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Abstract

We developed a dynamic forecasting model for Zika virus (ZIKV), based on real-time online

search data from Google Trends (GTs). It was designed to provide Zika virus disease (ZVD)

surveillance and detection for Health Departments, and predictive numbers of infection cases,

which would allow them sufficient time to implement interventions. In this study, we found a

strong correlation between Zika-related GTs and the cumulative numbers of reported cases

(confirmed, suspected and total cases; p<0.001). Then, we used the correlation data from

Zika-related online search in GTs and ZIKV epidemics between 12 February and 20 October

2016 to construct an autoregressive integrated moving average (ARIMA) model (0, 1, 3)

for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated that the pre-

dicted data by ARIMA model, which used the online search data as the external regressor to

enhance the forecasting model and assist the historical epidemic data in improving the quality

of the predictions, are quite similar to the actual data during ZIKV epidemic early November

2016. Integer-valued autoregression provides a useful base predictive model for ZVD cases.

This is enhanced by the incorporation of GTs data, confirming the prognostic utility of search

query based surveillance. This accessible and flexible dynamic forecast model could be used

in the monitoring of ZVD to provide advanced warning of future ZIKV outbreaks.

Introduction

Zika virus (ZIKV) is transmitted to people primarily by mosquitoes [1]. Prior to 2015, out-

breaks had occurred in Africa, Southeast Asia, and the Pacific Islands [2, 3, 4]. In May 2015,

the presence of Zika virus disease (ZVD) was confirmed in Brazil. ZIKV has subsequently

reportedly been spreading throughout the Americas, with epidemics occurring in many coun-

tries [5, 6]. The World Health Organization declared ZIKV, and its suspected link to birth

defects, an international public health emergency in February 2016 [7, 8]. Traditional,
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healthcare-based and government-implemented, ZVD monitoring is resource intensive and

slow. Early surveillance of infectious disease prevalence, when followed by an urgent response,

can reduce the effects of disease outbreaks [9]. Surveillance of online behavior, such as queries

in search engines, is a potential web-based disease detection system that can improve monitor-

ing [10]. Google Trends has been shown to have the potential to go beyond early detection and

forecast future influenza and Dengue outbreaks [11–14]. Several studies have used autoregres-

sive integrated moving average (ARIMA) models for the forecasting of influenza prevalence

from Google Flu Trends [15, 16]. The real-time nature of GTs surveillance and the demon-

strated strong correlation of GTs with infectious disease mean GTs offers a potential tool for

timely epidemic detection and prevention [17]. However, the forecasting capabilities of GTs

for ZIKV outbreaks remain unknown. In this study, we examined the ZIKV-related GTs tem-

porally correlated with ZVD epidemics, and developed an improved dynamic forecasting

method for ZVD activity in the worldwide using an ARIMA model to predict future patterns

of ZIKV transmission.

Materials and Methods

Data collection and statistical analysis

Google Trends, an online tracking system of Internet hit-search volumes (Google Inc.), was

used to explore web behavior related to the ZIKV outbreaks. GTs data for ZIKV in worldwide

was mined of the key word “Zika” from 12 February 2016 to 9 November 2016 (Yearly EPI

Week 6 to 45) to cover the 2016 period of the ZIKV epidemic, and was downloaded directly

from https://www.google.com/trends/explore?date=all&q=zika on 9 November 2016. Al-

though Google Trends normalizes the search data with the day having the most searches set

equal to 100, we obtained and analyzed the relative search volumes for each day based on the

data (100) in 12 February 2016 (Yearly EPI Week 6; data shown in S1 Table). The number of

ZIKV confirmed, suspected and total cases in the worldwide were retrieved from the PAHO

(Pan American Health Organization), available at http://www.paho.org/hq/ and WHO (World

Health Organization), available at http://www.who.int/emergencies/zika-virus/situation-

report/en/ (last accessed on 9 November 2016, S2 Table). To detect the cumulative GTs vol-

umes relative to reported ZIKV cases, we used the Pearson Product-Moment Correlation to

assess linear correlation. All calculations were performed in Python 2.7 with the Scipy library.

Linear regression model

As a baseline model for comparison, the data is fitted with a linear regression model to establish

the relationship of the cases to the GTs data. The linear model is constructed with R version

2.14 (http://www.r-project.org/) and the parameters are obtained automatically. Prediction

results are plotted together with the proposed ARIMA model to show the comparison outcome.

Reconstructed ARIMA model

For the time series analysis, we fitted an autoregressive integrated moving average (ARIMA)

(0, 1, 3) model by using R version 2.14 (http://www.r-project.org/). The autoregressive inte-

grated moving average (ARIMA) forecasting model in this study was developed from the

training and testing sets that were extracted from the data sets. We used the data set including

the 9 months from 12 February to 9 November 2016 (Yearly EPI Week 6 to 45) in the analysis.

The data from 12 February to 25 August 2016 (Yearly EPI Week 6 to 34) were used for training

the forecasting model, and the validation was performed on the 8 weeks’ data from 1 Septem-

ber to 20 October 2016 (Yearly EPI Week 35 to 42). We applied the Box-Jenkins approach to
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ARIMA (p, d, q) modeling of time series. This model-building process is designed to take

advantage of associations in the sequentially lagged relationship that usually exists in periodi-

cally collected data [18, 19]. The parameter for the model includes p, the order of autoregres-

sion; d, the degree of difference and q, the order of moving average. Several models were

initially considered in our study (S3 Table). The residual analysis and the Akaike Information

Criterion (AIC) was used to compare the goodness-of-fit among the ARIMA models. The

Ljung-Box test was used to measure the ACF of the residuals (S3 Table). Using this model

selection procedure, we selected one non-seasonal difference term for stationary (d) and three

lags of moving average terms (q), resulting in a model of ARIMA (0, 1, 3). To predict the future

values, the developed ARIMA model was fitted to the entire data from 12 February to 20 Octo-

ber 2016 (Yearly EPI Week 6 to 42) and used to forecast over a time span of 3 weeks, covering

27 October and 9 November 2016 (Yearly EPI Week 43 and 45).

Results

Correlations between data on ZIKV outbreaks and ZIKV-related GTs

Our analyses used the data from 12 February to 9 November 2016 (Yearly EPI Week 6 to 45),

covering 9 months of the GTs data (Fig 1 and S1 Table) and the reported ZIKV epidemic data

(confirmed, suspected and total cases, S2 Table). Alongside the "stepped” increases in the

Fig 1. Time series plot of the daily GTs volumes from 12 February to 9 November 2016 (Yearly EPI Week 6 to 45).

doi:10.1371/journal.pone.0165085.g001
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reported ZIKV cases (confirmed, suspected and total cases) in this epidemic, there were dra-

matically increased numbers of Zika-related online searches in Google (Fig 2). From 12 May

to 19 May 2016 (Yearly EPI Week 19 to 20), the ZIKA epidemics entered a period of rapid

growth with a large cumulative number of confirmed cases (increasing from 8,670 to 40,479;

Fig 2A). Meanwhile, the cumulative number of suspected cases fell from 298,488 to 269,876

(Fig 2B), because the suspected cases were diagnosed during this period. Then, the number of

total reported cases increased slightly from 307,158 to 310,355 (Fig 2C). Until 20 October 2016

(Yearly EPI Week 42), a total of 164,352 confirmed cases and 512,345 suspected cases were

reported in the S2 Table. The GTs data showed that the volume of dynamic Zika-related online

searches continuously grew from February to November 2016 (Fig 2D). We performed Pear-

son Product-Moment Correlation analyses to examine temporal correlations between the

accumulative volumes of Zika-related search queries and the cumulative numbers of reported

cases. The result indicated that the data on Zika-related GTs had statistically significant and

positive correlations with the cumulative numbers of confirmed cases (R = 0.968, p<0.001),

suspected cases (R = 0.980, p<0.001) and total cases (R = 0.988, p<0.001) of ZIKV.

Statistical machine learning and reconstructed ARIMA model

On the basis of the revealed correlation between the data of GTs and the number of reported

cases, we split the data into training (75%, from 12 February to 25 August 2016) and testing

Fig 2. Time series plots of the number of reported ZIKV confirmed cases (A), suspected cases (B), total cases (C) and the accumulated Google search

volumes (D) during the ZVD epidemic from 12 February to 9 November 2016 (Yearly EPI Week 6 to 45).

doi:10.1371/journal.pone.0165085.g002
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(25%, from 26 August to 20 October 2016) sets. We analyzed the training set to observe whether

the simulation data is similar to the reported data in testing set using the advanced autoregres-

sive integrated moving average (ARIMA (0, 1, 3)) model. In this reconstructed model, we used

the collected online search data as the external regressor in a prediction model to assist the his-

torical ZVD epidemic data in improving the quality of prediction. Using this model with the

training data of GTs as a predictor, we found that the cumulative number of reported confirmed

case (164,352) in 20 October 2016 (Yearly EPI Week 42) in the testing set was above the 95%

confidence interval of the simulated data (111,119 to 157,663; Fig 3A). However, Fig 3B and 3C

showed that the number of suspected cases (512,345) and the number of the total cases (676,697)

in 20 October 2016 (Yearly EPI Week 42) in the testing set fell within the 95% confidence inter-

val of the simulated data (504,034–587,115 for suspected cases and 615,347–725,599 for total

cases, respectively). We also used a simple baseline model to do a sanity test as a reference,

which could reproduce features in the data and predicted the number of confirmed, suspected

and total cases in 20 October 2016 (Yearly EPI Week 42; 146,608 for confirmed cases, 537,043

for suspected cases and 683,650 for total cases in Fig 3A, 3B and 3C). However, the complicated

ARIMA model showed a better performance for the prediction with a lower value of AIC than

the simple linear predictor (S3 Table). These observations implied that the Google Trends infor-

mation would improve the prediction of the size of ZIKV outbreaks.

Forecasting the ZIKV outbreaks in worldwide during early november

2016

Based on the data on Zika-related online searches and ZIKV epidemics in GTs between 12

February and 20 October 2016, we used the reconstructed ARIMA (0, 1, 3) model to forecast

ZVD outbreaks during the current 3 weeks. In this model, we used the online search data as

the external regressor to enhance the forecasting model and assist the historical ZVD epidemic

data in improving the quality of the predictions while responding to disease outbreaks. We

forecasted the cumulative number of ZIKV cases as a simulation of the continuation of the

time series. This model with GTs data as the predictor estimated that the forecast cumulative

number of confirmed cases would increase to reach 169,722.4 (95% CI: 154,746.8–184,698.0)

by 9 November (Yearly EPI Week 45), which was closest to the actual reported infection cases

(169,865; Fig 4A). The predicted number of suspected cases would grow up to 524,231.6 (95%

CI: 498,863.8–549,599.4) on 9 November 2016 (Yearly EPI Week 45; Fig 4B), which was

slightly more than the reported suspected cases (515,969). Finally, the actual number of total

reported cases was 685,834 on 9 November 2016 (Yearly EPI Week 45) and the predicted num-

ber of total cases was 693,106 (95% CI: 662,396.1–723,815.9) (Fig 4C), which was above the

reported cases (S4 Table). These forecasts of ZVD outbreaks suggested that ZIKV disease

transmission in the worldwide remains intense during November 2016.

Conclusions

ZVD outbreaks are now a common and growing problem worldwide [20, 21 22]. Delays in tra-

ditional surveillance systems limit the ability of public health agencies to respond efficiently to

ZIKV epidemics [23]. Because data on GTs are collected and processed in near real-time,

Fig 3. Numbers of reported confirmed cases (A), suspected cases (B) and total cases (C) in the testing set

compared with the simulation data by the advanced ARIMA (0, 1, 3) model for training set using the data of

Google Trends as the external regressor. The red, blue and green solid lines represent the predicted, training

and actual number of cases, respectively. The black dash lines represent the prediction of the linear baseline

model. The blue region represents the 95% confidence interval predicted by the ARIMA (0, 1, 3) model.

doi:10.1371/journal.pone.0165085.g003
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online search information produces monitoring data much faster than traditional systems [24,

25]. We first performed correlation analyses to investigate the temporal correlations between

data on ZIKV-related GTs and reported cases of ZVD. The result showed that the Zika-related

GTs had a strong correlation with confirmed, suspected and total cases of ZIKV. Based on the

correlation data, the advanced model ARIMA (0, 1, 3) was improved by aggregating historical

logs and estimated data of online search queries associated with Zika as a predictor to forecast

ZVD cases. And we found that the complicated ARIMA model showed a good performance

for the prediction with the lower value of AIC than the simple linear predictor (Fig 3). The

results also indicated that the predicted data by ARIMA model are quite similar to the actual

data during ZIKV epidemic early November 2016 (Fig 4). The results in this study showed that

the novel surveillance tool of GTs can also provide dynamic timely information to public

health agencies and provide near real-time indicators of the spread of infectious disease [26].

However, to be effective for monitoring disease activity on local geographic areas, it must be

considered within the local context of ZIKV transmissibility.
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