classification were
calculated from sensitivity (eq 1) and specificity (eq 2) terms,
respectively. The G-mean value (eq 3) was used to measure the
balanced prediction of each of the two classes. Primarily, G-
mean has been used for measuring the prediction performance
on imbalanced data sets. As it takes into account both
sensitivity and specificity, the measure is not biased toward the
prediction of the majority class.

=
+

sensitivity
TP

TP FF (1)

=
+

specificity
TN

TN FP (2)

‐ = ×G mean sensitivity specificity (3)

= × − ×
+ + + +TN FN

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)( )
(4)

The quality of the overall binary classification model was
estimated using Matthews’s correlation coefficient (MCC, eq
4). Similarly to G-mean, MCC evaluates the balanced
prediction of the classification models, taking into account
true and false positives and negatives.

N-Fold Cross Validation (N-FCV). In addition to the
internal and external test set prediction, the model quality was
estimated via n-fold cross validation of the training set. In N-
FCV, the original data set is divided into n subsets for n = 10 in
the case of this study. Out of 10 subsets, 9 subsets (n − 1) were
used as training set, and the remaining single subset was
retained as validation data for testing the trained model. This
process is repeated 10 times and each one of the 10 subsets was
used exactly once for validation. In the present study all the N-
FCV were carried out as implemented in WEKA.

■ RESULTS AND DISCUSSION
Characterization of the Data Set. An initial set of 1608

P-gp ligands was divided into training and internal test set using
D-optimal onion design (DOOD). Thus, the DOOD analysis
resulted in 1201 training (841 inhibitors, 360 noninhibitors)
and 407 test compounds (235 inhibitors, 172 noninhibitors)
(internal test set). Principal component analysis (PCA) was
performed as explained in the methods section, to inspect
potential clusters and the coverage of the chemical space of the
P-gp ligands. The first two principal components explained
71.7% of the variance in the data set. In Figure 1A, a scatter plot
is shown, that represents the distribution of the compounds
according the first two principal components. In this plot a

Table 1. Summary of Docking Runs Performed and Scoring
Functions Used in This Study

docking
run

ligand
protonation state

main scoring
function rescoring functions

1 neutral ChemScore GoldScore, ASP,
ChemPLP, XScore

2 GoldScore ChemScore, ASP,
ChemPLP, XScore

3 protonated ChemScore GoldScore, ASP,
ChemPLP, XScore

4 GoldScore ChemScore, ASP,
ChemPLP, XScore
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distinct cluster of inhibitors at the right top corner could be
observed, which mainly comprised cyclopeptolide derivatives
(Figure 1A), which are chemically different from the other
molecules. Moreover, there was quite a good separation
between inhibitors and noninhibitors, which urged for the
development of classification models. In order to understand
the influence of the descriptors on the first two PCs, the
loading plot was analyzed (Figure 1B). It can be seen from the
loading plot that the majority of the inhibitors are highly
influenced by the descriptors that provide hydrophobic
information, e.g. the number of aromatic bonds (b_aro) or
the partition coefficient (logP(o/w)). Furthermore, the high
contribution of LogS to noninhibitors indicates that non-
inhibitors are considerably more hydrophilic than inhibitors.
The hydrophobic requisite of P-gp inhibitors can be explained
by the need of diffusing through the cell membrane in order to
effectively bind to the hydrophobic active site of the protein.41

In addition, our previous docking study on propafenone-type
ligands revealed that the active site of P-gp is primarily formed
by the hydrophobic residues Tyr307, Tyr310, Phe343, Leu724,
Phe336, Ile731, Ala761, and Val981 (Figure 2).33

Furthermore, the distribution of inhibitors and noninhibitors
(n = 1608) in the data set on the basis of some common
molecular properties was studied. The analysis showed that
inhibitors and noninhibitors could be reasonably well differ-
entiated according to the logP, molecular weight, logS or molar
refractivity (the distribution plots are provided in the
Supporting Information, SI-Figure 1). From the intersection

point of the inhibitor and noninhibitor distribution curve, the
true classification (TP, TN) and misclassification (FP, FN)
rates were calculated, which led to the statistical parameters,
such as MCC, sensitivity, specificity and overall accuracy of the
classification. The summary of the results is given in Table 2.
The results show that molecular weight, logS, logP, and molar
refractivity (MR) lead to a good discrimination between
inhibitors and noninhibitors (MCC > 0.4, overall accuracy ≥
69%). In particular, molecular weight and MR correctly
discriminated 78% and 79% of the compounds at the
intersection of 300 and 10, respectively. In that sense,
compounds with a molecular weight of 300 and higher or a
molar refractivity of 10 or higher were considered as inhibitors,
and vice versa, lower molecular weight than 300 or lower molar
refractivity than 10 indicated for noninhibitors. Comparably, in
the The majority of P-gp inhibitors are of relatively bulky and
hydrophobic nature compared to compounds that do not
inhibit the protein. Imbalanced and hence poor separation was
observed with the models derived from the number of
hydrogen bond donors (sensitivity = 94%, specificity = 20%),
hydrogen bond acceptors (sensitivity = 85% and specificity =
29%), and oxygen and nitrogen atoms (sensitivity = 83% and
specificity = 31%).

Development of Machine Learning Models. Different
machine learning methods were used to build P-gp inhibitor
and noninhibitor classification models using a set of 1201
training compounds encoded by physicochemical descriptors
and fingerprints. Models have been either built from all
descriptors or on the basis of descriptors selected by the
BestFirst algorithm. These two scenarios were applied to three
sets of X-variables such as 2D physicochemical properties (n =
62), MACCS fingerprints (n = 166) and substructure
fingerprints (n = 307). In general, BestFirst algorithm
descriptor based models performed better than the models
obtained using all descriptors. According to the principle of
parsimony, we discuss only models, which used the BestFirst
algorithm for variable selection (Table 3 and 4); data describing
the performance of the training set and 10-fold cross-validation
of the training set are provided in the Supporting Information
(SI-Table 2)). The BestFirst algorithm selected a set of
descriptors for model generation as follows: 11 of 62 MOE 2D
properties, 16 of 166 MACCS fingerprints, and 19 of 307
substructure fingerprints. With each descriptor set four different
classification models were developed using the ML techniques
RF, SVM, kNN, and BQSAR.
For the MOE 2D descriptors, all four models were able to

correctly predict >75% of the compounds of the test set,
whereupon the best model was obtained with kNN (MCC =
0.61, accuracy = 81%). Also regarding a balanced prediction,
kNN performed best achieving a G-mean value of 0.78.
However, highly similar performance was observed with the
methods random forest (MCC = 0.60, accuracy = 0.80%, G-
mean = 0.77) and SVM (MCC=0.61, Accuracy=0.81%, G-
Mean=0.77). With 10-fold CV random forest outperformed
kNN and SVM, showing an MCC value of 0.64 compared to
0.55 (SVM) and 0.61 (kNN) (Table 4).
The models created using MACCS fingerprints showed that

random forest performed better than the other machine
learning methods, correctly predicting 74% of the internal
test set (MCC = 0.47). Also the kNN model correctly
predicted more than 70% of the test compounds. However, the
model suffers from a high false positive rate of more than 0.5.
The MACCS fingerprints selected by the BestFirst algorithm

Figure 1. (A) Score plot from principal component analysis (first two
principal components shown). Inhibitors are shown in green circles
and noninhibitors are shown in red dots. (B) Loading plot of
descriptors used for PCA analysis.

Figure 2. Hydrophobic binding site formed by nonpolar residues of
both TM domains.
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are listed and explained in Supporting Information SI-Table 3.
To get insights into the distribution of the structural keys, the
frequency of the fingerprint bins selected by BestFirst for
inhibitors and noninhibitors were compared. For instance, bins
50, 75, 86, 125, 129, 145, 155, and 162 are represented more
often in the group of inhibitors, whereas bins 54, 84, and 139
are more prevalent in the set of noninhibitors (Supporting
Information SI-Table 3). The bins more prevalent in inhibitors
were mainly of hydrophobic nature, as for example, aromatic or
ring substructures. On the other hand, bins more often hit by
noninhibitors represent hydrophilic substructures, comprising

the number of heteroatoms, hydroxylic groups, and primary
amines. In Figure 3, an example of a phenylpyrazolon-type P-gp
inhibitor with the matched MACCS fingerprints is depicted.
Substructure/functional group fingerprints based models

generally showed similar performance compared to the models

Table 2. Models Obtained from Common Molecular Descriptors Distributiona

confusion matrix

property intersection point TP TN FP FN sensitivity specificity MCC accuracy

H-Acc 2.5b 902 156 385 165 0.85 0.29 0.16 0.66
H-Don 3.5c 1005 108 433 62 0.94 0.20 0.22 0.69
LogP 3 886 334 208 180 0.83 0.62 0.45 0.76
LogS −4 896 355 186 171 0.84 0.66 0.50 0.78
MR 10 894 373 168 173 0.84 0.69 0.53 0.79
MolWt 300 1013 238 303 54 0.95 0.44 0.48 0.78
N+O 3.5d 883 168 373 184 0.83 0.31 0.16 0.65

aNote: H-Acc, number of hydrogen bond acceptor; H-Don, number of hydrogen bond donors, LogP, logarithm of partition coefficient (octonal/
water); LogS, logarithm of water solubility; MR, molar refractivity, MolWt, molecular weight, N + O, number of nitrogen and oxygen. bH-Acc ≤ 2,
noninhibitors; H-Acc ≥ 3, inhibitors. cH-Don ≤ 3, inhibitors; H-Don ≥ 4, noninhibitors. dN+O ≤ 3, noninhibitors; N+O ≥ 4, inhibitors.

Table 3. Summary of Machine-Learning Models Based on BestFirst Feature Selection Method with the Internal Test Seta

confusion matrix

descriptors models TP TN FP FN sensitivity specificity accuracy G-mean

MOEb RF 215 112 60 20 0.91 0.65 0.80 0.77
SVM 219 109 63 16 0.93 0.63 0.81 0.77
KNN 215 114 58 20 0.91 0.66 0.81 0.78
BQSAR 196 120 52 39 0.83 0.70 0.78 0.76

MACCSc RF 207 96 76 28 0.88 0.56 0.74 0.70
SVM 199 75 97 36 0.85 0.44 0.67 0.61
KNN 215 79 93 20 0.91 0.46 0.72 0.65
BQSAR 158 117 55 77 0.67 0.68 0.68 0.68

SS-FPd RF 215 73 99 20 0.91 0.42 0.71 0.62
SVM 220 66 106 15 0.94 0.38 0.70 0.60
KNN 220 67 105 15 0.94 0.39 0.71 0.60
BQSAR 188 86 86 47 0.80 0.50 0.67 0.63

combinede RF 215 118 54 20 0.91 0.69 0.82 0.79
SVM 219 106 66 16 0.93 0.62 0.80 0.76
KNN 207 124 48 28 0.88 0.72 0.81 0.80
BQSAR 193 118 54 42 0.82 0.69 0.76 0.75

aNote: RF, random forest; SVM, support vector machine, KNN, kappa nearest neighbor; BQSAR, binary QSAR. bBestFirst descriptors from 2D-
MOE. cBestFirst descriptors from MACCS fingerprints. dSubstructure fingerprints. eBestFirst descriptors from all the calculated descriptors.

Table 4. Matthews Correlation Coefficient of the Models for
the Internal Test Set Predictions (10-Fold Cross-Validations
Are Provided in the Parentheses)a

BestFirst descriptor models

classification
methods MOE MACCS SS-FP combined

RF 0.60 (0.64) 0.47 (0.55) 0.40 (0.43) 0.63 (0.66)
SVM 0.61 (0.55) 0.31 (0.38) 0.40 (0.38) 0.59 (0.59)
KNN 0.61 (0.61) 0.43 (0.46) 0.40 (0.41) 0.61 (0.59)
BQSAR 0.54 (0.63) 0.35 (0.41) 0.32 (0.41) 0.51 (0.57)

aNote: RF, random forest; SVM, support vector machine; kNN, kappa
nearest neighbor; BQSAR, binary QSAR.

Figure 3. Schematic representation of occurrence of MACCS
fingerprints in a phenylpyrazolon-type P-gp inhibitor.
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developed from MACCS fingerprints. Analogous to the models
generated on the basis of the MOE 2D descriptors, the
methods RF, kNN, and SVM showed considerably similar
statistics. All three were able to correctly predict more than
70% of the internal test set compounds, which resulted in an
MCC of 0.4. However, the RF model showed a slightly better
G-mean value because of a more balanced prediction. In a
previous study, using a similar data set (the databases share
over 80% similarity), the application of an FP growth algorithm
revealed that alkyl−aryl ethers (59% of inhibitors in the data
set), tertiary aliphatic amines (51%), and aromatic groups were
significantly more present in inhibitors compared to non-
inhibitors. Moreover, phenols (18% of noninhibitors in the data
set), carboxylic acids (11%), and primary amines (14%) were
quite prevalent in noninhibitors.42

The same groups have been selected by the BestFirst
algorithm for model generation in this study, leading to a set of
16 fingerprints in total. Again inhibitors were mainly described
by possessing alkylarylether and aromatic groups, as well as
amines and secondary carbons. While also a high number of
noninhibitors bear aromatic groups, they stand out for their
relatively high occurrence of carboxylic acids and phenols
(Supporting Information, SI-Table 2).
Although on basis of overall accuracy the models developed

from three different descriptor sets (2D, MACCS and SSFP)
performed relatively good, the majority suffered from a high
number of false positives. Thus, additional models have been
built by using a BestFirst selected set of descriptors derived
from combining all descriptors. A set of 15 descriptors was
selected, which comprised 4 MACCS keys, 2 substructure
fingerprints, and 9 MOE 2D descriptors (Table 5).

Considering the four subsequently generated models, the
overall quality did not change significantly compared to the
models developed using only BestFirst 2D descriptors, which
showed the best statistics among the three descriptor sets.
However, the combined descriptor models exhibited slight
improvements in the prediction of noninhibitors, as can be
noticed from increased G-mean values (all ≥ 75%). Addition-
ally, the random forest model on the basis of the combined
descriptor showed the best performance of all models
developed in this study. Thus, it correctly predicted 215/235
inhibitors and 118/172 noninhibitors from the internal test set,

resulting in an overall accuracy and MCC of 82% and 0.63,
respectively.

Validation of External Compounds. As mentioned in the
method section, considering the 2D constitution, 429
compounds were present in both the Chen et al. and the
Broccatelli et al. data set, out of which 346 could be used as
external test set. The models derived from the combined
BestFirst descriptors were used to predict these 346
compounds. As can be seen from Table 6, SVM performed

reasonably well, correctly predicting 97% of the inhibitors and
62% of the noninhibitors, resulting in an overall accuracy of
77%. Also with RF a similarly good accuracy of 75% could be
observed. Interestingly, the BQSAR and the kNN model
showed better prediction of noninhibitors, as can be seen from
the comparably high specificity values of >70.
Although the models developed from different sets of

descriptors and fingerprints performed quite good, there
remained always the question whether the classification of P-
gp inhibitors and noninhibitor can also be done using simple
drug-likeness descriptors (molecular weight, hydrogen bond
acceptor, hydrogen bond donor and LogP).43 Thus, four
models were developed using decision tree (DT), kNN, SVM
and random forest as classifiers. All models were able to
correctly identify >85% of inhibitors, but noninhibitors were
predicted relatively poor (Table 7). The DT method provides
easy interpretation of the model, however, previously it has
been shown to lack predictability. Interestingly, in this case the
DT approach showed good predictability, by exhibiting an
overall accuracy of 75% with an MCC of 0.57 for the external
test set. According to this model, noninhibitors possessed lower
lipophilicity and lower molecular weight than inhibitors (see
Supporting Information SI-Figure 2). This observation is in
agreement with observations derived from the molecular
property distribution plot and PCA analysis (Figure 1).
To understand the reason for a certain model output,

selected compounds that were incorrectly classified by the
combined descriptor-set models were analyzed. The results
showed that 32 compounds (8% of the internal test set) were

Table 5. Descriptors Selected by the BestFirst Algorithm for
the Combined Descriptor Set

Descriptor set

MACCS 17 (CTC)
50 (CC(C))
54 (QHAAQH)
125 (aromatic ring > 1)

substructure fingerprint 84 (carboxylic acid)
90 (carbothioic S ester)

MOE 2D a_hyd
a_nC
b_single
logP(o/w)
b_rotR
density
logS
vdw_area
vsa_hyd

Table 6. External Test Set Predictions

descriptors models sensitivity specificity accuracy
G-

mean MCC

MOE RF 0.98 0.52 0.70 0.71 0.52
SVM 0.99 0.51 0.69 0.71 0.52
kNN 0.87 0.56 0.68 0.70 0.43
B-
QSAR

0.86 0.65 0.73 0.75 0.50

MACCS RF 0.63 0.71 0.68 0.67 0.34
SVM 0.27 0.93 0.68 0.50 0.28
kNN 0.79 0.67 0.71 0.72 0.44
B-
QSAR

0.77 0.16 0.39 0.35 −0.09

SS-FP RF 0.79 0.42 0.56 0.57 0.21
SVM 0.94 0.24 0.51 0.48 0.23
kNN 0.91 0.27 0.51 0.50 0.22
B-
QSAR

0.49 0.82 0.69 0.63 0.33

combined RF 0.99 0.57 0.73 0.75 0.57
SVM 0.97 0.62 0.75 0.77 0.59
kNN 0.64 0.72 0.69 0.68 0.36
B-
QSAR

0.58 0.74 0.68 0.66 0.32
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misclassified by all four methods (SVM, kNN, BQSAR, and
RF), and more than 63% of the internal test set compounds
were correctly classified by all methods. Among the 32
compounds, which were consistently false classified, 7 were
misclassified as noninhibitors (FN), and 25 as inhibitors (FP).
Representative examples are given in Figure 4. Cefotaxime was
misclassified as noninhibitor by all for methods with a
probability score of >0.9. Analyzing the molecular properties
of Cefotaxime showed that the values for logP (−0.6), logS
(−3.7), and MR (10.7) lie in the region for noninhibitors
(Table 2). Interestingly, with this polar compound a strong
inhibition of 82% (normalized to the inhibitory activity of
cyclosporine A) in a calcein-AM efflux assay was observed.44

This is quite surprising, as negatively charged compounds are
not considered to interact with P-gp. Similarly, clindamycin, the
physicochemical properties of which are rather located in the
range of noninhibitors, showed an inhibition >80% in the same
assay.44 On the other hand the laxative Bisacodyl was
misclassified as inhibitor by all methods. Regarding its
physicochemical properties, the hydrophobic drug (logP =
4.2) exhibits values similar to P-gp inhibitors (low logS, high
MR and molecular weight). As a matter of fact, taking a look at
the assay data, Bisacodyl was not clearly identified as P-gp
noninhibitor, but rather showed inconclusive data.44 This might
suggest a weak P-gp inhibitory activity under certain circum-
stances. Digoxin also exhibits inhibitor-like physicochemical
properties, although it is not known for inhibiting the efflux
pump. On the contrary, digoxin was identified as P-gp substrate
and thus might still act as a competitive inhibitor in, for
example, a rhodamine efflux assay. As has recently been

demonstrated, the respective assay and assay conditions are of
utmost importance for the assessment of P-gp inhibitory
activity.45 Thus, a more detailed analysis of the respective
biological data might reveal other examples where the
prediction might be in line with biological data.

Probability of Prediction of Inhibitors and Non-
inhibitors. Each classification model gives the probability of
a compound for belonging to a certain class. In general, if the
probability of a compound being an inhibitor is higher than 0.5,
it is classified as inhibitor. However, the closer to 1, the higher
is the confidence of this classification. In that sense, introducing
probability cutoffs can lead to predictions with higher
confidence. In Figure 5, the fraction of TP, FP, TN, and FN
were plotted against their probabilities based on the combined
RF model. As it can be already deduced from the figure,
compounds with an inhibitor probability of >0.6 are more likely
to be true positives. Similarly, it is highly probable to identify a
true negative if its probability value for being an inhibitor is
<0.4. Furthermore, Table 8 shows the detailed statistics for
different probability cutoffs on the data set (training and
internal test set) and the external test set. This analysis shows
that especially the detection of TN benefits from introducing
cutoffs, leading to a more balanced prediction. As expected, a
threshold of <0.1/>0.9 resulted in the most accurate prediction,
and should therefore be considered for virtual screening
purposes. However, one has to bear in mind, that introduction
of a cutoff comes at the expenses of the number of predicted
compounds and the values have to be carefully selected
according the given problem.

Table 7. Simplified Classification Models using Rule of Five Descriptorsa

confusion matrix

models TP TN FP FN sensitivity specificity MCC accuracy

RF 127 117 97 5 0.96 0.55 0.52 0.71
SVM 131 90 124 1 0.99 0.42 0.46 0.64
KNN 117 102 112 15 0.89 0.48 0.37 0.63
DT 126 132 82 6 0.95 0.62 0.57 0.75

aStatistics describe the classification performance on the external test set. Note: RF, random forest; SVM, support vector machine; kNN, kappa
nearest neighbor; DT, decision tree; MCC, Matthews’s correlation coefficient.

Figure 4. Examples of misclassified compounds in the test set.
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Applicability Domain. In addition to the classification
models, an applicability domain (AD) experiment was
performed to check the reliability of the developed compound

prediction models. AD provides a first structural alert on the
data set and is primarily used to check whether a new molecular
entity (NME) is within the chemical space of the training set or
not. There have been many AD approaches proposed and each
had their own pros and cons. Some of the well-known AD
approaches are descriptor “ranges”, “Euclidean distances (ED)”,
and “probability density (PD)”.46,47 In the present study, AD
analysis was performed on the basis of the ED approach using
the Ambit Discovery software (version 0.04).48 Ambit
Discovery preprocesses the given data set by principal
component analysis in order to eliminate colinearities among
the descriptors. Subsequently, the AD is estimated based on the
ED approach for the internal and the external test set. The
results showed all compounds from both data sets were found
to be inside the chemical domain of the training compounds.
An additional AD experiment was performed using a set of 986
FDA approved drugs from DrugBank. It had been observed
that 973 compounds were predicted to be in the domain of the
training set and only a small amount (13 compounds) of the
FDA drugs were located outside. Some of these compounds
were found to be peptides, for example, bacitracin,
colistimethate, and degarelix, while others contained transition
metals, as cisplatin or organoplatin. Thus, the models should be
valid over a broad range of the druglike chemical space. The
scoring plot of the first two principal components obtained by
PCA of the FDA approved drugs, as well as the training and
both test sets is provided in the Supporting Information (SI-
Figure 3).
Bikadi et al. used SVM as the method of choice for

developing machine learning models for the classification of
substrates and nonsubstrates of P-gp. Although, they have used
a much smaller data set, the prediction performance of the best
model is similar to the SVM model presented here. Regarding
the differences in data set size, it would have been extremely
interesting to compare the applicability domain of both data
sets, or how much of the FDA approved drugs are within the
chemical space of the model compounds, respectively.

Structure-Based Classification. The publication of the
mouse P-gp structure paved the way for structure-based studies.
We recently showed that docking into a homology model of
human P-gp based on this X-ray structure lead to poses
consistent with QSAR data33 and that these poses can
successfully be exploited for identification of new P-gp

Figure 5. Probability Score of P-gp Inhibitors and Noninhibitors in the
Test Set.

Table 8. Classification Statistics with Different Probability
Cutoffs

sensitivity specificity accuracy
G-

mean MCC

training and
internal test
set

all 0.91 0.69 0.82 0.79 0.63
<0.4/
>0.6

0.94 0.68 0.84 0.80 0.66

<0.3/
>0.7

0.95 0.78 0.89 0.86 0.75

<0.2/
>0.8

0.97 0.73 0.89 0.84 0.74

<0.1/
>0.9

0.99 0.78 0.94 0.88 0.83

external test
set

all 0.99 0.56 0.73 0.75 0.56
<0.4/
>0.6

1.00 0.56 0.74 0.75 0.59

<0.3/
>0.7

1.00 0.60 0.77 0.77 0.63

<0.2/
>0.8

1.00 0.50 0.75 0.71 0.58

<0.1/
>0.9

1.00 0.60 0.82 0.78 0.68

Figure 6. Distribution of P-gp Inhibitors and Noninhibitors based on ChemScore scoring. Sensitivity, specificity and MCC were calculated from true
and misclassification rate at intersection point of two curves. (A) Distribution based on ChemScore alone and (B) distribution based on a combined
ChemScore-logP score.
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inhibitors.49 We thus used our homology model in a wider
setting and docked a large set of P-gp inhibitors and
noninhibitors into P-gp to investigate the possibility to use
docking for classification purposes.
The scoring values of the different fitness functions were

binned into ranges of 0.5 or 5, respectively, and plotted against
the occurrence of inhibitors and noninhibitors. This resulted in
two distinct curves for each scoring function (Figure 6a). The
intersection point of those curves was used as classification
criteria, and compounds scored higher than this point were
considered as inhibitors. Vice versa, compounds showing lower
scores were classified as noninhibitors. According to this
criterion, the confusion matrix parameters, as well as other
performance measures could be calculated and are summarized
in Table 9. As can be seen from the results, the CS docking
runs showed highest MCC values, especially when also using
ChemScore as discrimination criteria. On the other hand, GS
docking runs performed best when being rescored with the
external fitness function Xscore. Rescoring CS docking results
with GoldScore resulted in a dramatic decrease of performance.
The different ligand protonation settings did not considerably
affect the outcome. However ChemScore docking runs showed
a slight preference for neutral ligands, while ChemPLP and ASP
performed better with protonated ligands.
With an MCC of 0.5 the CS docking run using neutral

ligands performed best. Overall, this model accurately predicted
75% of the data set compounds. According to this model, all
compounds that had a ChemScore value above 28 were
predicted as inhibitors. The obtained ChemScore values for
noninhibitors ranged from 0 to 40, whereas in the case of
inhibitors the values varied from 10 to 50.
In terms of MCC and balanced prediction, the overall

classification based on docking (ChemScore) was less accurate
compared to models developed using SVM or random forest.
Nevertheless, by correctly predicting 75% of the training and
internal test set the docking model proved to be suited for
classification studies. The study by Chen et al.22 used a similar
approach for classifying a set of P-gp substrates and

nonsubstrates. However, the results show no clear separation
of the two classes based on the docking scores. On the one
hand, this can be due to the focus on P-gp substrates instead of
inhibitors. Given the fact, that most experimental methods
cannot definitely distinguish substrates from inhibitors, this
explanation might be doubtful. On the other hand, the size of
the data set, which was considerably smaller than the one used
in this study, seems to be the reason for the weak separation in
terms of scoring values. This again points out the importance of
a large data set, which provides a better coverage of the
chemical space.
Dolghih et al.21 on the other hand could show that using

induced fit docking a discrimination of substrates and
nonsubstrates is feasible. With an AUC of 0.93, their protocol
was able to identify P-gp substrates very well. However, in this
case the selection of the data set was in favor for the structure-
based classification. A detailed view on the compounds showed,
that the metabolites selected as nonsubstrates were consid-
erably smaller in terms of molecular weight. When applying the
simple molecular weight classification model on the data set, an
MCC of 0.59 could be achieved (Supporting Information SI-
Table 5). As bigger molecules tend to be scored better by
scoring functions, this introduces a strong bias.
However, it would not be surprising that induced fit docking

would show a slightly better classification performance. The
computational cost, however, renders this approach unsuitable
for high-throughput virtual screening.
To improve the statistics of the structure-based classification

without increasing computational cost, we tried to implement
the fact that the compounds access the protein’s binding site via
the lipid bilayer. In that sense, a score was calculated,
combining ChemScore and the descriptor logP(o/w) (each
normalized) (Figure 6b). This resulted in slightly improved
statistics, as with this combined score 77% of the compounds
could be predicted correctly, resulting in an MCC value of 0.49.
Subsequently, the ChemScore and the combined Chem-

Score-logP scoring models were applied on the external test set.
As expected, the performance of the external validation was

Table 9. Summary of Models Obtained Using Different Scoring Functions

ligand protonation scoring function intersection point sensitivity specificity accuracy G-mean MCC

CS docking run neutral Chemscore 28 0.76 0.73 0.75 0.75 0.48
Goldscore 25 0.36 0.66 0.46 0.49 0.02
ASP 25 0.76 0.62 0.71 0.68 0.36
ChemPLP 50 0.66 0.69 0.67 0.68 0.34
XScore 6 0.63 0.78 0.68 0.70 0.38

charged Chemscore 30 0.68 0.79 0.71 0.73 0.44
Goldscore 18 0.50 0.42 0.47 0.46 −0.08
ASP 29 0.60 0.79 0.67 0.69 0.38
ChemPLP 50 0.70 0.68 0.70 0.69 0.37
XScore 6 0.68 0.73 0.70 0.71 0.39

GS docking run neutral Chemscore 22 0.73 0.58 0.68 0.65 0.31
Goldscore 45 0.61 0.75 0.66 0.67 0.34
ASP 25 0.72 0.56 0.67 0.64 0.28
ChemPLP 50 0.65 0.66 0.65 0.65 0.29
XScore 6 0.65 0.73 0.68 0.69 0.36

charged Chemscore 25 0.59 0.75 0.64 0.66 0.32
Goldscore 45 0.71 0.63 0.68 0.67 0.33
ASP 25 0.74 0.57 0.68 0.65 0.31
ChemPLP 50 0.70 0.65 0.68 0.67 0.33
XScore 6 0.68 0.71 0.69 0.69 0.37

combined score (ChemScore + logP) −0.5 0.81 0.69 0.77 0.75 0.49
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lower than for the data set consisting of training and internal
test set. Both models showed high sensitivity values (<0.9),
indicating that there were hardly any FN classified. However,
high FP rates could be observed, which resulted in low
specificity (<0.4) for both models. The model only relying on
the ChemScore value was able to correctly classify 54% of the
external test set compounds, while the model that was also
taking the logP into account predicted 61% of the compounds
correctly. This indicates that implementing information about
the entry path of the molecules clearly increases a structure-
based prediction model.
However, beside statistical performance measures like MCC,

docking poses can also be evaluated by comparing them with
experimental data. For the P-gp substrate verapamil, the
following interacting residues on TM helices 1, 4, 5, 6, 7, 10,
11, and 12 are known: His61, Ala64, Leu65, Ser222, Ile306,
Leu339, Ala342, Phe728, Ile868, Gly872, Phe942, Thr945,
Leu975, Gly984, Val982.33 Figure 7 shows the top view of the

P-gp binding pocket with four different docking poses of
verapamil, generated by the docking runs presented in Table 9.
As can be noticed, all four poses are in vicinity of the
experimentally derived interacting amino acid residues, which
are rendered blue. Interestingly, the pose, which resulted from
the GS docking run with neutral ligands (Figure 6-B), is located
closest to most of the residues, while the corresponding CS
docking run is placed only in vicinity to the residues on TM
helices 4, 5, and 6. This suggests that the GS docking run could
better reproduce the experimental data.

Protein−Ligand Interactions. Predicting protein−ligand
interactions is a highly valuable analysis tool that helps to
examine energetically favorable conformations or orientations
of ligands in the protein active site. The protein ligand
interaction fingerprints (PLIF) tool, implemented in MOE,
computes different molecular interactions between residues of
the binding site and the corresponding ligand conformation. In
this study, PLIF analysis was performed on the basis of the
docking poses generated by the CS docking run. As can be seen
in Figure 8, there was no significant difference in interaction
occurrences between inhibitors and noninhibitors. However,
noninhibitors showed a higher number of H-bond interactions
than inhibitors. This is in agreement with the results of the ML
techniques, as they described noninhibitors being more
hydrophilic than inhibitors. This also reflects the mode of
action of P-gp, as its substrates have to cross the lipid bilayer in
order to reach the protein’s active site. The main interacting
amino acid residues for inhibitors are Phe303, Tyr307, Phe336,
and Phe343, which are located on helices 5 and 6 of TM
domain 1 (Figure 2). The low involvement of the
corresponding helices in TM domain 2 might be traced back
to a certain asymmetry of the crystal structure template, which
was already pointed out in our previous study.33

■ CONCLUSIONS

In the present study, we developed structure and ligand-based
classification models from a set of 1608 P-gp inhibitors and
noninhibitors. It could be observed that molecular properties,
which could be linked to P-glycoprotein inhibition, are mainly
hydrophobic parameters, such as logP and molar refractivity.
Descriptor contributions, as well as the PLIF analysis, point

Figure 7. Verapamil docking poses generated by 4 different docking
runs. (A) CS docking with neutral ligand, (B) CS docking run with
positively charged ligand, (C) GS docking run with neutral ligand, and
(D) GS docking run with positively charged ligand.

Figure 8. PLIF analysis. Important residues are shown with their hydrophobic and hydrogen bonding interactions: (A) inhibitors and (B)
noninhibitors.
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toward distinct differences in the hydrophobic interaction
pattern of inhibitors and noninhibitors, as the former are for
instance considerably less water-soluble and bulkier. Models
obtained by support vector machine and random forest in
combination with BestFirst descriptors performed better than
other ML models. Both models were performing good in
discriminating inhibitors (>90% of the internal and external test
sets) from noninhibitors, with overall accuracies of SVM and
RF of 83/75 and 86/73%, respectively. Furthermore, an AD
experiment using the BestFirst selection of the combined
descriptor sets suggested that these models are applicable to
predict drug-like compound libraries.
The structure-assisted docking model that used the GOLD

implemented ChemScore scoring function predicted reasonably
well P-gp inhibition (accuracy = 0.75, MCC = 0.48). The
model was able to correctly predict 76% of P-gp inhibitors and
73% of noninhibitors. Adding the logP-value of the compounds
to their docking score showed that implementing information
about membrane diffusion of P-gp inhibitors could slightly
improve the prediction (accuracy = 0.77, MCC = 0.49).
However, structure-based classification on the external test set
was less satisfying, showing an overall accuracy of only 0.61
(ChemScore + logP). Nevertheless, also in this case the
method was highly predictive for inhibitors (97% correctly
classified), but lacked specificity. As mentioned above, the
models built in this study from ligand-based methods are
efficient and precise and could be used for the identification of
P-gp inhibitors or noninhibitors from virtual screenings of large
compound libraries. Thus, they will be implemented in
eTOXsys, a web-based, distributed system allowing prediction
of potential toxicity risks, which is developed under the
framework of the eTOX project.50 As the analysis of simple
properties demonstrated reasonable sensitivity values, these
descriptors could be used as rapid and simple prefilter rules.
Although structure-based classification models lacked overall
accuracy for the external test set, they still might be useful in
combination with ML techniques. Positively classified com-
pounds of the latter could thus be processed by docking
methods, which would further narrow the screening process for
the identification of potent P-gp inhibitors. In addition, the
PLIF analysis provided molecular protein−ligand interaction
information, which may aid the optimization of ligands for P-gp
inhibition. In conclusion, a workflow comprising prescreening
with simple descriptors, classification by ML techniques and
postprocessing by structure-based methods provides accurate
prediction with information for further drug development.

■ ASSOCIATED CONTENT

*S Supporting Information
Additional materials as described in the text. All materials
available free of charge via the Internet at http://pubs.acs.org

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: gerhard.f.ecker@univie.ac.at.

Present Address
F.K.: CeMM Research Center for Molecular Medicine of the
Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna,
Austria

Author Contributions
F.K. and P.V. contributed equally to this manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The research leading to these results has received support from
the Innovative Medicines Initiative Joint Undertaking under
Grant Agreement 115002 (eTOX), resources of which are
composed of financial contribution from the European Union’s
Seventh Framework Programme (FP7/2007-2013) and EFPIA
Companies’ in kind contribution. Additionally the authors
greatfully acknowledge the financial assistance by the Austrian
Science Fund (Grant F3502).

■ REFERENCES
(1) Higgins, C. F. ABC transporters: From microorganisms to man.
Annu. Rev. Cell Biol. 1992, 8, 67−113.
(2) Dean, M.; Hamon, Y.; Chimini, G. The human ATP-binding
cassette (ABC) transporter superfamily. J. Lipid Res. 2001, 42 (7),
1007−1017.
(3) Borst, P.; Elferink, R. O. Mammalian ABC transporters in health
and disease. Annu. Rev. Biochem. 2002, 71, 537−592.
(4) Cummins, C. L.; Salphati, L.; Reid, M. J.; Benet, L. Z. In vivo
modulation of intestinal CYP3A metabolism by P-glycoprotein:
studies using the rat single-pass intestinal perfusion model. J.
Pharmacol. Exp. Ther. 2003, 305 (1), 306−314.
(5) Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di,
L.; Ecker, G. F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; Lennernaes, H.;
Senner, F. Coexistence of passive and carrier-mediated processes in
drug transport. Nat. Rev. Drug Discovery 2010, 9 (8), 597−614.
(6) Szakacs, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.;
Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev.
Drug Discovery 2006, 5 (3), 219−234.
(7) Ecker, G. F.; Stockner, T.; Chiba, P. Computational models for
prediction of interactions with ABC-transporters. Drug Discovery
Today 2008, 13 (7−8), 311−317.
(8) Demel, M. A.; Kraemer, O.; Ettmayer, P.; Haaksma, E.; Ecker, G.
F. Ensemble rule-based classification of substrates of the human ABC-
transporter ABCB1 using simple physicochemical descriptors. Mol. Inf.
2010, 29 (3), 233−242.
(9) Cianchetta, G.; Singleton, R. W.; Zhang, M.; Wildgoose, M.;
Giesing, D.; Fravolini, A.; Cruciani, G.; Vaz, R. J. A pharmacophore
hypothesis for P-glycoprotein substrate recognition using GRIND-
based 3D-QSAR. J. Med. Chem. 2005, 48 (8), 2927−2935.
(10) Langer, T.; Eder, M.; Hoffmann, R. D.; Chiba, P.; Ecker, G. F.
Lead identification for modulators of multidrug resistance based on in
silico screening with a pharmacophoric feature model. Arch. Pharm.
(Weinheim) 2004, 337 (6), 317−327.
(11) Pearce, H. L.; Safa, A. R.; Bach, N. J.; Winter, M. A.; Cirtain, M.
C.; Beck, W. T. Essential features of the P-glycoprotein pharmaco-
phore as defined by a series of reserpine analogs that modulate
multidrug resistance. Proc. Natl. Acad. Sci. U. S. A. 1989, 86 (13),
5128−5132.
(12) Sakiyama, Y. The use of machine learning and nonlinear
statistical tools for ADME prediction. Expert Opin. Drug Metab.
Toxicol. 2009, 5 (2), 149−169.
(13) Wang, Y. H.; Li, Y.; Yang, S. L.; Yang, L. Classification of
substrates and inhibitors of P-glycoprotein using unsupervised
machine learning approach. J. Chem. Inf. Model. 2005, 45 (3), 750−
757.
(14) Broccatelli, F.; Carosati, E.; Neri, A.; Frosini, M.; Goracci, L.;
Oprea, T. I.; Cruciani, G. A novel approach for predicting P-
glycoprotein (ABCB1) inhibition using molecular interaction fields. J.
Med. Chem. 2011, 54 (6), 1740−1751.
(15) Chen, L.; Li, Y.; Zhao, Q.; Peng, H.; Hou, T. ADME evaluation
in drug discovery. 10. Predictions of P-glycoprotein inhibitors using
recursive partitioning and naive Bayesian classification techniques. Mol.
Pharmaceutics 2011, 8 (3), 889−900.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400289j | J. Chem. Inf. Model. 2014, 54, 218−229228

http://pubs.acs.org
mailto:gerhard.f.ecker@univie.ac.at


(16) Aller, S. G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo,
R.; Harrell, P. M.; Trinh, Y. T.; Zhang, Q.; Urbatsch, I. L.; Chang, G.
Structure of P-glycoprotein reveals a molecular basis for poly-specific
drug binding. Science 2009, 323 (5922), 1718−1722.
(17) Klepsch, F.; Ecker, G. Impact of the recent mouse P-
glycoprotein structure for structure-based ligand design. Mol. Inf.
2010, 29, 276−286.
(18) Winter, S. S.; Lovato, D. M.; Khawaja, H. M.; Edwards, B. S.;
Steele, I. D.; Young, S. M.; Oprea, T. I.; Sklar, L. A.; Larson, R. S.
High-throughput screening for daunorubicin-mediated drug resistance
identifies mometasone furoate as a novel ABCB1-reversal agent. J.
Biomol. Screening 2008, 13 (3), 185−193.
(19) Bikadi, Z.; Hazai, I.; Malik, D.; Jemnitz, K.; Veres, Z.; Hari, P.;
Ni, Z.; Loo, T. W.; Clarke, D. M.; Hazai, E.; Mao, Q. Predicting P-
glycoprotein-mediated drug transport based on support vector
machine and three-dimensional crystal structure of P-glycoprotein.
PLoS One 2011, 6 (10), No. e25815.
(20) Blower, P. E.; Yang, C.; Fligner, M. A.; Verducci, J. S.; Yu, L.;
Richman, S.; Weinstein, J. N. Pharmacogenomic analysis: correlating
molecular substructure classes with microarray gene expression data.
Pharmacogenomics J. 2002, 2 (4), 259−271.
(21) Dolghih, E.; Bryant, C.; Renslo, A. R.; Jacobson, M. P.
Predicting binding to P-glycoprotein by flexible receptor docking.
PLoS Comput. Biol. 2011, 7 (6), No. e1002083.
(22) Chen, L.; Li, Y.; Yu, H.; Zhang, L.; Hou, T. Computational
models for predicting substrates or inhibitors of P-glycoprotein. Drug
Discovery Today 2012, 17 (7−8), 343−351.
(23) Rautio, J.; Humphreys, J. E.; Webster, L. O.; Balakrishnan, A.;
Keogh, J. P.; Kunta, J. R.; Serabjit-Singh, C. J.; Polli, J. W. In vitro P-
glycoprotein inhibition assays for assessment of clinical drug
interaction potential of new drug candidates: a recommendation for
probe substrates. Drug Metab. Dispos. 2006, 34 (5), 786−792.
(24) SIMCA-P+ (version 10.5) and MODDE (Version 7.0),
Umetrics, Umea,̊ Sweden (http://www.umetrics.com).
(25) Olsson, I. M.; Gottfries, J.; Wold, S. D-optimal onion designs in
statistical molecular design. Chemom. Intell. Lab. Syst. 2004, 73 (1),
37−46.
(26) Kriegl, J. M.; Eriksson, L.; Arnhold, T.; Beck, B.; Johansson, E.;
Fox, T. Multivariate modeling of cytochrome P450 3A4 inhibition.
Eur. J. Pharm. Sci. 2005, 24 (5), 451−463.
(27) MOE (Molecular Operating Environment), version 2009.10;
Chemical Computing Group, Inc.: Montreal, Canada, 2009; http://
www.chemcomp.com/.
(28) Yap, C. W. PaDEL-descriptor: An open source software to
calculate molecular descriptors and fingerprints. J. Comput. Chem.
2011, 32 (7), 1466−1474.
(29) Witten, I.; Frank, E. Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed.; Morgan Kaufmann: San Francisco, CA,
2005.
(30) Fox, T.; Kriegl, J. M. Machine learning techniques for in silico
modeling of drug metabolism. Curr. Top. Med. Chem. 2006, 6 (15),
1579−1591.
(31) Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
Witten, I. The WEKA data mining software: An update. SIGKDD
Explor. 2009, 11, 1.
(32) Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.;
Vermeulen, N. P.; Olsen, L.; Jorgensen, F. S. Classification of
cytochrome P450 1A2 inhibitors and noninhibitors by machine
learning techniques. Drug Metab. Dispos. 2009, 37 (3), 658−664.
(33) Klepsch, F.; Chiba, P.; Ecker, G. F. Exhaustive sampling of
docking poses reveals binding hypotheses for propafenone type
inhibitors of p-glycoprotein. PLoS Comput Biol 2011, 7 (5), e1002036.
(34) Schrod̈inger Suite L; Schrödinger: New York, NY, 2011.
(35) Ecker, G.; Huber, M.; Schmid, D.; Chiba, P. The importance of
a nitrogen atom in modulators of multidrug resistance. Mol. Pharmacol.
1999, 56 (4), 791−796.
(36) Parveen, Z.; Stockner, T.; Bentele, C.; Pferschy, S.; Kraupp, M.;
Freissmuth, M.; Ecker, G. F.; Chiba, P. Molecular dissection of dual

pseudosymmetric solute translocation pathways in human P-
glycoprotein. Mol. Pharmacol. 2011, 79 (3), 443−452.
(37) Verdonk, M. L.; Chessari, G.; Cole, J. C.; Hartshorn, M. J.;
Murray, C. W.; Nissink, J. W.; Taylor, R. D.; Taylor, R. Modeling
water molecules in protein-ligand docking using GOLD. J. Med. Chem.
2005, 48 (20), 6504−6515.
(38) Mooij, W. T.; Verdonk, M. L. General and targeted statistical
potentials for protein-ligand interactions. Proteins 2005, 61 (2), 272−
287.
(39) Korb, O.; Stutzle, T.; Exner, T. E. Empirical scoring functions
for advanced protein-ligand docking with PLANTS. J. Chem. Inf.
Model. 2009, 49 (1), 84−96.
(40) Wang, R.; Lai, L.; Wang, S. Further development and validation
of empirical scoring functions for structure-based binding affinity
prediction. J. Comput.-Aided Mol. Des. 2002, 16 (1), 11−26.
(41) Gatlik-Landwojtowicz, E.; Aanismaa, P.; Seelig, A. Quantifica-
tion and characterization of P-glycoprotein-substrate interactions.
Biochemistry 2006, 45 (9), 3020−3032.
(42) Poongavanam, V.; Haider, N.; Ecker, G. F. Fingerprint-based in
silico models for the prediction of P-glycoprotein substrates and
inhibitors. Bioorg. Med. Chem. 2012, 20, 5388−5395, DOI: 10.1016/
j.bmc.2012.03.045.
(43) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 2001, 46 (1−3), 3−26.
(44) PDSP. pdsp.med.unc.edu/indexR.html (accessed 23 July 2012).
(45) Zdrazil, B.; Pinto, M.; Vasanthanathan, P.; Williams, A. J.;
Balderud, L. Z.; Engkvist, O.; Chichester, C.; Hersey, A.; Overington,
J. P.; Ecker, G. F. Annotating human P-glycoprotein bioassay data.
Mol. Inf. 2012, 31 (8), 599−609.
(46) Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR
applicability domain estimation by projection of the training set in
descriptor space: A review. ATLA, Altern. Lab. Anim. 2005, 33 (5),
445−459.
(47) Weaver, S.; Gleeson, M. P. The importance of the domain of
applicability in QSAR modeling. J. Mol. Graph. Model. 2008, 26 (8),
1315−1326.
(48) Ambit Discovery; Ideaconsult Ltd.: Sofia, Bulgaria, 2007; http://
ambit.sourceforge.net/download_ambitdiscovery.html.
(49) Klepsch, F.; Prokes, K.; Parveen, Z.; Chiba, P.; Ecker, G. F.
Structure-based pharmacophore screening for new P-gp inhibitors.
Abstr. Pap. Am. Chem. Soc. 2012, 243.
(50) Briggs, K.; Cases, M.; Heard, D. J.; Pastor, M.; Pognan, F.; Sanz,
F.; Schwab, C. H.; Steger-Hartmann, T.; Sutter, A.; Watson, D. K.;
Wichard, J. D. Inroads to predict in vivo toxicologyAn introduction
to the eTOX project. Int. J. Mol. Sci. 2012, 13 (3), 3820−46.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400289j | J. Chem. Inf. Model. 2014, 54, 218−229229

http://www.umetrics.com
http://www.chemcomp.com/
http://www.chemcomp.com/
pdsp.med.unc.edu/indexR.html
http://ambit.sourceforge.net/download_ambitdiscovery.html
http://ambit.sourceforge.net/download_ambitdiscovery.html

