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Abstract: Prostate cancer (PCa) is the leading cause of cancer death in men, and its treatment is
commonly associated with severe adverse effects. Thus, new treatment modalities are required. In
this context, natural compounds have been widely explored for their anti-PCa properties. Aquatic
organisms contain numerous potential medications. Anticancer peptides are less toxic to normal
cells and provide an efficacious treatment approach via multiple mechanisms, including altered cell
viability, apoptosis, cell migration/invasion, suppression of angiogenesis and microtubule balance
disturbances. This review sheds light on marine peptides as efficacious and safe therapeutic agents
for PCa.
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1. Introduction

Prostate cancer (PCa) is one of the most often diagnosed cancers worldwide. It is the
second leading source of cancer-related mortality in males, trailing behind only lung cancer,
based on GLOBOCAN 2020 estimates [1]. Radiation and surgical procedures are used to
treat this disease when it first appears and is localized. Despite a considerable increase
in disease-free life following first surgical or radiation therapy, the illness recurs in more
than 30% of patients. Androgen deprivation treatment (ADT) is the most often alternative
for PCa treatment, because of the tumor’s requirement for male hormones for progression.
This treatment is focused on pharmacological castration achieved via GnRH agonists alone
or in conjunction with anti-androgens. However, despite an excellent initial response, most
patients relapse within 2–3 years, and the tumor advances. Chemotherapeutic drugs, such
as docetaxel, cabazitaxel, doxorubicin, abiraterone and enzalutamide, provide a few months
of progression-free survival with highly toxic effects. Therefore, the development and
refinement of unique anticancer drugs with minimal adverse side effects are required [2,3].

Natural products provide benefits over synthetic compounds because of their broader
variety of targets, larger structural diversity and low toxicity against PCa [4,5]. Many
bioactive substances found in the marine ecosystem have potential applications in the
treatment of human diseases including cancer. A large number of novel sea-based biological
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compounds have been derived from corals, sponges, tunicates, bacteria, fungi, micro-
and macroalgae, and other marine micro- and macro-organisms. Treatments have been
impacted by marine-based medicines, with anticancer treatments made available with
several marine chemical compounds. Indeed, clinical approval has been granted for
several such treatments, including belantamabmafodotin, cytarabine, enfortumabvedotin,
brentuximab vedotin, eribulin mesylate, lurbinectedin, fludarabine phosphate (prodrug
of ara-A), nelarabine (prodrug of ara-G), polatuzumabvedotin, trabectedin, vidarabine,
and plitidepsin [6–9]. Improvement in the physiological state of cancer patients depends
on the introduction of natural strategies for clinical treatment. Due to their small size,
ease of synthesis, capacity to cross cell membranes, low drug–drug interactions, precision
targeting, and reduced side responses, marine peptides have also spurred attention in the
development of anticancer medicines. The downsides of anticancer peptides include their
short half-life, low bioavailability, poor pharmacokinetics, and protease sensitivity [10–12].
A schematic representation of the pathophysiology of prostate cancer is shown in Figure 1.
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ways. Different subunits like Toll-like receptor (TLR); tumor necrosis factor receptor (TNF-R); In-
hibitor of NF-κB (IκB); IκB kinase; NF-κB-inducing kinase (NIK); mitogen-activated protein kinase 
(MAP); androgen receptor (AR); bone marrow-derived cell (BMDC) and major histocompatibility 
complex (MHC) are also involved in the pathology of prostate cancer. 

Figure 1. Pathophysiology of prostate cancer via NF-κB canonical and non-canonical pathways. The
leading dimers of NF-κB are P50-P65, which activate the transcription process in canonical pathways.
Different subunits like Toll-like receptor (TLR); tumor necrosis factor receptor (TNF-R); Inhibitor
of NF-κB (IκB); IκB kinase; NF-κB-inducing kinase (NIK); mitogen-activated protein kinase (MAP);
androgen receptor (AR); bone marrow-derived cell (BMDC) and major histocompatibility complex
(MHC) are also involved in the pathology of prostate cancer.
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Presently, more than 60% of clinically accessible anticancer medications have been
derived from natural sources. Peptides are categorized depending on their ability to induce
antioxidative mechanisms, cytotoxicity, apoptosis, inhibit cell proliferation, migration,
and angiogenesis, microtubule-destabilization, or undiscovered mechanisms in diverse
malignant cell lines, relating to clinical research for cancer treatment evaluation [12,13]. An-
ticancer peptides from algae, ascidians, bacteria, fungi, cyanobacteria, mollusks, sponges,
and protein hydrolysates from clam, coral and fish, have been isolated. Linear and cyclic
peptides are the two types of marine peptides. A straight-chain of amino acids linked
together by amide bonds forms a linear peptide (Figure 2) [7]. HTI-286 [14], SHP [15],
SIO [16] (tripeptides); Microsporin A [17], SCH-P9 and SCH-P10 [18] (tetrapeptides); dolas-
tatin 10 [19], ILYMP [20] (pentapeptides); AAP-H (oligopeptide) [21] are reported from
mollusk, sponges, fish, clam, sea anemone and marine derived fungus. Cyclic tetra, penta,
hepta, octa, dodecapeptides and depsipetides are claimed to have anti-PCa effects. Cyclic
depsipeptides have more complex structures, where successive ester linkages replace more
amide bonds due to the presence of hydroxy acids in the peptide structure [7]. Aurilide
B [22], lagunamide C [23], cryptophycin-52 [24] and coibamide A [25] are obtained from
cyanobacteria. Geodiamolides D–F [26], homophymines A–E [27], jaspamide [28,29] and
neamphamides B–D [30] from sponges are cyclic depsipeptides with anti- cancer effects.
Kahalalide F from (mollusk) [31]; tamandarins A,B (ascidia) [32,33] sansalvamide A (fun-
gus) [34] are other reported anticancer cyclic depsipeptides. Furthermore, microsporin
A (cyclic tetrapeptide) [17], zygosporamide (cyclic pentadepsipeptide) [35] rolloamide
A [36] and trunkamide A (a cyclic heptapeptide) [12,37], patellamides B and F (cyclic
octapeptides) [38] and laxaphycin B (a cyclic dodecapeptide) [39] have been isolated from
ascidia, cyanobacteria, sponge and marine derived fungus. Protein hydrolysates, the com-
plex mixtures of oligopeptides and free amino acids have antioxidant, antiproliferative,
antihypertensive, and antibacterial properties [40–42]. Protein hydrolysates obtain from
mollusk [43], fish [15,16,44,45] and clam [18,20] have anti-PCa properties.

Mar. Drugs 2022, 20, x FOR PEER REVIEW 4 of 17 
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Several physiological and molecular mechanisms are used by marine anticancer pep-
tides, including DNA repair, apoptosis induction, cell-cycle regulation, angiogenesis in-
hibition, migration, invasion, and metastasis suppression (Table 1) [8,46]. This review
emphasizes marine anti-PCa peptides and their significance in the development of novel
anticancer therapeutics.

2. Mechanistic Insights
2.1. Apoptosis

One of the most critical mechanisms of cell death is apoptosis, and its failure is
a severe barrier to cancer therapy. Cytochrome-c (cyt c) release leads to caspases activation
and ensuing apoptosis [47]. C-phycocyanin from cyanobacteria [48] and AAP-H from
sea anemone [21] have shown apoptotic efficacy by initiating cyt c release in DU145
and LNCaP cells. Caspases are the main executors of apoptosis, which are activated
after proteolytic cleavage. Initiator caspases that include caspase-8, -9 and -10 initiate
a regulated and programmed cell death cascade to trigger downstream caspases-3, -6,
and -7 expression [49]. Tachyplesin, a cyclic peptide from horseshoe crab, triggers cyt
c release, increasing caspases-3, -6, -7, -8, and -9 expression in TSU cells with IC50 of
75 µg mL−1 [50]. AAP-H from sea anemone has shown apoptotic efficacy by initiating
cyt c release, enhancing caspases-3 and -9 activity in DU145 cells [21]. Cryptophycin-52
increases caspases-3 and -7 activities in DU145 and LNCaP cells [24]. The chromopeptide
A from Chromobacterium sp. also increases caspase-3 activities and PARP cleavage in PC-3,
DU145 and LNCaP cells [51]. Similarly, protein hydrolysates from clam, such as ILYMP,
SCH-P9 and SCH-P10 [18,20] and MCH from mollusk have shown efficacy in DU145 and
PC-3 [43]. SHP and SIO from fish increase caspase-3 activity in PC-3 and DU145 with IC50s
of 15 and 1 mg mL−1, respectively [15,44,45].

Bcl-2 inhibition and BAX induction represents another method for initiating apop-
tosis [52]. C-phycocyanin induces apoptosis via caspases-3 and -9 activation, increasing
BAX and decreasing Bcl2 and Bcl-xL in human prostate carcinoma DU145 and LNCaP cell
lines with the IC50s in the range of 1-10 pM [48]. When DU145 cancer cells are treated with
AAP-H oligopeptide, Bcl-2 is reduced, an effect related to the increased production of BAX,
with IC50 of 2.298 mM [21]. Similarly, Sepia ink peptides SHP and SIO have been shown to
induce apoptosis in PC-3 and DU145 by upregulating BAX and reducing Bcl-2 [15,44,45].
ILYMP initiates the phosphorylation of Bcl-2 and increases BAX in DU145 cells with IC50 of
11.25 mM [20]. Similarly, SCH-P9 and SCH-P10 from clam [18] and MCH from mollusk
have shown the same behavior in DU145 and PC-3 [43].

PI3K/AKT pathways play a significant role in regulating cell cycle and survival. AKT
inhibitors attenuate the degree of BAK, BAX, and BAD phosphorylation, cause cyt c release,
and activate casp-9 [53]. Decreased PI3K/AKT and ErbB3 levels are involved in cell cycle
arrest as well as BAX and BAK activation [54]. PI3K/AKT and ErbB3 deficiency in PC-3 and
DU145 have been noted upon treatment with Kahalalide F [31,55]. Elisidepsin or Irvalec
(a Kahalalide F synthetic derivative) have been shown to inhibit PI3K/AKT and deplete
ErbB3 in PC-3 and DU145 cells [56,57]. Furthermore, elisidepsin causes cellular swelling,
plasma membrane rupture, and loss of intracellular contents, as well as necrotic cell death in
PC-3 and 22RV1 at IC50s of 0.6M and 0.3M, respectively [58]. p38 mitogen-activated protein
kinases (MAPKs) and Jun N-terminal kinases (JNKs) are activated by microtubule inhibitors,
suggesting this may represent a general stress response to microtubule dysfunction. Cyt
c release is induced by JNK and p38 MAPK activation, which, in turn, triggers caspase
cascades. Activation of JNK and ERK induces mitochondrial-related apoptosis via JNK
signaling and S phase cell cycle arrest via ERK signaling [59,60]. Cryptophycin-52 induces
apoptosis in DU145 and LNCaP cells via caspases-3, -7; JNK, p38 MAPK and ERK activation,
increasing BAX and decreasing Bcl2 and Bcl-xL expression (Figure 3) [24].
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Figure 3. Schematic representation of intracellular apoptosis pathway.

Apoptosis stress involves mitochondrial outer membrane permeabilization via un-
controlled BH3 only proteins. BH-3 only proteins lead to oligomerization of BAK/BAX
multimers. These BAK/BAX multimers within the outer membrane of the mitochondria
form pores that allow cytochrome C release. Released cytochrome C interacts with Apaf-1
and pro-caspase-9 to form the apoptosome. Upon release, mitochondria-derived activa-
tor of caspase (SMAC) Cytochrome C and Omi activate apoptosome from procaspase-9
and cytochrome C. Caspases upon activation results in the cleavage of cellular proteins
that leads to apoptosis. “Activation” is represented by blue arrows, whereas red T-bars
show “inhibition”.

2.2. Antimitotic Effect

Antimitotic drugs function by stabilizing and destabilizing microtubule dynamics, as
well as shifting the balance between tubulin polymerization and depolymerization. The
majority of these drugs act via G2/M phase arrest [61]. Microtubules provide a variety of
critical cellular activities, including chromosomal segregation, cell shape preservation, trans-
port, motility, and organelle distribution. Microtubules, the key components of the mitotic
spindle, play an important role in cell division. Microtubular dynamic disruption arrests
the cell cycle at the metaphase–anaphase transition leading to cell death [62]. Hemiasterlin
and its analogue HTI-286 depolymerize microtubules by disrupting microtubular dynamics
in LNCaP, C4-2, PC-3, PC-3dR cell lines with IC50s in the range of 0.65–4.6 nM. The same
effect has been noted in PC3-MM2, PC-3 and PC-3dR xenografts at 1–1.5 mg/kg i.v. [26,63].
Dolastatin 10 (IC50:0.5 nM) inhibits microtubule assembly in DU145 cells [19]. Analogous
behavior has been observed for Diazonamide A in PC-3 cells with IC50 of 2.3 nM [64].
Cryptophycin-52 (LY355703), a synthetic cryptophycin, inhibits DU145 and LNCaP cell
growth during mitosis by depolymerizing spindle microtubules and alters chromosomal
organization [24]. By attaching to the microtubules, microtubule-stabilizing drugs promote
microtubule polymerization and target the cytoskeleton and spindle apparatus of tumor
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cells, leading to mitotic interruption [62]. Aurilide B has been shown to cause microtubular
destabilization in PC-3 and DU145 carcinoma cell lines with GI50 < 10 nM [22].

2.3. Antimetastatic Activity

Non-caspase proteases (elastase, trypsin and chymotrypsin) are critical regulators of
PCa progression. The PCa metastatic cascade is characterized by a defined chain of steps, be-
ginning with neoangiogenesis or lymphangiogenesis, culminating in the loss of tumor cell
adhesion, local invasion of host stroma, and tumor cell escape into the vasculature or lym-
phatics, and eventually dissemination, extravasation, and colonization of specific metastatic
sites. Proteases secrete angiogenic factors, cell adhesion molecules, breakdown basement
membranes, induce epithelial–mesenchymal transition, participate in extravasation, and
are necessary for metastatic site colonization. Several proteases are increased in tumor
cells, and have specific roles in facilitating various phases of this cascade [65,66]. Trypsin
plays a tumorigenic role in PCa and suppressing trypsin/mesotrypsin activity may provide
a new PCa therapeutic strategy. PC-3 cells originating from a grade IV prostate cancer bone
metastases exhibit an extremely significant overexpression of PRSS3/mesotrypsin [67].
LNCaP human prostate cells have shown upregulation of chymotrypsin-like proteaso-
mal activity, suggesting the involvement of chymotrypsin in PCa [68]. Elastase increases
PCa proliferation, migration, invasion and has been used as a therapeutic target [69].
Symplocamide A blocks chymotrypsin and trypsin with IC50s of 0.38 and 80.2 µM, re-
spectively [70]. Kempopeptin A inhibits porcine pancreatic elastase (0.32 µM) and bovine
pancreatic α-chymotrypsin (2.6 µM), whereas, Kempopeptin B only inhibits trypsin activity
(8.4 µM) [71]. Bouillomides A and B inhibit elastase and chymotrypsin from porcine pan-
creas [72]. Molassamide, a depsipeptide from the cyanobacteria Dichothrixutahensis, inhibits
porcine pancreatic elastase (IC50:0.032 µM) and α-chymotrypsin (IC50: 0.234 µM) from
bovine pancreas [73]. Largamides are cyclic peptides isolated from Lyngbyaconfervoides and
Oscillatoria sp. Largamides A-C inhibit elastase with IC50 ranges from 0.53 to 1.41 µM [74].
Chymotrypsin is also inhibited by argamides D through G, with IC50 values between
4 and 25 M [75]. Pompanopeptin A inhibits trypsin with IC50 of 2.4 µM [76]. Elastase and
chymotrypsin were inhibited by Lyngbyastatin 4, a cyclic depsipeptide from Lyngbya sp.,
at 0.03 M [77]. With IC50s of 3.2–8.3 nM for elastase and 2.5–2.8 nM for chymotrypsin,
ligbystatin 5–7 inhibit both enzymes [78]. Lyngbyastatin 8–10 inhibit elastase with IC50s
of 120–210 nM [79]. Tiglicamides A-C and cyclodepsipeptides from the same source have
IC50s that range from 2.14 to 7.28 M for inhibiting elastase [80]. The pitipeptolides A and
B inhibit elastase activity at 50 µg mL−1 [81]. Somamide B from the same source inhibits
elastase (9.5 nM) and chymotrypsin (4.2 µM) [78]. Cathepsins D and E are lysosomal
proteases having anti-apoptotic functions and which play an important role in PCa [82,83].
Grassystatins A and B depsipeptides strongly inhibit cathepsins D (IC50:26.5 and 7.27 nM,
respectively) and E (IC50:886 and 354 pM), whereas grassystatin C inhibits cathepsins D
(IC50:1.62 µM) and E (IC50:42.9 nM) [84].

The cytoskeletal microfilament, actin, is required for cytokinesis, cell migration, and
a host of other processes crucial for the stability of cancerous cells. Inhibiting actin poly-
merization slows the growth of metastatic neoplastic cells by causing the breakdown of
microfilaments, which, in turn, reduces cell motility [85]. Jaspamide, a cyclicdepsipeptide
from sponge (Jaspis johnstoni), has shown antiproliferative activity against DU145, LNCaP,
and PC-3 with IC50s of 0.8, 0.07 and 0.3µM by actin filament disruption. The same peptide
has shown anticancer activity in a DU-145 xenograft [85].

Voltage-gated sodium channels (VGSC) are considered to have a role in cancer cell
invasion and metastasis. In PCa, VGSC overexpression is crucial for cell movement and
invasiveness [86–88]. Palmyramide A, a cyclic depsipeptide with an IC50 of 17.2 µM, and
hermitamides A and B (lipopeptides) with IC50s of 1 µM have been shown to block sodium
channels via VGSC inhibition [89,90].
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2.4. Antiangiogenic Effect

Angiogenesis is crucial in the development of cancer [90]. VEGF is produced in
cancer cells and is required for angiogenesis. During low oxygen (hypoxia) periods,
Mucin 1 (MUC1) increases HIF-1α to stimulate tumor development and angiogenesis.
Its overexpression restricts apoptosis via upregulating Bcl-xL and inactivating BAD pro-
tein. A decline in VEGF expression level is associated with MUC1 silencing, establishing
that MUC1 downregulation has an anti-angiogenic impact [91–93]. TFD and SIO pep-
tides from fish inhibit PC-3 and DU145 cell migration by decreasing VEGFR1 and MUC1
protein expression [44,45,94].

2.5. Cell Cycle Arrest

Cell cycle arrest limits cell viability and is related to apoptosis [95]. The two main
regulators of G2/M transition/progression are cdc2 and cell division cycle-25C (cdc25C).
Multiple signaling pathways influence their regulation in the cell cycle, and are linked
to carcinogenesis and tumor formation. cdc2 and cdc25C have been shown to enhance
mitotic cell G2/M transition by dephosphorylating cyclin-dependent kinase-1 (CDK1) and
activating the cyclin B1/CDK1 complex. Their downregulation causes G2/M cell cycle
arrest via p53-mediated signal transduction [96]. cdc2 and cdc25C are highly expressed in
PCa [97]. Chromopeptide A promotes G2/M phase arrest in PCa cells by suppressing cdc2
and cdc25C phosphorylation [51]. Similarly, cryptophycin-52 induces G2/M phase arrest
in DU145 and LNCaP cells [24].

2.6. p53 Upregulation

The functional tumor protein p53 (p53) protein takes part in apoptosis initiation
via BAK, BAX increment and Bcl2, Bcl-xL decrement. Cells also arrest in the G1 and
G2/M stages when p53 is activated. Low p53 level has been detected in PCa [98–100].
Cryptophycin-52 [24], chromopeptide A [51] and sepia ink peptides [15,44,45] induce p53
upregulation in PC-3, DU145 and LNCaP cells and hence regulate p53-dependent apoptosis
and cell cycle arrest.

2.7. Stimulation of Histone Hyperacetylation

Histone deacetylases (HDACs) are widely produced and over-activated in PCa. Stim-
ulation of histone hyperacetylation in tumor through cellular HDAC inhibition results
in G2/M phase arrest, apoptosis, activates p53, DNA-damage response and inhibition of
metastasis and angiogenesis [101]. The chromopeptide A from marine-derived Chromobac-
terium sp. stimulates histone hyperacetylation by HDAC inhibition in PC-3, DU145, LNCaP
cell lines and human PC-3 xenograft mouse model [51].

2.8. Mitochondrial Dysfunctions and Oxidative Damage

Reactive oxygen species (ROS) accumulation induces oxidative stress caused by mi-
tochondrial abnormalities, and malignant cells require high ROS concentrations [102].
The most frequent type of DNA damage is DNA fragmentation, a direct consequence
of oxidative stress [103]. Dolastatin 10 induces DNA damage in DU145 [19]. Similarly,
Cryptophycin 52 and C-phycocyanin induce DNA damage in DU145 and LNCaP [24,48].
A schematic representation of the anticancer mechanisms of marine peptides is depicted in
Figure 4 as under:
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2.9. Unidentified Mechanisms for Anticancer Activity

Geodiamolides D–F [26], homophymines A–E [27], milnamides A–G [26], neam-
phamides B–D [30], rolloamide A [36], yaku’amides A and B [104] from sponges; lagu-
namide C [23], coibamide A [25], laxaphycin B [39] from cyanobacteria exhibit strong cyto-
toxicity in several PCa cells, although the specific targets are yet unknown. Patellamides B
and F, ulithiacyclamide [38], trunkamide A [12,37], tamandarins A-B [32,33] from ascidia
also elicit anti-PCa activity via unrevealed process. Microsporin A [17], sansalvamide A [34]
and zygosporamide [35] from marine derived fungus; YALPAH from fish [105] possess
anti-PCa properties via an unknown mechanism. Some of the anticancer effects of marine
peptides are summarized in Table 1:

Table 1. Summary of the sources, active peptides and anticancer mechanisms of action of Marine peptides.

Peptides Marine Sources
(Species Name) Active Derivative Anticancer

Mechanisms References

Aurilide B Cyanobacteria
(Lyngbya majuscula) Cyclic depsipeptide

Microtubule
stabilization [22]

Lagunamide C ↓ cell viability [23]
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Table 1. Cont.

Peptides Marine Sources
(Species Name) Active Derivative Anticancer

Mechanisms References

Cryptophycin-52
(LY355703) Cyanobacteria (Nostoc sp.)

DNA fragmentation;
Bcl2 ↓; Bax ↑; Bcl-xL ↓;
caspase 3, 7 ↑; PARP ↑;

p53 ↑; G2/M phase
arrest; Microtubule
depolymerization

[24]

Coibamide A Cyanobacteria
(Leptolyngbya sp.) ↓ cell viability

[25]

Laxaphycin B Cyanobacteria
(Lyngbya majuscula) Cyclic dodecapeptide [39]

C-phycocyanin Cyanobacteria (Limnothrix sp.) Peptide

Caspases 3, 9 ↑; cyt c
release ↑; DNA
fragmentation

[48]

Bisebromoamide Cyanobacteria (Lyngbya sp.) ↓ cancer cell growth [106]

Jaspamide
Sponge

(Jaspis johnstoni )

Cyclic depsipeptide

Actin filament
disruption

[28]

[29]

Homophymines A–E Sponge (Homophymia sp.)

↓ cell viability

[27]

Neamphamides B–D Sponge
(Neamphius huxleyi) [30]

Geodiamolides D–F
Sponge (Pipestela candelabra)

[26]

Milnamides A–G N-methylated
linear peptide

Rolloamide A Sponge
(Eurypon laughlini) Cyclic heptapeptide [36]

HTI-286 Sponge (Hemiasterella minor) Tripeptide Microtubule
depolymerization

[14]

[107]

Kahalalide F
Mollusk (Elysia rufescens) Cyclic depsipeptide

PI3K-AKT inhibition;
ErbB3 depletion [31]

↓ cancer cell growth [108]

Elisidepsin PI3K-AKT inhibition;
ErbB3 depletion [56]

Dolastatin 10 Mollusk
(Dolabella auricularia) Pentapeptide Microtubule

depolymerization [19]

MCH Mollusk
(Mytilus coruscus) Peptide

Bcl2 ↓; Bax ↑;
caspase 3, 9 ↑ [43]

KLH Mollusk (Megathura crenulata) ↓ cancer cell growth [109]

Tamandarin A
Ascidia (Trididemnum solidum) Cyclic depsipeptide

↓ cell viability

[32]

Tamandarin B [33]

Patellamide B Ascidia
(Lissoclinum patella)

Cyclic octapeptide
[38]Patellamide F

Ulithiacyclamide Cyclic peptide

Trunkamide A Ascidia
(Lissoclinum sp.) Cyclic heptapeptide [12,37]

Diazonamide A Ascidia (Diazona angulata) Macrocyclic peptide Microtubule
depolymerization [64]
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Table 1. Cont.

Peptides Marine Sources
(Species Name) Active Derivative Anticancer

Mechanisms References

Chromopeptide A Bacteria (Chromobacterium sp.
HS-13-94) Depsipeptide

caspase 3 ↑; PARP
cleavage; HDAC

inhibition; G2/M phase
arrest; p53 ↑

[51]

Sansalvamide A Fungus (Fusarium sp.) Cyclic depsipeptide

↓ cell viability

[34]

Microsporin A Fungus
(Microsporum cf. gypseum) Cyclic tetrapeptide [17]

Zygosporamide Fungus (Zygosporium masonii) Cyclic
pentadepsipeptide ↓ cancer cell growth [35]

SHP

Fish
(Sepia esculenta)

Tripeptide

Bcl2 ↓; Bax ↑; caspase 3
↑; p53 ↑ [15]

SIO

Bcl2 ↓; Bax ↑; caspase 3
↑; p53 ↑; VEGF ↓ [44,45]

S and G2/M phase cell
cycle arrest [16]

TFD Fish (Gadus sp.)

Peptide

VEGFR1 ↓; MUC1 ↓ [94]

YALPAH

Fish (Setipinna taty)
↓ cancer cell growth [105]YALRAH

YALPAR

YALPAG

ILYMP Clam
(Cyclina sinensis) Pentapeptide

Bcl2 ↓; Bax ↑; caspase 3,
9 ↑;

cyt c release ↑

[20]

SCH-P9 and SCH-P10 Clam
(Sinonovacula constricta) Tetrapeptide [18]

AAP-H Sea anemone
(Anthopleura anjunae) Oligopeptide [21]

Tachyplesin Horseshoe crab
(Tachypleus tridentatus) Cyclic peptide caspase 3, 6, 7, 8, 9 ↑;

cyt c release ↑ [50]

3. Clinical Trial Status

Several marine peptides with potential PCa efficacy are presently undergoing clini-
cal trials. Soblidotin (TZT-1027) has shown efficacy in DU145 cell lines and has entered
a phase I clinical trial (Table 2). It was designed to maintain significant anticancer ac-
tivity while lowering the toxicity of the parent medication, dolastatin 10 [110–112]. Tasi-
dotin/synthadotin (ILX651), a dolastatin 15 derivative is in Phase II clinical trial for hor-
mone refractory PCa [113].

Didemnin B displays anti-PCa activity, and has progressed into phase II studies. Due
to its high toxicity, low solubility, and short life span, clinical studies were halted favouring
second generation dehydrodidemnine B, (aplidin or plitidepsin). Dehydrodidemnine B is
in phase III clinical trials [10,32,114].

In phase I study, Kahalalide F was effective against PCa, with a favorable safety
profile [115]. It was withdrawn from phase II due to lack of efficacy, short half-life, restricted
range of activity, and poor patient response. However, given this compound’s potent
cytotoxicity, it has facilitated the development of synthetic analogues to overcome its
limitations by increasing its potency and half-life [63,116]. Elisidepsin (Irvalec®), one of
PharmaMar’s most powerful Kahalalide F analogues, has progressed to phase II clinical
trial due to its superior efficacy and nontoxic profile [117]. The preclinical studies (in vivo,
in vitro) are separated according to xenograft’s approach and listed in Table 3.
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Table 2. Marine peptides as anticancer agents in clinical trials.

Cell lines/ (Peptides) Phase Clinical
Trials.Gov Identifier References

DU145
(Soblidotin) Phase I NCT00072228 [22,110,111]

Dolastatin 10 Phase II NCT00003626 [23,110]

Tasidotin/synthadotin
(ILX651) Phase II NCT00082134 [24,113]

Dehydrodidemnine B Phase III NCT00780975 [10,25,32]

Kahalalide F Phase I NCT00106418 [39,115]

Elisidepsin (Irvalec®) Phase II NCT00884845 [48,117]

Table 3. Marine peptides as anticancer agents in pre-clinical trials.

In Vitro In Vivo

ReferencesHuman Prostate
Cancer Cell Lines IC50

Experimental
Model Dose

DU145 and PC-3
Aurilide B <10 nM —– —– [22]

PC-3 Lagunamide C 2.6 nM —– —– [23]

DU145 and LNCaP
Cryptophycin-52 1–10 pM —– —– [24]

DU145 and PC-3
Coibamide A 300 ng mL−1 —– —– [10,25,32]

PC-3 Laxaphycin B 0.58 µM —– —– [39]

LNCaP C-phycocyanin 500 µg mL−1 —– —– [48]

DU145 and PC-3
Bisebromoamide GI50:40 nM —– —– [106]

DU145 Jaspamide 0.8 µM DU-145
xenograft 10 mg/kg s.c.

[28]LNCaP Jaspamide 0.07 µM —– —–

PC-3 Jaspamide 0.3 µM —– —–

TSU-Pr1 Jaspamide 170 nM —– —– [29]

PC-3
Homophymines A–E

A:4.2, B:6.2,
C:3.0, D:6.3,

E:3.9 nM
—– —– [27]

LNCaP
Neamphamides B-D

B:230, C:190,
D:110 nM —– —–

[30]

PC-3
Geodiamolides D-F

B: 170, C:110,
D:130 nM —– —–

D:33.1, E:118,
F:155 nM —– —– [26]

DU145 Rolloamide A 0.85 µM —– —–

[36]
LNCaP Rolloamide A 0.8 µM —– —–

PC-3 Rolloamide A 1.4 µM —– —–

PC3MM2 Rolloamide A 4.7 µM —– —–
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Table 3. Cont.

In Vitro In Vivo

ReferencesHuman Prostate
Cancer Cell Lines IC50

Experimental
Model Dose

LNCaP, C4-2, PC-3,
PC-3dR
HTI-286

0.65–4.6 nM
PC-3 and
PC-3dR

xenografts
1.5 mg/kg i.v. [14]

—– —– PC3-MM2
xenograft 1.0 mg/kg i.v. [107]

PC-3 Kahalalide F 0.07 µM —– —–
[31]

DU145 and LNCaP 0.28 µM —– —–

—– —–
PC-3 and

DU145
xenografts

123 µg/kg i.v. [108]

PC-3 Elisidepsin 1.80 µM —– —–
[56]

DU145 1.26 µM —– —–

DU145 Dolastatin 10 0.5 nM DU145
xenograft 5 µg q4d i.p. [19]

PC-3 MCH LC50:
0.94 mg mL−1 —– —– [43]

DU145 Tamandarin A
GI50:12.5 µg —– —– [109]

1.36 ng mL−1 —– —– [32]

PC-3 Tamandarin B 1.4 µM —– —– [33]

DU145 and PC-3
Patellamide B
Patellamide F

LC50: 48 µM —– —–

[38]LC50: 13 µM —– —–

LC50: 3 µM —– —–

DU145
Trunkamide A 7.08 nM —– —– [12,37]

PC-3
Diazonamide A

2.3 nM —– —– [64]

2.43 nmol L−1 PC-3 xenograft 1.6 mg/kg i.v.

[51]
DU145

Chromopeptide A 2.08 nmol L−1 —– —–

LNCaP
Chromopeptide A 1.75 nmol L−1 —– —–

PC-3
Sansalvamide A 27.4 µg mL−1 —– —– [34]

DU145 and PC-3
Microsporin A

Zygosporamide

2.7 µM —– —– [17]

GI50:9.1 µM —– —– [35]

PC-3
SHP 15 mg mL−1 —– —– [15]

DU145 1 mg mL−1 —– —– [44,45]

DU145 and PC-3
SIO 15 mg mL−1 —– —– [16]



Mar. Drugs 2022, 20, 466 13 of 18

Table 3. Cont.

In Vitro In Vivo

ReferencesHuman Prostate
Cancer Cell Lines IC50

Experimental
Model Dose

PC-3
TFD, YALRAH,

YALPAH,
YALPAG, YALPAR

3.5 nM —– —– [94]

GI50:16.9 µM —– —–

[105]
GI50:11.1 µM —– —–

GI50:19.0 µM —– —–

GI50:71.2 µM —– —–

DU145, ILYMP, SCH-P9
and SCH-P10

11.25 mM —– —– [20]

SCH-P9:1.21,
SCH-P10:

1.41 mg mL−1
—– —–

[18]

PC-3
SCH-P9:1.09,

SCH-P10:
0.91 mg mL−1

—– —–

DU145, AAP-H 2.298 mM —– —– [21]

TSU, Tachyplesin 75 µg mL−1 —– —– [50]

4. Conclusions and Future Perspectives

Worldwide, PCa is a major cause of cancer-related mortality in men. While its fre-
quency has increased, present therapy options are limited and have adverse effects, with
relapses often occurring, highlighting the need for novel cancer treatments.

Information is scant on the use of marine peptides to treat this malignancy [5,6,118].
Marine peptides have been shown to have multiple anticancer effects. To date, most of
the research has focused on the effects of marine peptides in vitro, making it difficult to
extrapolate their in vivo efficacy. Only a few of these drugs have advanced to clinical trials.
Although individual pharmacologically active marine peptides have been excluded from
further drug discovery due to toxicity, there is a push to assess corresponding analogues
for their efficacy. Substitution with D-amino acids, cyclization, pegylation, nanoparti-
cles encapsulation, and XTEN conjugation can be used to overcome short half-life and
metabolic instability. Namely, immunogenicity has been reduced by D-amino acid sub-
stitution [11,119–121]. Protein hydrolysates represent a rich source of antiproliferative,
anticancer, and antioxidant compounds. Additional studies on the cell cycle phase arrest
and increased apoptotic rates by these analogues are required to determine the pharmaco-
logical efficacies of protein hydrolysates.

The marine world offers a diversity of potential novel anticancer medications. How-
ever, there are several serious drawbacks to marine peptides, such as their stability in vivo.
They are extremely vulnerable to cleavage by serum proteases in vivo, have a brief half-life,
do have poor bioavailability, and provide manufacturing and production issues. The de-
velopment of marine pharmaceuticals would benefit by interdisciplinary collaborations to
overcome existing constraints. These innovative findings must be quickly translated into
treatments for prostate cancers. Additionally, whether employed alone or in combination
with a number of other chemotherapy agents, marine medicines and comparable generic
compounds may provide insights into prospective clinical anticancer therapeutics. Addi-
tionally, to find out new concepts in the discovery of marine natural products in the future,
analytical methods should be combined to the use of computational genetics, gene mining,
experimental therapies, and other ground-breaking techniques.

Finally, further research into marine peptides and their mechanisms of action will be
needed, resulting in an invaluable source of novel and potent new medications for the
treatment of prostate cancer, and a better understanding of their mechanisms of action and
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their putative target sites. Taking into account the already available clinical trials’ data, the
upcoming studies might utilize them for further clinical trials.
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