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Abstract

Natural populations exhibit substantial variation in quantitative traits. A quantitative trait is typically defined by its mean
and variance, and to date most genetic mapping studies focus on loci altering trait means but not (co)variances. For single
traits, the control of trait variance across genetic backgrounds is referred to as genetic canalization. With multiple traits, the
genetic covariance among different traits in the same environment indicates the magnitude of potential genetic constraint,
while genotype-by-environment interaction (GxE) concerns the same trait across different environments. While some have
suggested that these three attributes of quantitative traits are different views of similar concepts, it is not yet clear, however,
whether they have the same underlying genetic mechanism. Here, we detect quantitative trait loci (QTL) influencing the
(co)variance of phenological traits in six distinct environments in Boechera stricta, a close relative of Arabidopsis. We
identified nFT as the QTL altering the magnitude of phenological trait canalization, genetic constraint, and GxE. Both the
magnitude and direction of nFT’s canalization effects depend on the environment, and to our knowledge, this reversibility
of canalization across environments has not been reported previously. nFT’s effects on trait covariance structure (genetic
constraint and GxE) likely result from the variable and reversible canalization effects across different traits and environments,
which can be explained by the interaction among nFT, genomic backgrounds, and environmental stimuli. This view is
supported by experiments demonstrating significant nFT by genomic background epistatic interactions affecting
phenological traits and expression of the candidate gene, FT. In contrast to the well-known canalization gene Hsp90, the
case of nFT may exemplify an alternative mechanism: Our results suggest that (at least in traits with major signal integrators
such as flowering time) genetic canalization, genetic constraint, and GxE may have related genetic mechanisms resulting
from interactions among major QTL, genomic backgrounds, and environments.
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Introduction

Elucidating the genetic basis of quantitative traits enables

analysis of the processes that shape trait evolution [1]. Two

properties that characterize quantitative traits in a population are

mean and (co)variance. Most genetic mapping studies focus on loci

that influence trait means, while the genomic regions capable of

altering trait (co)variances, in contrast, receive relatively little

attention despite the crucial role of trait (co)variances in

determining the potential for traits to respond to selection [but

see 2]. Although researchers have long recognized the importance

of genetic control over phenotypic variance [3–6], only recently

have analyses begun to map genomic regions or genes responsible

for trait (co)variance in organisms such as Arabidopsis thaliana [7–

9], yeast [10], or mouse [11,12]. In humans, recent studies also

have identified variance-controlling loci with biomedical implica-

tions [13–16].

For a quantitative trait, the phenotypic variation, VP, can be

decomposed as VP = VE+VG+VGxE+Ve, where VE is the major

environmental variance from different growth chambers or

experimental gardens, VG is the genetic variance, VGxE stands

for the genotype-by-environment interaction, and Ve is the

stochastic noise caused by micro-environmental differences or

other factors. For experiments across several different major

environments, ‘plasticity’ consists of VE and VGxE. Within the same

major environment (where VE and VGxE can be ignored) canalized
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traits exhibit little phenotypic variation (VP) [6], and causes of

phenotypic canalization can be environmental or genetic. That is,

one genotype produces a constant phenotype despite environ-

mental variation (environmental canalization reducing Ve), or

genetically distinct individuals produce similar phenotypes despite

different genetic backgrounds (genetic canalization reducing VG)

[6,17,18]. Most mapping studies of canalization loci focused on

environmental canalization, where the stochastic noise (Ve or

similar measures) of inbred lines was often used as a quantitative

trait in standard mapping algorithms [7,9–12]; only in a few cases

are we aware of attempts to specifically map loci controlling

genetic canalization [8,12]. While Shen et al. [8] identified loci

whose alleles differ in the genetic variance among inbred lines

(VG), Fraser and Schadt [12] employed separate approaches to

map loci controlling genetic canalization and environmental

canalization. Here similar to both studies [8,12], we focus on

genetic canalization, which epistatically reduces genetic variance

conferred by other genes [4,6,17] without changing the extent of

molecular polymorphism in the genome. Beyond single traits, in

this study we further consider the genetic control of the

relationship among multiple traits.

The relationship among traits is often expressed in the form of

their genetic variance-covariance matrix, the G matrix [19]. The

G matrix of different traits in the same environment indicates the

magnitude of potential genetic constraints, whereas the G matrix

of the same traits in different environments is algebraically related

to the genotype-by-environment interaction component of plas-

ticity (VGxE, sometimes referred to as GxE below) [20–22]. While

the term ‘genetic constraint’ may be used more broadly for many

different combinations of traits (such as the same trait in different

ages) [23], here we use this term only to describe the relationship

among different traits in the same environment or age. Genetics

may control or alter the magnitude of single-trait genetic variance

and the size, shape, or orientation of multi-trait genetic covariance

structure (genetic constraint or the genotype-by-environment

component of plasticity). While to date several studies are available

for the genetic mapping of single-trait genetic canalization, few

ecologically or evolutionarily important loci controlling trait

covariance structure have been investigated, and it is unclear

whether these three attributes of quantitative traits (genetic

canalization, genetic constraint, and GxE) have related underlying

genetic mechanisms.

Because plants often synchronize their phenology with specific

environmental conditions [24], flowering time provides a useful

model to investigate these attributes. We examined Boechera
stricta, an ecological model organism closely related to Arabidopsis

[25,26]. Previously we showed that flowering time is under strong

selection in nature [25], and a large-effect phenology QTL (nFT)

exhibits trade-offs in flowering probability and fitness across

different natural environments [27,28], providing a good model to

investigate the interaction between genetics and environments.

Here, using phenological traits in this species, we provide a

unifying framework by identifying the same QTL that alters the

magnitude of genetic canalization, genetic constraint, and GxE,

and proposing that the genetic mechanism likely involves major

QTL by genomic background by environment interaction effects.

We further test the proposed epistasis effect between major QTL

and genomic background on plant phenological traits and

candidate gene expression.

Results

Environment-dependent genetic canalization effect
Using recombinant inbred lines (RIL) between B. stricta parents

from Colorado and Montana, we performed mapping for loci that

affect the among-RIL genetic variance (i.e., genetic canalization)

of phenological traits (flowering time and plant size [number of

leaves] at flowering) in six different growth chamber environments.

We identified three quantitative trait loci (QTL) under the

stringent genome-wide significance threshold 0.01 (i.e., the

observed Brown-Forsythe value is larger than the genome-wide

maximum value from at least 990/1000 permutations) (Table 1,

Figure S1). The significance threshold of 0.05 had additional QTL

identified, but in this study we only focused on QTL with stronger

effects. Two QTL (BST031941 and Bst004238) only had

canalization effects on flowering time in one environment (Figure

S1, 16 hour days, 25uC, 4 week vernalization; i.e., long days,

elevated temperature, short winter). The effects of these two QTL

were opposite (Figure S2): the Colorado genotype at BST031941
on linkage group 2 reduced among-RIL genetic variance of

(canalized) flowering time, and the Montana genotype at

Bst004238 on linkage group 7 caused flowering time canalization.

The third QTL, nFT, had widespread canalization effects in

multiple environments. This QTL is syntenic with the region

containing flowering time gene FT (AT1G65480, hence the name

‘‘near FT’’) in Arabidopsis thaliana and is a major QTL

influencing Boechera stricta phenology, life history and fitness in

a broad range of environments [25,27,28]. The draft genome

assembly from Joint Genome Institute also indicated that the FT
gene locates within this region. The canalization effect of nFT was

environment-dependent: under the genome-wide significance

threshold of 0.01, its effect was significant for flowering time in

four environments (both vernalization lengths in 12 hour 18uC
and 16 hour 25uC treatments, Figure 1) and number of leaves at

flowering in two environments (both vernalization lengths in

12 hour 18uC, Figure S3). For flowering time, ambient environ-

ment significantly influenced the canalization effect, but the

duration of vernalization did not (Figure 1). Interestingly, the

magnitude and direction of nFT’s canalization effect depended on

the environment (Figure 2). The Montana genotype reduced the

among-RIL genetic variance of (i.e., canalized) phenological traits

at 12 hour days and 18uC, but the Colorado genotype had this

Author Summary

Biological traits often display large amounts of genetic
variability as well as genetic correlations among traits. This
variability provides the raw material for evolutionary
change and may alter the direction of trait evolution
under selection. Despite this importance, it is unclear
whether the genetic controls of variability in single traits
and relationships among multiple traits have related
mechanisms. Using the flowering time of a plant species
as model, here we performed genetic mapping and
identified a locus altering single-trait variability and
multi-trait relationships. The effect likely results from the
distinct thresholds required by its different alleles to
trigger flowering, which can be explained by the interac-
tion among this major locus, the variable genomic
backgrounds, and the distinct environments. This view is
supported by experiments showing epistatic effects of this
major locus on flowering time and expression pattern of
the candidate gene. Together, our results show that, at
least for traits with major signal integrator genes such as
flowering time, the genetic control of single-trait variability
and multi-trait relationships may have a common under-
lying mechanism that may be generalizable to other genes
or pathways, mediated by interaction among major loci,
genomic backgrounds, and surrounding environments.

Genetic Control of Trait (Co)variance through Epistasis
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Figure 1. Flowering time distributions of families with the Montana (red bars) or Colorado (blue bars) homozygous genotypes of
nFT locus in six environments. Panels in each column have the same ambient environment: first column – 12 hour days 18uC, second column –
16 hour days 18uC, third column – 16 hour days 25uC. Panels in each row have the same vernalization treatment: first row – 4 week vernalization,
second row – 6 week vernalization. Vertical dashed lines (180 days) separate the two growing seasons in each environment. Above each graph,
horizontal bars denote the mean plus or minus one standard deviation for each homozygous genotype, numbers on the left denote percent of total
variation explained by the difference in variance of the two genotypes, and asterisks on the right denote genome-wide significance of the difference
in variance. * P, = 0.05, ** P, = 0.01, *** P, = 0.001.
doi:10.1371/journal.pgen.1004727.g001

Figure 2. Distinct canalization effects of nFT locus across six different environments on standardized traits: (A) flowering time and
(B) leaf number at first flowering. Shown are the genetic variances among families homozygous for the Montana (red dots and solid lines) or
Colorado (blue triangles and dashed lines) genotypes. In each environment, asterisks above each genotype pair denote the genome-wide
significance of difference in variance. * P, = 0.05, ** P, = 0.01, *** P, = 0.001.
doi:10.1371/journal.pgen.1004727.g002

Genetic Control of Trait (Co)variance through Epistasis
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canalization effect in the 16 hour days, 25uC treatment. Although

it is known that the existence and magnitude of genetic

canalization vary among environments [29], as far as we know,

our study may be the first to show that the direction of canalization

effect can be reversed between environments (Figure 2).

Based on these observations, we proposed a ‘threshold
hypothesis’ to explain the environment-dependent magnitude and

direction of nFT’s canalization effect (Figure 3), hypothesizing that

the FT gene may be the causal locus within the nFT QTL: In

growth chambers, the Montana genotype of nFT accelerated

flowering in all environments [25]. In addition to nFT, these

recombinant inbred lines also segregate for other flowering time

genes in the genome [25]. Since the FT gene within the nFT QTL

serves as a hub, which promotes flowering after integrating signals

from multiple upstream pathways in the Arabidopsis flowering

time network [30], the environment-dependent canalization effect

of nFT may be created by the interaction among these factors: 1)

different growth chamber environments, 2) distinct genomic

backgrounds among RILs created by segregating genotypes of

other flowering genes, and 3) the different input-signal threshold

needed for either FT genotype to trigger flowering (Figures 1 and

3). For plants in the flowering-promoting environment under long

days and cool temperature (16 hour days 18uC, mean flowering

time at 4 week vernalization = 141 days, and at 6 week

vernalization = 122 days), nFT did not confer a canalization effect

because all genomic backgrounds created high input signals for

both FT genotypes to initiate flowering. Plants took longer to

flower under short days and cool temperatures (12 hour days

18uC, mean flowering time = 147 or 139 days, at 4 or 6 week

vernalization, respectively). In these slightly flowering-inhibiting

environments, most genomic backgrounds generated lower input

signals, which were still enough for the low-threshold Montana

genotype to express (predominantly flowering in the first season,

within 180 days), whereas a portion of families with the Colorado

genotype did not flower until the second growing season because

many genomic backgrounds did not generate enough input signals

for the high-threshold Colorado genotype (Figures 1 and 3). This

resulted in higher variance among nFT Colorado homozygotes,

such that Montana was the canalization genotype in these

environments. Finally, flowering was significantly delayed at

elevated temperatures (16 hour days 25uC, mean flowering time

at 4 week vernalization = 229 days, at 6 week vernalization = 190

days). In these flowering-inhibiting environments where most

genomic backgrounds generated low input signal, some genomic

backgrounds still had enough signal for the Montana genotype to

flower in the first season, but some families with Montana

genotype flowered only in the second season (Figure 1 and

Figure 3). The majority of families homozygous for the Colorado

genotype, however, did not flower until the second season due to

nFT Colorado genotype’s high threshold. Therefore, the Colorado

genotype canalized the onset of reproduction in this environment.

QTL altering the covariance structure among traits
While genetic canalization concerns the variance of single traits,

the covariance structure of multiple traits may also be affected by

genetic elements that canalized some traits but not others. The

environment- and trait-dependent canalization effect of nFT
therefore suggests that it may affect trait covariances (the G
matrix; the pairwise genetic correlations were reported in Table

S1). Indeed, we identified nFT as the strongest QTL altering the

size (Box’s M [31]) and orientation (the angle between the first

principal component Gmax) of G matrices in different trait-by-

environment combinations: flowering time in six environments,

leaf number at flowering in six environments, and the combination

of all 12 traits (Figure S4). The Krzanowski index method (see

Materials and Methods) [32,33], on the other had, only identified

significant nFT effect on the covariance structure of flowering time

between the six environments but not for plant leaf number at

flowering. In contrast to Gmax angle, the Krzanowski method is

likely conservative because it compares the angular difference

between subspaces formed by many dimensions, some of which

may explain little variation. Figure 4 indicated the difference in

size, shape, and orientation between the G matrices from the two

nFT genotypes, and the respective trait loadings on each axis were

reported in Table S2. Another QTL, BST031941, was also

mapped by the Box’s M method for the six-flowering-time data set

(Figures S4 and S5).

We next mapped QTL controlling the G matrix between

flowering time and leaf number in the same environment

(indicating potential genetic constraint) and between the same

traits in different environments (indicating the magnitude of the

genotype-by-environment interaction component of plasticity).

Again, nFT and BST031941 were the only QTL influencing most

trait pairs. Similar to the canalization result for univariate traits

(above), nFT altered the genetic covariance structure between

flowering time and leaf number only in both vernalization lengths

of two ambient environments: 12 hour days, 18uC and 16 hour

days, 25uC, but not 16 hour days, 18uC (Figure 5). The nFT
effects, however, were not strong (Figure 5) and only significantly

influenced the relative size (Box’s M) but not the orientation (Gmax

angle) between two G matrices in each case. BST031941, on the

other hand, had effects only in environment 16 hour days, 25uC, 4

week vernalization and altered both the size and orientation of the

G matrix (Figure S6), consistent with the previous observation that

Figure 3. Illustration of the threshold hypothesis, proposing
that nFT’s reversible canalization effect results from the
interaction among FT gene, genomic backgrounds, and
environments. The horizontal axis denotes three different environ-
ments: that promotes flowering (16 hour days 18uC), that slightly
inhibits flowering (12 hour days 18uC), and that strongly inhibits
flowering (16 hour days 25uC). Here, the same set of genomic
backgrounds (the ten dots within each environment, representing
different combinations of upstream flowering genes) is replicated
among environments, generating different amounts of signal input to
FT (vertical axis). It is known that the Montana genotype of nFT locus
accelerates flowering relative to the Colorado genotype in these growth
chambers, therefore the Montana genotype has a lower flowering
threshold. Based on the specific environment, a genomic background
can generate enough signal for both FT genotypes to express (white
dots), only enough signal for the Montana but not the Colorado
genotype (grey dots), or not enough signal for either FT genotype
(black dots).
doi:10.1371/journal.pgen.1004727.g003

Genetic Control of Trait (Co)variance through Epistasis
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its canalization effect on flowering time only existed in this

environment (Figure S1 and S2).

Finally, nFT influenced the magnitude of GxE (genotype by

environment) interactions (Figure 6). For many trait pairs, nFT

had significant effects on both the size and orientation of the

covariance matrices, especially in the comparison between

chambers 12 hour days 18uC and 16 hour days 25uC, where

nFT had significant canalization effect with different directions on

Figure 4. nFT alters the covariance structure of multiple phenological traits. Each dot represents the trait values of one recombinant inbred
family, and an ellipse represents the 95% confidence region of the covariance matrix defined by an nFT homozygous genotype. Montana genotype:
red dots and ellipse. Colorado genotype: blue dots and ellipse. Numbers in each graph represent proportional variation explained by PC1 or PC2 of all
families, respectively.
doi:10.1371/journal.pgen.1004727.g004

Figure 5. nFT effect on the structure of covariance between standardized flowering time and leaf number when flowering in each of
the six environments. Asterisks on the upper right of each graph denote genome-wide significance for the Box’s M method (ellipse size). nFT has
no significant effect in the Gmax angle method (ellipse orientation) in any environment. Montana genotype: red dots and ellipse. Colorado genotype:
blue dots and ellipse. * P, = 0.05, ** P, = 0.01.
doi:10.1371/journal.pgen.1004727.g005

Genetic Control of Trait (Co)variance through Epistasis
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univariate traits (Figure 1 and S3). The BST031941 QTL had a

significant effect on GxE for flowering time only in the comparison

between 16 hour days, 25uC, 4 week vernalization and all other

environments (Figure S7). In addition, the G matrices in each

comparison differed in both size and orientation. This again is

consistent with BST031941’s environment-dependent effect

described earlier.

nFT epistatic effects in heterogeneous inbred families
(HIF)

Since nFT influenced the genetic variance and covariance of

phenological traits, we hypothesized that this QTL might interact

epistatically with other flowering time genes in the genome and

alter the magnitude of their effects, as predicted by our ‘threshold

hypothesis’. Our previous study did not identify significant

epistatic QTL in these growth chambers [25], nor did our

re-analyses identify significant interaction effect between nFT and

other QTL (Table S3). These results, however, did not contradict

our prediction, since the threshold hypothesis emphasized the

interaction between major QTL (nFT) and the cumulative effect

from upstream genes (the genomic background), and epistasis

between nFT and individual upstream QTL may be too weak to

detect in the previous experiment.

To test the epistatic effect between nFT and genomic

background, we conducted greenhouse experiments using several

heterogeneous inbred families (HIF). Each family had almost

identical genomic background and segregated for the two nFT
genotypes, and the use of several such families allowed the test for

genomic background by QTL epistatic effects (Figure S8).

Univariate analyses revealed nFT by genomic background (HIF)

interactions for all three traits in the greenhouse environment

(flowering time, leaf number and height at flowering, Table 2 and

Figure 6. nFT effect on the cross-environment plasticity of standardized phenological traits. Each graph shows the relationship of the
same trait (above the diagonal – flowering time; below diagonal – leaf number when flowering) between pairs of environments. Montana genotype:
red dots and ellipse. Colorado genotype: blue dots and ellipse. In each graph, asterisks in the upper right denote genome-wide significance for the
Box’s M method (ellipse size), and asterisks on the upper left denote genome-wide significance for the Gmax angle method (ellipse orientation). * P,
= 0.05, ** P, = 0.01, *** P, = 0.001.
doi:10.1371/journal.pgen.1004727.g006
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Figure 7 A to C). These effects remained significant after

sequential Bonferroni correction. Previously, we detected signifi-

cant nFT effects on mean flowering time in F6 recombinant

inbred lines [25]. Here, analyses in the HIF experiments showed

significant epistasis but not main nFT effects on flowering time.

This difference likely reflects the complex effects of nFT that

depend on genetic background (see Discussion) and is consistent

with the idea that the additive effect of a QTL depends on other

epistatic genes in the genome [34]. There was, however, a main

effect of nFT QTL on height at flowering: Montana homozygotes

at nFT are shorter at flowering than Colorado homozygotes.

In multivariate analysis (MANOVA) simultaneously treating all

three traits as response variables, there were significant main

effects for nFT (P = 0.024) and genomic background (P,0.001), as

well as nFT by genomic background interaction effect (P = 0.005).

Figure 7 D to F show nFT by genomic background reaction

norms for each pair of traits, demonstrating this epistatic effect.

While our ‘threshold hypothesis’ focused on the effect of the FT
gene, the HIF phenotypic experiments only showed effects of the

nFT QTL. To further test this prediction that the FT gene

interacts epistatically with other flowering genes in the genome, we

used the same HIF experimental design (Figure S8) to test the nFT
by HIF (genomic background) interaction effect on expression of

the FT transcript, using two HIF backgrounds. This interaction

effect was highly significant (Table 2). While the Montana

genotype had low expression in both genomic backgrounds, the

Colorado genotype had significantly higher expression in HIF 98A

than in HIF 89A (Figure 8). In HIF 89A, both nFT genotypes

conferred low FT gene expression, while in HIF 98A the Colorado

nFT genotype conferred higher FT gene expression than the

Montana genotype (Figure 8). This observation is consistent with

the threshold hypothesis that the genetic variation of other

flowering genes in the HIF 89A background does not generate

enough input signals for either FT genotype to express. On the

other hand, in the greenhouse the HIF 98A genomic background

generated enough input signals for the Colorado FT genotype to

express but not enough for the Montana genotype. In addition, we

found a highly significant association between flowering phenotype

(presence of visible flowering buds) and quantitative expression of

the FT transcript in individual plants (F1,17 = 9.72, P val-

ue = 0.006). This supports that complex trait variation at the

nFT QTL may be functionally mediated by the FT locus itself.

Discussion

The genetic basis and evolutionary history of canalization in one

trait, genetic constraint among multiple traits, and genotype-by-

environment interaction (GxE) across different environments are

active foci for research in evolutionary genetics [2]. While many

genetic mapping studies are available for single-trait canalization,

the majority concerned environmental canalization [7,9–12], and

only in a few studies are we aware of mapping for genetic

canalization [8,12]. Here we used similar approaches to previous

studies for single-trait genetic canalization [8,12], but extended

our analysis beyond single traits and focused on the QTL altering

trait covariance structures. We provide a unifying framework for

these mechanisms in the flowering time of B. stricta by showing

how one QTL (nFT, which contains the floral integrator gene FT)

influences all three attributes for phenological traits of Boechera
stricta. nFT influences single-trait genetic canalization, and the

magnitude and direction of its effects can be reversed across

environments. nFT’s environmentally dependent and reversible

effect in one trait, when extending to multiple traits, creates the

distinct patterns of covariance structure among different traits in
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the same environment (altering the magnitude of genetic

constraint) or among the same traits in different environments

(altering the magnitude of GxE). We propose a ‘threshold

hypothesis’ (see Results and Figure 3) to explain this pattern,

and the hypothesis is supported by the significant nFT by genomic

background epistatic effects on phenological traits and transcrip-

tional variation of the candidate FT locus in the heterogeneous

inbred family (HIF) experiment, echoing studies showing the

prevalence of epistasis in both trait and molecular evolution [34–

41].

The threshold hypothesis
In this study we proposed a ‘threshold hypothesis’ to explain the

environment-dependent genetic canalization effects of nFT on

flowering time, and the concept is illustrated in Figure 3. This

hypothesis focuses on three components of flowering time

regulation: the downstream floral signal integrator gene FT, the

genomic backgrounds with different combinations of polymorphic

upstream genes (each generating small input signals to FT), and

multiple growth chamber environments that also generate

different levels of input signals. In this hypothesis, the activation

of FT expression (which then triggers flowering) depends on

whether the upstream input signals, which vary with different

combinations of genomic backgrounds and environmental stimuli,

exceed the genotype-specific threshold of FT. The interaction

among major threshold gene, genomic backgrounds, and envi-

ronmental stimuli therefore triggers the environment-dependent

canalization effect of flowering. The threshold model may also

help explain how discrete and large-effect phenotypic changes may

be caused by continuous and small-effect upstream genetic

mechanisms.

In this simple threshold hypothesis, the effect of the genomic

background on the initiation of FT expression is binary: input

signals generated by different backgrounds or environments are

either below or above the threshold for FT alleles to express. In a

previous study of Arabidopsis thaliana, Welch et al. [42] used

sigmoid functions to model genes in the flowering time pathway.

These sigmoid functions model the relationship between quanti-

tative upstream input signals and the response of downstream

genes, and these models can be viewed as the quantitative

generalization of our threshold hypothesis (see details in Figure

S9). While in Welch et al. [42] the wild-type allele of each gene

was assigned a sigmoid function and knockouts always have zero

output, in our case the two FT alleles with different thresholds

simply have different response curves (Figure S9). The threshold

hypothesis is therefore supported by previous studies and may be

applied to genes or networks that can be modeled with continuous

functions.

Our threshold hypothesis also echoes the recent idea that

cryptic genetic variation (CVG) is not ‘mechanistically special and

Figure 7. Reaction norms showing the nFT by genomic background epistatic effects for three univariate traits (A to C) and three
multivariate trait pairs (D to F) in the heterogeneous inbred family (HIF) greenhouse experiment. Lines represent the four HIFs and
connect the Montana and Colorado nFT homozygous genotypes within each family. Panels A to C show the mean 61 SE, and epistasis is indicated by
the difference in line slopes. In panel D to F, within each family, the arrow points from Colorado to Montana genotype, and epistasis is signified by
both the difference in line slopes and arrow directions. Standard error of each nFT genotype within each family is shown in panel A to C and is
excluded in panel D to F for graph clarity.
doi:10.1371/journal.pgen.1004727.g007
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mysterious’ [43], but instead that genetic effects are conditional on

other genes (epistasis or dominance) or on the environment (GxE),

and CVG can be viewed as ‘conditionally neutral genetic

variation’ [43]. It is worth emphasizing that the mechanism

underlying genetic canalization effects of nFT and the well-known

heat shock protein 90 (Hsp90) [29,44] may be different. Hsp90 has

a specific function as a protein chaperone [45–47], whose

expression pattern may be independent of the proteins it helps

folding. On the other hand, expression of the FT gene is trigged by

signals from upstream genes. As a consequence, we predict that

distinct input-signal requirements for FT’s different genotypes may

generate QTL by genomic background interaction effects on

phenological traits and on its own expression pattern, which is

supported by our HIF experiments. Therefore, in contrast to

Hsp90, whose specific function may not easily be extrapolated to

most genes or pathways, our threshold hypothesis and the case of

the FT gene in the flowering time pathway may represent an

alternative mechanism for other cases of canalization, genetic

constraint, and genotype-by-environment interaction in traits with

major signal integrators such as flowering time.

In fact, a similar idea has been proposed and tested previously

[48–50]. Siegal and Bergman [48] modeled the effect of biological

networks on trait canalization and showed that canalization is ‘an

inevitable consequence of complex developmental-genetic pro-

cesses’ that does not require the force of stabilizing selection or a

specific molecular function such as Hsp90. Further studies

supported this model by showing that gene knock-outs can affect

both genetic and environmental canalization of yeast gene

expression [49] as well as phenotypes [50]. More importantly,

they showed that ‘capacitors’ (canalization genes) are more likely

to be network hubs [50], like the FT gene in this study. While these

previous studies focus on artificial gene knockouts, here we provide

an example of trait canalization from natural variation for

ecologically important traits.

Different from other modeling studies, in this study our example

of the threshold hypothesis separates the growth chambers into

three categories (flowering promoting, slightly inhibitory, and

strongly inhibitory) instead of by specific environmental factors

(day length, ambient temperature, or vernalization length). For

flowering time, pathways responding to different environmental

signals converge at floral signal integrator genes such as FT, the

current focus of the threshold hypothesis, and therefore it is more

straightforward to classify environments based on their effect on

flowering promotion (the horizontal axis in Figure 3). This is

analogous to studies that classify research sites by their effect on

plant growth or crop yield [51] and allows modeling flowering

time variation without addition information on the expression of

upstream genes. We recognize that the threshold hypothesis

represents a simplification of the underlying continuous biological

process into a qualitative factor (whether plants flower in the first

season or not), and future work may explicitly consider the effect of

individual environmental factors to allow detailed quantitative

modeling of flowering time.

nFT controls univariate trait genetic variance
The link between epistasis and genetic canalization of flowering

time has been established in the model plant Arabidopsis thaliana.

Stinchcombe et al. [52] observed that the latitudinal cline in

flowering time only exists in genotypes with the wild-type

functional allele of FRIGIDA but not for the deletion allele

(FRID), and the flowering time of accessions bearing the deletion

allele is canalized. This canalization effect is caused by epistasis

between FRIGIDA and FLC [37], where the canalizing FRID

allele suppressed the effect between different alleles of FLC.

Similarly, in our study we identified nFT as the canalization locus

and demonstrated the epistatic effects in the HIF experiment,

where the different nFT genotypes alter the phenotypic effect of

different genomic backgrounds (specific allelic combinations of

other flowering genes). In addition, as in other cases of

canalization genes [29], we also find that nFT’s canalization effect

depends on the environment.

The adaptive value of canalization has received considerable

attention [5,6]. Theoretical analyses have modeled the conditions

under which canalization will evolve [17,53,54] (but see [48–50]),

and empirical studies in Drosophila have shown that traits with

higher fitness effects have greater canalization [55,56]. Rutherford

et al. [29] suggested that the wild-type canalizing allele of Hsp90
gene in Drosophila may be favored because it buffers against

potentially unfit background genetic variation. On the other hand,

the non-canalizing allele might be favored when a trait is under

directional or disruptive selection. Under both scenarios, however,

the allelic polymorphism in canalization genes will be eliminated if

trait canalization is universally favored or disfavored by natural

selection. Our results provide a mechanism where the polymor-

phism of canalization genes can be maintained. Because which

nFT genotype has the canalization effect depends on specific

environments, different genotypes may be favored under distinct

environments even with consistent natural selection for or against

trait canalization, beyond mutation-selection balance [17]. For

example, if natural selection favors flowering time canalization, in

populations under 12 hour days 18uC the Montana genotype

would be favored, and the Colorado genotype would be favored

under 16 hour days 25uC because they are the canalization

genotypes in these respective environments.

The environmental dependence of nFT canalization may also

maintain the molecular polymorphism of other flowering genes in

the genome. Canalization may change the selective influence on

other genes by suppressing the genetic variation expressed in traits

Figure 8. Reaction norms showing the nFT by genomic
background epistatic effects for expression level of the FT
transcript. Lines represent the two HIFs and connect the Montana and
Colorado nFT genotypes within each family (mean 61 SE). Epistasis is
signified by the difference in line slopes. Capital letters show the
contrast between all four nFT genotype – HIF combinations, and FT
gene has significantly higher expression in the nFT Colorado genotype
with HIF 98A genomic background.
doi:10.1371/journal.pgen.1004727.g008
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[18,57]. In the case of heat shock protein 90 (Hsp90), the wild type

allele buffers the phenotypic effect of potentially deleterious

mutations in the genome, thereby reducing the force of purifying

selection on these mutations [29,44]. The accumulation of cryptic

molecular variation in the genome may provide additional

evolutionary potential [18] once the canalization effect is

disrupted. The case of Boechera stricta flowering time, however,

may be more complex due to the nFT by environment interaction

effect on canalization. Even if the selection force on flowering time

is identical across populations, other flowering loci in the genome

may still be subject to different types and magnitude of natural

selection depending on local environment and nFT genotype.

Such variation in selection may in turn influence the molecular

polymorphism of other flowering time genes.

In this study, flowering time was defined as the days elapsed

since initial vernalization, excluding the duration of the second

vernalization for plants that did not flower in the first growing

season. Since the time of vernalization simulated ‘winter’

conditions with little plant growth, this approach quantifies the

number of growing-season days the plants experienced before first

flowering. Our results and the threshold hypothesis suggest that

the canalization effect primarily reflects whether plants flowered in

the first growing season, and therefore this approach captures both

the variance between and within seasons. In addition to flowering

time, the nFT locus also influenced the (co)variance of ‘leaf

number when flowering’, a well-defined quantitative trait often

used as an indicator of the reproductive phenology. We therefore

think these phenological traits reflect important underlying

biological processes.

nFT controls multivariate trait covariation
The covariance structure among multiple traits (G matrix)

indicates the magnitude of potential genetic constraints and can

have profound effect on the magnitude and direction of trait

evolution under selection [3,58–60]. While many methodological

and empirical studies have compared the G matrix evolution

among evolutionary lineages [e.g., 3], only a few studies have

investigated the genetic mechanism or identified the genomic

regions responsible for this G matrix difference. In Arabidopsis,
Stinchcombe et al. [61] found that two alleles of the ERECTA
gene confer different structure of the G matrix among four traits.

In mice, Wolf et al. [62] also identified significant epistatic

pleiotropy effects of QTL on the covariance between traits. Both

examples investigated the change of covariance structure caused

by candidate loci, and to our knowledge, our study may be one of

the first attempts at genome-wide mapping of QTL altering the

covariance structure among multiple traits.

In addition to canalization in single traits, we have identified

nFT as the major QTL altering the genetic covariance structure in

both multivariate trait combinations: 1) between different traits in

the same environment (indicating the magnitude of genetic

constraint), and 2) the same trait between different environments

(indicating the magnitude of GxE, the genotype-by-environment

interaction component of plasticity). This supports the idea that

genetic constraint and plasticity are related concepts [63] and can

be connected by trait- or environment-dependent canalization:

When one trait is canalized but another is not, the magnitudes of

genetic constraint or GxE are altered [55]. For example,

considering the relationship between flowering time and leaf

number at flowering under 16 hour days, 25uC, 4 week

vernalization, the nFT Colorado genotypes canalize flowering

time, but there is no nFT canalization effect for leaf number

(Figure 5). This changes the orientation of covariance structure by

,35u. For GxE, the nFT Montana genotype canalizes flowering

time in 12 hour days, 18uC, 4 week vernalization, and the

Colorado genotype canalizes flowering time in 16 hour days,

25uC, 4 week vernalization. This leads to a significant difference in

the orientation of the G matrices for the two nFT genotypes

(,59u, Figure 6, row 1, column 5). Therefore, it is helpful to view

the multi-trait covariance structure as a multivariate extension of

single-trait variance, and our result supports the idea that the

change of magnitude in genetic constraint or GxE may be a

consequence of trait- or environment-dependent canalization

effects [64]. Our results also suggest that, in a threshold-like gene

regulation system, the change of trait genetic covariance structure

may be achieved simply by the shift of the gene activation

threshold (Figures 3 and S9).

As described in the Introduction, plasticity consists of VE and

VGxE. In this study we showed that the nFT QTL altered the

magnitude of VGxE. It is also possible that genetic mechanisms

altering VE exist. With this genetic mechanism (here termed

macro-environmental canalization, as opposed to micro-environ-

mental canalization which concerns Ve, the variance from

stochastic noise), one genotype of the QTL may exhibit similar

phenotypes across diverse environments while the other genotype

has varying phenotypes. While we did not specifically map for this

macro-environmental canalization, the genetic mechanism alter-

ing VE may also be realized from the threshold hypothesis

(Figure 3): consider the flowering time under two hypothetical

environments, one strongly promotes flowering (‘ENV1’ hereafter:

all genomic backgrounds generate signal above the Colorado

threshold – all dots are white in Figure 3) and the other has effect

between ‘slightly inhibiting’ and ‘strongly inhibiting’ (‘ENV2’

hereafter: all genomic backgrounds generate input signal above

Montana but below the Colorado threshold – all dots are grey in

Figure 3). Given the low threshold of the FT Montana genotype,

all genomic backgrounds flower in both environments, and the VE

for the Montana genotype is low. For the Colorado genotype,

however, all genomic backgrounds flower under ENV1 but none

flowers in ENV2, and VE is large for the Colorado genotype.

Therefore, although in terms of upstream input signals the VE

stays the same regardless of FT genotypes, for flowering time FT
may control macro-environmental canalization due to the

threshold-type reaction to upstream signals. This also suggests

that environment-dependent genetic canalization, macro-environ-

mental canalization, and the alteration of the magnitude in GxE

may represent different viewpoints of the same concept.

HIF experiment and the effect of nFT
Results from the HIF experiment show strong nFT by genomic

background epistatic effects on phenological traits and on

expression of the FT locus, demonstrating: 1) nFT’s role as an

epistatic modifier of other flowering genes and 2) the effect of other

flowering genes (different HIF genomic background) on gene

expression of the FT locus itself, a network hub integrating signals

from upstream genes in the flowering time pathway. These

observations are consistent with the ‘threshold hypothesis’

illustrating how flowering pathway function can generate epistasis

between FT and other flowering genes (Figure 3) and also echo

studies with gene by genomic background epistatic effects in the

flowering time pathway of Arabidopsis [65]. Unlike the strong and

direct epistatic relationship between Arabidopsis flowering genes

FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) [37,66], FT
responds to the combined effect of multiple upstream pathways,

and the one-to-one epistasis between nFT and individual flowering

time loci may be too weak to be detected by our previous [25] or

current study (Table S3). Our novel algorithm to map (co)variance

QTL therefore serves as a valuable alternative to standard

Genetic Control of Trait (Co)variance through Epistasis
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pairwise searches for epistasis, paralleling recent developments in

human genetics [15,67]. In the flowering time of B. stricta, this

epistatic relationship between nFT and genomic background has

been supported by our HIF experiment.

In this study we employed a linkage mapping approach to map

(co)variance QTL, and the issue of sample size and statistical

power may be a limitation [68–70]. We recognize that the

experimental design may not have sufficient power to detect all

QTL, especially those with minor effects. This limitation, however,

does not affect the significant functional variation at nFT.

Although it might be possible that the nFT QTL’s effect on trait

mean, variance, and covariance structure are effects of several

closely linked genes, our threshold hypothesis and following HIF

experiments both suggest that the FT gene may exhibit these

pleiotropic effects: being a floral signal integrator, the two FT
alleles may influence trait means due to different thresholds for

activation by upstream signals (which predicts and is supported by

our results that the two alleles vary in gene regulation patterns

instead of amino acid substitutions). Such threshold differences

may interact with various genomic backgrounds or environmental

stimuli and thus alter the pattern of trait (co)variation (see Results

and Figure 3). Further, it is not uncommon that genes or QTL can

simultaneously control trait means and (co)variances, as previous

studies mapping canalization loci have identified QTL or genes

known to control trait means [7–10], and a recent study has shown

strong genetic correlation between developmental instability

(environmental canalization) and phenotypic plasticity [71]. Taken

together, these results suggest that, at least in traits with major

signal integrators such as flowering time, the control of trait

means, (co)variances, and genotype-by-environment interaction

may have a similar genetic basis.

Materials and Methods

Recombinant inbred line (RIL) data
All RIL data were obtained from our previous study [25].

Briefly, a cross was made between one genotype from Montana

and one from Colorado [72], and F6 RIL were generated through

self-pollination and single seed decent. From each family, one F6

individual was genotyped at 164 polymorphic molecular markers,

with an average spacing of 5.5 cM between neighboring markers.

The F6 RILs were predominantly homozygous (95.9%). Hetero-

zygous genotype calls in any marker of any family were treated as

missing data.

In the previous study, we measured flowering time and leaf

number at flowering (N = 5 individuals/RIL/treatment and

N = 35 individuals/parental line/treatment) in six distinct envi-

ronments, composed of two vernalization lengths (four or six

weeks) at 4uC and three growth conditions (12 hour days 18uC,

16 hour days 18uC, and 16 hour days 25uC). In this study, we

analyze family mean trait values for the 178 RIL and 2 parental

lines obtained from the previous study [25]. The growth chamber

experiments consisted of two growing seasons. Individuals that had

not flowered within 180 days after the first vernalization were

subject to another 6-week vernalization. In addition, during the

second growing season, plants from the 16 hour days 25uC
chambers were moved to 16 hour days 18uC [25]. Two traits from

each growing condition were used in this study: flowering time and

leaf number at the time of first flowering. Flowering time is defined

as the number of elapsed days since the end of the first

vernalization, and the 6-week period of the second vernalization

was excluded from the flowering time estimation. All traits were

standardized to a mean of zero and standard deviation of one

before further analysis.

QTL controlling variance of single traits
For each genetic marker, we used the Brown-Forsythe test, a

modification of Levene’s test based on median, to estimate the

difference in trait variance between the Colorado homozygote and

the Montana homozygote at markers across the genome. This

approach is similar to Shen et al. [8] and can detect QTL

responsible for genetic canalization. We determined the statistical

significance by the genome-wide permutation method of Churchill

and Doerge [73]. One thousand permuted datasets were

generated by randomizing trait values with respect to marker

genotypes. The marker-trait relationship was randomized, but the

genotype vector and the trait vector for each individual were not

altered. From each permuted data set, the Brown-Forsythe statistic

was calculated at each genetic marker, and the genome-wide

maximum Brown-Forsythe value was recorded, providing a

genome-wide null probability distribution. The P-value of the

Brown-Forsythe statistics for each marker in the observed data was

obtained by comparing this value to the null distribution of

Brown-Forsythe values from the 1,000 randomized datasets. Our

genome-wide permutation procedure provides a straightforward

control for multiple tests across all markers and is also robust to

violations of the assumption of multivariate normality. The

estimation of variance and covariance, however, may be limited

by small sample size, perhaps resulting from missing data or

segregation distortion. To prevent possible bias, we therefore

excluded six markers with minor allele frequency less than 0.33. All

computations were performed in R (http://www.r-project.org/)

using scripts available upon request from CL.

Considering the effect of a QTL, the total trait variation (Vp)

can be decomposed into:

Vp~VmzVvzVr

where Vm is the variation explained by the difference in mean of

the two homozygous genotypes, Vv is the variation explained by

the difference in variance of the two genotypes, and Vr is residual

variance arising from other sources [8]. For each significant QTL,

we calculated the proportion of variation explained by Vm and Vv,

following previously published equations designed for populations

with two homozygous genotypes in each SNP [8]:

Vm~pq mCO{mMTð Þ2

Vv~pq sCO{sMTð Þ2

where p and q are the genotype frequencies of the Colorado and

Montana homozygotes, respectively. mCO and mMT are the mean,

and sCO and sMT represent the standard deviation of the

Colorado and Montana homozygotes.

QTL controlling the structure of covariance matrix
among multiple traits

Here we aim to map QTL altering the covariance structure of

three groups of traits: 1) flowering time and plant size at flowering

(number of leaves) in all six environments (G matrix with 12 traits);

2) flowering time in all environments (G matrix of six traits); 3)

plant leaf number at flowering in all environments (G matrix with

six traits). We further mapped QTL changing the covariance

structure between flowering time and plant size at flowering

separately for each environment (representing the magnitude of

genetic constraint) and between the same trait in pairs of different

environments (representing the magnitude of the genotype-by-

environment interaction component of plasticity, GxE). Among
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the multiple ways to model plasticity (reviewed in [20,74], here

following Falconer [21]), we treat the same trait in distinct

environments as separate traits and model their covariance

structure. We choose this definition because this view generalizes

both GxE and genetic constraint into the relationship among

traits, allowing the use of established methods for G matrix

comparisons.

For each molecular marker, we separated the data into two

groups of homozygous genotypes. Two separate (co)variance

matrices (G matrices) were estimated, and we assessed the QTL

effect by comparing the G matrices via three methods: 1) Box’s M

statistics; 2) the angle between Gmax; 3) the Krzanowski index.

Statistical significance is determined by the genome-wide permu-

tation algorithm described above. We acknowledge that the

covariance matrix estimated from family means may not be

identical to the genetic covariance matrix estimated from

individual-level mixed-model MANOVA. This simplification,

however, was necessary to ensure computational feasibility since

the G matrices needed to be calculated twice (one for each

homozygous genotype of a marker) for ,160 markers for each of

the 1,000 permuted data sets.

Box’s M statistic [31] compares the difference between the trace

of multiple covariance matrices and the trace of their pooled

covariance matrix:

M~N ln S{
Xg

i~1

Vi ln Si,

where g is the number of matrices to be compared (two in our

case), Vi is the degrees of freedom, and Si is the trace of the i-th
matrix. N, the overall degrees of freedom, is the sum of all Vi

values. The trace, S, of the pooled covariance matrix is:

S~
Xg

i~1

ViSi=N

Since the trace of a covariance matrix is the sum of its diagonal

elements and is equal to the sum of eigenvalues from its principal

components, the Box’s M value could be interpreted as the

difference between the multivariate volumes occupied by different

covariance matrices. In our case, the Box’s M method compares

the overall size of G matrices from the two genotypes at each

genetic marker. Traditionally the significance is determined by an

F-test and is sensitive to deviations from multivariate normality,

but our genome-wide permutation procedure alleviates this

parametric distributional requirement.

Two covariance matrices could differ not only in size but also in

their orientation. We used two methods to compare the

orientation between G matrices [32,75]. To estimate the radian

angle between the respective Gmax (first principal component), we

first calculated the angle between the first eigenvector, u and v, of

the two G matrices respectively:

h~cos{1 u:vffiffiffiffiffiffiffi
u:u
p ffiffiffiffiffiffi

v:v
p ,

where the dot symbol calculates the dot product between vectors.

Since eigenvectors are directional, h may be larger than p/2 (90

degrees, the maximum possible angular difference between two

non-directional axes). Therefore if h is larger than p/2, the radian

angle between Gmax is calculated as p - h, otherwise the angle

equals h. This method estimates the angular difference between

the respective axes with most variation in each G matrix.

The Gmax method, however, has a caveat that when G matrices

have many dimensions (traits), other principal components may

carry substantial amounts of variation, and comparing Gmax may

not be sufficient [32]. Therefore, we employed the method of

Krzanowski [33], which has also been used in recent studies [32].

In brief, this method compares the k-dimensional subspace

between two G matrices, where k is less than or equal to half of

the dimension of the original G matrix. For example, in a data set

with 10 traits, we estimated the degree of similarity between two

subspaces formed by the first five eigenvectors of two G matrices.

Similar to the Gmax method above, each eigenvector w that will be

used in the analysis was first standardized by the square root of its

dot product:

w=
ffiffiffiffiffiffiffiffi
w:w
p

The ‘matrix of similarity’ (S) then is calculated as:

S~AT BBT A,

where A and B are matrices containing the first five standardized

eigenvectors of the two respective G matrices, and superscript T

denotes matrix transpose. As in other studies [32], we used the

sum of eigenvalues of this S matrix (the Krzanowski index) as a

measure of overall similarity between the two subspaces. This

index ranges from 0 to 5 in our example of 10 traits, with 0

signifying non-overlap and 5 indicating total overlap between

subspaces. For our purpose of mapping QTL whose different

genotypes confer the most dissimilar G matrices, we compared the

negative Krzanowski index of each marker to the 1,000 maximum

negative Krzanowski indexes from permutation.

In summary, while the Gmax and Krzanowski methods compare

the orientation of linear relationship among traits, Box’s M tests

the dispersion of points from this linear relationship. All mapping

algorithms were written in R (http://www.r-project.org/). When

only two traits are involved, the angle between Gmax captures all

the difference in orientation between G matrices, and therefore

the Krzanowski method is not necessary.

Heterogeneous inbred family phenotypic experiment
To test the existence of epistasis as predicted by the threshold

hypothesis, we performed analysis of variance for the interaction

effect between nFT and other flowering time QTL identified in

the same growth chambers from our previous study [25]. The

epistatic effects of other QTL were tested separately, using

flowering time as response and nFT, the other QTL, and their

interaction as fixed-effect predictor variables in each model.

We generated four heterogeneous inbred families (HIFs, Figure

S8) to test the epistatic effect between nFT and genomic

background (the cumulative effect of other genes in the genome).

Based on the genotype data in the F6 generation [25] we identified

four F5 parents heterozygous at nFT and mostly homozygous at

other markers. From each F5 parent we planted approximately

250 seeds, which are self-full siblings of the original genotyped F6

individual in Anderson et al. [25] (N = 1097 plants total from four

F5 parents). We genotyped the microsatellite marker C02 [,5 cM

from the FT gene,25] in all plants and collected seeds from those

that were homozygous at C02. Seeds from the same F6 individual

(a ‘family’ hereafter) have virtually identical genomic composition.

All plants within the same HIF are nearly identical in other

genomic regions but segregate for two nFT homozygous

genotypes. With four HIFs that are different in genomic

background, the interaction between nFT genotype and HIF
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(genomic background) provides a statistical test for epistatic effects

on phenology.

The HIF experiment was conducted in the Duke University

Greenhouse rather than in multiple growth chamber environ-

ments as in the RIL experiment. To provide independent

replication for each homozygous nFT genotype, we selected at

least 20 homozygous families from each HIF (24 families from HIF

3A; 22 families from HIF 89A; 23 families from HIF 98A; and 20

families from HIF 105A), for a total of 89 families. In November

2011 we place 10–15 seeds from each of the 89 families on moist

filter paper in petri dishes in dark conditions at ambient

temperature for 3 weeks until germination. As in other B. stricta
greenhouse experiments [76], seedlings were then planted in Ray

Leach SC10 ‘Cone-tainers’ (21 cm in depth and 3.8 cm in

diameter, Stuewe & Sons Inc., Tangent, OR, USA), with the

lower 80% of each Cone-tainer filled with Fafard 4P Mix soil

(Conrad Fafard, Agawam, MA, USA) and top 20% with

Sunshine MVP soil (Sun Gro Horticulture, Vancouver, BC,

Canada). Greenhouse conditions were as follows: 16-hour days (6

AM to 10 PM), diurnal temperature of 18–21uC, and nocturnal

temperature of 13–16uC. We used a random number generator

to assign seedlings to distinct positions in 9 blocks, each

containing 91–96 plants. Each block included individuals from

all HIFs and most families from each HIF (In some cases, a family

did not have enough siblings to be represented in each block).

The blocks were rotated around a greenhouse bench once a week

to minimize the effects of environmental gradients in the

greenhouse.

In January 2012, all rosettes were vernalized at 4uC for 8

weeks. Plants were removed from vernalization on 29 February

2012, at which point we monitored them 7 days/week and

recorded the date of first flowering as well as the number of leaves

and plant height at first flowering. By April 23, 2012, we had

collected phenological data from 8–10 full siblings per family

(N = 785 F7 individuals flowered successfully). No individuals

flowered after that date. Relevant data are available in Dataset

S1.

Statistical analysis was performed with REML mixed-model

ANOVA (Proc Mixed, SAS 9.3, SAS, Cary, NC). We first

conducted a multivariate ANOVA (MANOVA) to address how

the three response variables (day of first flowering, plant height

and number of leaves at flowering) varied with HIF (3A/89A/

98A/105A), nFT genotype (Montana/Colorado homozygote),

and nFT by HIF interaction (all are fixed effects). We incorporated

‘family’ (nested within nFT homozygote, cross-classified with HIF)

and block as random effects. We then conducted univariate

ANOVA for each response variable with the same statistical

model.

FT gene expression in HIF
The contrasting canalization effect of the nFT locus in different

environments suggests a three way interaction of the major QTL

(nFT) by genomic background (the combination of other

flowering-related genes) by environment conditions, and the

interaction between nFT and genomic background on phenolog-

ical traits is tested in the HIF experiment. The nFT locus contains

the ortholog of the FT gene in Arabidopsis (AT1G65480). FT
serves as a major hub for integrating upstream signals of flowering,

and its expression often correlates with the onset of flowering [30].

If the variation in the FT gene in Boechera stricta is responsible for

the differential canalization effect of the nFT QTL in our

Montana by Colorado cross, its expression pattern should vary

depending on the nFT genotype and genomic background. We

therefore test the expression pattern of FT in the same HIF

experimental design.

Two HIFs (HIF 89A and HIF 98A) were used in this

experiment. Within each HIF we obtained five families from each

homozygous nFT genotype for a total of 20 families. Forty

experimental plants (two individuals from each family) were

completely randomized, and all planting procedures and green-

house environmental settings were as above. Rosettes were grown

in the Duke greenhouse for 12 weeks and stratified at 4uC for 8

weeks. In Arabidopsis, FT mainly expresses in leaves, where

protein translation happens, and the proteins are transferred to

floral meristems [77]. We therefore collected one young leaf from

each plant four weeks after vernalization ended. FT in Arabidopsis
exhibits circadian rhythm in gene expression, and under 16-hour

days, its maximum expression is in the end of daytime [78–80].

We therefore collected leaves from all 40 experimental plants

around 10 pm, when the 16-hour Duke greenhouse days end.

Leaves were immediately flash frozen in liquid nitrogen and stored

at 280uC. RNA was extracted with Sigma Spectrum Plant Total

RNA Kit, and cDNA was synthesized with Thermo Scientific

DyNAmo cDNA Synthesis Kit. Two samples failed during the

RNA extraction and cDNA synthesis steps, leaving 38 samples in

total.

Our partial genomic sequencing shows that there may be more

than one FT gene copy in Boechera stricta (Joint Genome Institute

and Mitchell-Olds lab, unpublished). Therefore, we cloned and

sequenced FT full-length coding sequences from both parents.

Only one copy is expressed, and both parents have the same

expressing copy with identical coding region sequences (KJ576855

and KJ576856 in GenBank, where the Montana genotype is

denoted as ‘LTM’ and Colorado genotype as ‘SAD12’). All primer

sequences are available in Table S4. FT gene expression was

measured by quantitative PCR (qPCR) with Thermo Scientific

DyNAmo SYBR Green qPCR Kits. Following previous experi-

ments [81], the ACTIN2 gene (ACT2) is used as reference gene,

and FT expression level for each of the 38 samples was calculated

as:

DCt~CTACT2{CtFT ,

where CtACT2 is the Ct value in qPCR of the reference gene

ACTIN2, and CtFT is the Ct value of FT. Since within each

sample the Ct value of FT is always larger (i.e., the signal is lower)

than ACT2, DCt is always negative, and larger DCt represents

higher FT gene expression. The relative qPCR signal of FT to

ACT2 can be calculated as 2DCt. This 2DCt value, however, has a

skewed distribution among samples. Since log transformation of

2DCt yields a value that is proportional to DCt, we used the original

DCt as the response variable for statistical analysis. Relevant data

are available in Dataset S2.

Statistical analysis was performed as in the HIF phenotypic

experiment, where nFT genotype, HIF, and nFT by HIF

interaction were treated as fixed effects, and family was treated

as a random effect nested within nFT and HIF. All 40 plants were

grown in the same block, so no block effect exists for this

experiment. To further test if FT expression in Boechera stricta is

related with flowering, we recorded whether each of the 40

experimental plants had visible flowering buds during the time of

leaf-tissue collection. The analysis incorporates DCt as the

response variable, and the phenological indicator ‘whether a plant

has visible bud’ as a fixed-effect categorical predictor, and family

as random-effect predictor variable.
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Supporting Information

Figure S1 QTL controlling the variance of phenological traits in

growth chamber environments. Each row represents a trait in one

environment. The six upper rows are flowering time, and the six

lower rows are leaf number when flowering in six different

environments. Texts beside each row represent the environment

and trait. For example, ‘12 H, 18 C, 4 W, FT’ refers to flowering

time under 12 hour days, 18 degree C, and 4 weeks of

vernalization, and ‘16 H, 25 C, 6W, LN’ refers to leaf number

under 16 hour days, 25 degree C, and 6 weeks of vernalization.

Each column represents a genetic marker on the linkage map, and

chromosomes are separated by vertical white lines. Black cells

represent markers significantly controlling the variance of a trait,

whereas dark grey cells are non-significant markers. Light grey

cells are markers that are excluded due to segregation distortion

(see main text).

(PDF)

Figure S2 Flowering time distributions of families with the

Montana (red bars) or Colorado (blue bars) homozygous genotypes

of two QTL (BST031941 and Bst004238) in the environment with

16 hour days, 25uC, and 4 weeks of vernalization. Above each

graph, horizontal bars denote the mean plus or minus one

standard deviation for each allele, numbers on the left denote

percent of total variation explained by the difference in variance of

the two alleles, and asterisks on the right denote genome-wide

significance of the difference in variance. * P, = 0.05, ** P,

= 0.01, *** P, = 0.001.

(PDF)

Figure S3 ‘Leaf number when flowering’ distributions of families

with the Montana (red bars) or Colorado (blue bars) homozygous

genotypes of nFT locus in six environments. Panels in a column

have the same ambient environment: first column – 12 hour days

18uC, second column – 16 hour days 18uC, third column –

16 hour days 25uC. Panels in a row have the same vernalization

treatment: first row – 4 week vernalization, second row – 6 week

vernalization. Vertical dashed lines (180 days) separate the two

growing seasons in each environment. Above each graph,

horizontal bars denote the mean plus or minus one standard

deviation for each allele, numbers on the left denote percent of

total variation explained by the difference in variance of the two

alleles, and asterisks on the right denote genome-wide significance

of the difference in variance. * P, = 0.05, ** P, = 0.01, *** P,

= 0.001.

(PDF)

Figure S4 QTL controlling the covariance structure of pheno-

logical traits in growth chamber environments. Each row

represents a statistical method on a group of traits across several

environments. For example, ‘Box’s M, all traits’ represents the

results of Box’s M method on flowering time and leaf number from

all six environments (12 traits total), and ‘Krzanowski, leaf

number’ represents results of Krzanowski method on leaf number

in six environments. Each column represents a genetic marker on

the linkage map, and chromosomes are separated by vertical white

lines. Black cells represent markers significantly controlling the

covariance of a group of traits, whereas dark grey cells are non-

significant markers. Light grey cells are markers that are excluded

due to segregation distortion (see main text).

(PDF)

Figure S5 The effect of QTL BST031941 on the structure of

covariance matrix among standardized flowering time in all

environments. Each dot represents the trait value of one

recombinant inbred family, and an ellipse represents the 95%

confidence region of the covariance matrix defined by an allele.

Montana allele: black dots and solid ellipse. Colorado allele: white

dots and dashed ellipse.

(PDF)

Figure S6 The effect of QTL BST031941 on the structure of

covariance matrix between standardized flowering time and leaf

number when flowering in each of the six environments. Asterisks

on the upper right of each graph denote genome-wide significance

for the Box’s M method (ellipse size), and asterisks on the upper

left of each graph denote significance for the Gmax angle method

(ellipse orientation). Montana allele: red dots and ellipse. Colorado

allele: blue dots and ellipse. ** P, = 0.01, *** P, = 0.001.

(PDF)

Figure S7 The effect of QTL BST031941 on the plasticity of

standardized phenological traits. Each graph shows the relation-

ship of the same trait (above the diagonal – flowering time; below

the diagonal – leaf number when flowering) between pairs of

environments. Montana allele: red dots and ellipse. Colorado

allele: blue dots and ellipse. In each graph, asterisks in the upper

right denote genome-wide significance for the Box’s M method

(ellipse size), and asterisks on the upper left denote genome-wide

significance for the Gmax angle method (ellipse orientation). * P,

= 0.05, ** P, = 0.01, *** P, = 0.001.

(PDF)

Figure S8 Generation of Heterogeneous Inbred Family (HIF)

for the nFT locus. Shown are examples of two HIF. Each HIF was

generated from one F5 parent that is almost homozygous across

the genome but heterozygous for the nFT locus. The F5 plant is

self-fertilized to generate many F6 plants, and all of them are

genotyped for nFT. The F6 plants that are homozygous for nFT
are self-fertilized to generate F7 plants for the experiments. All F7

siblings from the same F6 parent are nearly clones to each other,

and all F7 plants within a HIF are almost identical in the genome

but segregating for two homozygous nFT genotypes. Different

HIF differ in genomic background, therefore allowing the test for

nFT by genomic background interaction effect.

(PDF)

Figure S9 The threshold hypothesis is related with the sigmoid

model of gene regulation. In a sigmoid model y = 1/(1+exp(a *

(2x+b))), x is the upstream input signal from different genomic

backgrounds or environments (horizontal axes in panel A, B, and

C, which is identical to the vertical axis of Figure 3), y is the

probability of FT expression (vertical axes in panel A and B), a
determines the width of the log phase in the sigmoid curve, and b
determines the x coordinates where the log phase is centered. The

sigmoid model approximates the threshold hypothesis when the

value of parameter a becomes larger, which makes the log phase

narrower and finally converge at coordinate b, the threshold. The

sigmoid function of the Colorado (panel A) and the Montana

(panel B) genotypes of FT simply differ in their threshold, the value

of parameter b and b9 as marked by the vertical dashed blue and

red lines. Panel C is similar to Figure 3.

(PDF)

Table S1 Pairwise genetic correlations (upper diagonal) and the

P values (lower diagonal) between 12 phenological traits in this

study.

(DOCX)

Table S2 Trait loadings on the first two principal components

for all traits, flowering time traits, and leaf number traits shown in

Figure 4.

(DOCX)
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Table S3 Statistical tests of the interaction effect (epistasis)

between nFT and other flowering-time QTL identified in a

previous study.

(DOCX)

Table S4 Primer sequences used in this study.

(DOCX)

Dataset S1 Data for the greenhouse experiment for nFT by HIF

effect on phenological traits. Block: Experimental blocks, as

categorical random effect; Flowering_time: Days of first flowering

after vernalization, as numeric response variable; Leaf_number_

at_flowering: Leaf number when flowering, as numeric response

variable; Height_at_flowering: Plant height at flowering (cm), as

numeric response variable; nFT_genotype: The genotype at the

C02 microsatellite locus near nFT QTL, as categorical fixed effect;

HIF: HIF family, as categorical fixed effect; Family: The F6

individuals those experimental F7 plants were descended from, as

categorical random effect nested within HIF and nFT_genotype.

(TXT)

Dataset S2 Data for the greenhouse experiment for nFT by HIF

effect on FT gene expression. Plant_ID: ID of individual plants;

HIF: HIF family, as categorical fixed effect; Family: The F6

individuals those experimental F7 plants were descended from, as

categorical random effect nested within HIF and nFT_genotype;

nFT_genotype: The genotype at the C02 microsatellite locus near

nFT QTL, as categorical fixed effect; Visible_bud: Whether the

individual plant has visible flowering buds at the time of tissue

collection; delta_Ct: Ct value of ACT2 minus FT.

(TXT)
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