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Purpose: Intensity-Modulated Radiation Therapy (IMRT), including its variations (including IMRT,
Volumetric Arc Therapy (VMAT), and Tomotherapy), is a widely used and critically important tech-
nology for cancer treatment. It is a knowledge-intensive technology due not only to its own technical
complexity, but also to the inherently conflicting nature of maximizing tumor control while minimiz-
ing normal organ damage. As IMRT experience and especially the carefully designed clinical plan
data are accumulated during the past two decades, a new set of methods commonly termed knowl-
edge-based planning (KBP) have been developed that aim to improve the quality and efficiency of
IMRT planning by learning from the database of past clinical plans. Some of this development has
led to commercial products recently that allowed the investigation of KBP in numerous clinical appli-
cations. In this literature review, we will attempt to present a summary of published methods of
knowledge-based approaches in IMRT and recent clinical validation results.
Methods: In March 2018, a literature search was conducted in the NIH Medline database using the
PubMed interface to identify publications that describe methods and validations related to KBP in
IMRT including variations such as VMAT and Tomotherapy. The search criteria were designed to
have a broad scope to capture relevant results with high sensitivity. The authors filtered down the
search results according to a predefined selection criteria by reviewing the titles and abstracts first
and then by reviewing the full text. A few papers were added to the list based on the references of the
reviewed papers. The final set of papers was reviewed and summarized here.
Results: The initial search yielded a total of 740 articles. A careful review of the titles, abstracts, and
eventually the full text and then adding relevant articles from reviewing the references resulted in a
final list of 73 articles published between 2011 and early 2018. These articles described methods for
developing knowledge models for predicting such parameters as dosimetric and dose-volume points,
voxel-level doses, and objective function weights that improve or automate IMRT planning for vari-
ous cancer sites, addressing different clinical and quality assurance needs, and using a variety of
machine learning approaches. A number of articles reported carefully designed clinical studies that
assessed the performance of KBP models in realistic clinical applications. Overwhelming majority of
the studies demonstrated the benefits of KBP in achieving comparable and often improved quality of
IMRT planning while reducing planning time and plan quality variation.
Conclusions: The number of KBP-related studies has been steadily increasing since 2011 indicating
a growing interest in applying this approach to clinical applications. Validation studies have generally
shown KBP to produce plans with quality comparable to expert planners while reducing the time and
efforts to generate plans. However, current studies are mostly retrospective and leverage relatively
small datasets. Larger datasets collected through multi-institutional collaboration will enable the
development of more advanced models to further improve the performance of KBP in complex clini-
cal cases. Prospective studies will be an important next step toward widespread adoption of this excit-
ing technology. © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf
of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13526]
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1. INTRODUCTION

Radiation therapy is a widely adopted and effective cancer
treatment that leverages highly advanced and complex tech-
nologies. With the advent of intensity-modulated radiation

therapy (IMRT), physicians have a tremendous opportunity
to maximize cancer control while minimizing toxicity to nor-
mal organs. However, achieving this inherently contradicting
goal using IMRT requires significant knowledge, experience,
and time due to the complexity of technologies and the
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limitation in our understanding of patient conditions. We note
that the IMRT technology has led to a number of different
implementations in recent years including Volumetric Arc
Therapy (VMAT) and Tomotherapy. In the remainder of this
paper, the term “IMRT” by itself will generally refer to all
variations of IMRT implementations. When it is listed
together with VMAT and/or Tomotherapy, it refers specifi-
cally to the original implementation.

To tackle the challenges in radiation therapy, knowledge-
based systems have been developed as early as 1980s to aid
the design of radiation treatment plans.1,2 The knowledge-
based systems reported during that period refer mainly to
expert-based systems that aim to capture clinician knowledge
and experience in terms of rules and algorithms. These rule-
based approaches in recent years have led to a type of system
that is commonly called “automatic (or automated) planning
systems” (e.g., Ref. [3–5]). These systems aim to encode
sophisticated planning knowledge into complex and often
iterative algorithms to generate clinically acceptable IMRT
plans automatically. Note that these automatic planning sys-
tems are not data-driven in the sense that their main algo-
rithms do not rely on predictive models that are based on a
database of prior planning data.

As IMRT experience and especially the carefully designed
clinical plans are accumulated over the past two decades, a
new set of data-driven methods has been developed in recent
years with an aim to improve the quality and efficiency of
IMRT planning by learning from the past high-quality clinical
plans. The term “knowledge-based planning” (KBP) or simply
KBP has now frequently been used to refer to this specific
class of data-driven approaches to IMRT planning. Some of
this development has led to commercial products recently and
allowed the investigation of KBP in numerous clinical applica-
tions. This has somewhat solidified the narrower definition of
KBP that draws knowledge from only one source, the database
of prior clinical plan data, and assume that other sources of
knowledge, such as treatment trade-off and clinician experi-
ence, are embedded in the design of prior clinical plans.

In this literature review, we will focus on KBP methods
that are data-driven. We will not include the types of KBP
methods, such as automatic planning systems, that do not rely
on models and prior clinical plans. We will attempt to present
a summary of this specific class of data-driven KBP methods
and recent clinical validation results. We will slightly broaden
the definition a bit to include any data-driven method that
aims to improve IMRT planning in some aspects that do not
necessarily lead to complete final plans. For example, we will
include studies that learn from prior plan data to predict or
generate beam configurations, objective function priorities,
or some specific dose metric in one of the organs at risk, or
to identify unacceptable plans in the quality assurance pro-
cess. By reviewing the prediction targets, modeling methods,
data sources, application areas, and validation results, we aim
to present a clear understanding of the state-of-the-art of the
data-driven KBP approach and summarize the performance
of current methods in comparison to manual planning pro-
cess. We hope that this exercise will also help us gain insights

into potential gaps in the current approaches that warrant fur-
ther research.

2. MATERIALS AND METHODS

Even though this review focuses on the methods and tech-
nical validation of KBP rather than patient outcomes, wher-
ever appropriate, we follow the guidelines stated in The
PRISMA Statement for Reporting Systematic Reviews and
Meta-Analyses of Studies That Evaluate Health Care Inter-
ventions.6

2.A. Article search

To identify relevant articles for KBP, we conducted
searches in the NIH Medline database in March 2018 using
the PubMed interface. We did not use any time constraints
for this search and included only articles published in jour-
nals and written in English. We started with keywords that
identify knowledge, radiation therapy, planning and expanded
the search to include variations of keywords related to these
concepts. In addition, we included keywords in the abstracts
that indicate the use of a set of prior plans. The final search
string is: (atlas[Title] OR reasoning[Title] OR model[Title]
OR models[Title] OR modeling[Title] OR learning[Title] OR
prediction[Title] OR predicting[Title] OR feature[Title] OR
quantitative analysis[Title] OR factor analysis[Title] OR iden-
tification[Title] OR knowledge[Title] OR automated[Title]
OR automate[Title] OR automatic[Title] OR semiautomated
[Title] OR semi-automated[Title]) AND (IMRT[Title] OR
VMAT[Title] OR SBRT[Title] OR treatment[Title] OR ther-
apy[Title] OR radiotherapy[Title] OR tomotherapy[Title])
AND (beam angle[Title] OR dose[Title] OR quality[Title]
OR QA[Title] OR plan[Title] OR planning[Title] OR sparing
[Title] OR optimization[Title] OR objective function[Title])
AND (plans[Title/Abstract] OR dataset[Title/Abstract] OR
cases[Title/Abstract] OR patients[Title/Abstract]) AND
English[lang].

2.B. Article eligibility criteria

Articles were included in this review if they satisfied the
following criteria:

1. Describing or validating methods for improving some
aspects of radiation therapy planning. These aspects
can include reference plans, dosimetric parameters,
dose-volume histogram, voxel-level doses, objective
function weights/optimization priorities, beam configu-
rations, model hyper-parameters, and quality assurance
metrics. Outcomes studies and other studies not related
to planning are excluded.

2. Focusing on external beam radiation therapy, which
may include various forms of IMRT (i.e., IMRT,
VMAT, and Tomotherapy) of both photon and proton
beams but exclude brachytherapy.

Medical Physics, 46 (6), June 2019

2761 Ge and Wu: Knowledge-based RT planning: A review 2761



3. Employing a set of prior clinical plans as a core com-
ponent of the method. Articles that use prior clinical
plans to validate methods that do not rely on prior clini-
cal plans are excluded.

2.C. Article selection

The search strategy retrieved 740 articles from the Med-
line database. After reviewing the title and abstract of the arti-
cles in the initial list, the authors reduced the list to 161 by
filtering out articles that do not satisfy the first two eligibility
criteria. We then added to this list a few additional articles
based on reviewing of reference lists. The new list of 178 arti-
cles was further filtered by the third eligibility criteria by
reviewing abstracts and when the abstract is not conclusive,
the full text of the articles. This step resulted in the final set
of 73 articles that are included in the following review
(Fig. 1).

3. RESULTS

The 73 KBP-related articles included in this review were
published between 2011 and early 2018. The number of stud-
ies has shown an increasing trend in recent years (Fig. 2). In
fact, the number of studies in the 4 yr since 2014 accounts for
more than 70% of the total articles with only a few months
included in 2018.

Almost a third of the articles appeared in Medical Physics.
The other top publication venues also include Journal of
Applied Clinical Medical Physics, International Journal of
Radiation Oncology Biology and Physics, Physics in Medi-
cine and Biology, and Radiation Oncology (Table I). A total
of 16 journals have published KBP-related research results.

As shown in Table II, a wide variety of cancer sites have
been studied with the KBP methods. However, a significant
number of studies have focused on prostate cancer (more than
one-third). And the three cancer sites, prostate, head and neck

(H&N), and lung, accounted for more than two-thirds of arti-
cles reviewed.

In the following sections, we summarize the 73 articles in
terms of three dimensions: the purpose of KBP methods, the
methods for KBP, and the performance of current KBP on
major cancer types.

3.A. Purpose of knowledge-based planning

Knowledge models have been created to predict a vari-
ety of variables that impact the quality and efficiency of
IMRT planning. We can roughly categorize existing work
into six types of variables that the models aim to
predict:

1. Dose-volume histogram (DVH) (36 articles)
This group of methods aims to predict the entire DVH
curve for a new patient and then frequently uses
the predicted DVHs to guide the plan optimization
process 7–42

2. One or more specific dose metrics (14 articles)
These methods aim to predict single or a small number
of dose metrics to either guide plan optimization or a
specific planning decision (e.g., the need for hydrogel
injection).21,43–55

3. Voxel-level doses (13 articles)
This group of methods predicts dose at each
voxel in 3D space.56–68 The predicted dose map is
used to guide plan optimization or generate final
plans directly (e.g., using dose mimicking algo-
rithm68).

4. Objective function weights (three articles)
There are two papers by the same group that aim to
predict correct objective function weights, so that plans
can be generated automatically.69,70 A third paper
examined the sample size needs for predicting objec-
tive function weights.21

FIG. 1. Flow diagram of article selection.
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5. Beam-related parameters (six articles)
There are a number of articles that aim to determine
beam-related parameters such as the number and angle
of beams and jaw settings.3,71–75

6. Quality assurance metrics (three articles)
This group of methods learns from prior clinical plans
to predict the quality of a new plan.76–78 Note that a
number of quality assurance methods are based on
DVH or dose-volume parameter prediction mod-
els.17,18,33,34,49

3.B. Methods for knowledge-based planning

Methods for KBP can be further divided into two major
categories: (a) case and atlas-based methods; and (b) statisti-
cal modeling and machine learning methods.

3.B.1. Case and atlas-based methods

The case and atlas-based approaches aim to improve the
planning of a present case by finding one or more similar
cases in the database of prior clinical plans. Two components
are critical in these methods: (a) a similarity measure for
identifying the matching cases; and (b) a method to transfer

FIG. 2. Trend of publications related to knowledge-based planning. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. The publication venues that reported KBP studies.

Journal title
Number of
KBP articles

Medical Physics 23

Journal of Applied Clinical Medical Physics 9

International Journal of Radiation
Oncology Biology Physics

8

Radiation Oncology 8

Physics in Medicine and Biology 8

Radiotherapy and Oncology 6

Biomedical Materials and Engineering 1

Plos One 2

Advances in Radiation Oncology 1

International Journal of Computer Assisted
Radiology and Surgery

1

IEEE Transactions on Medical Imaging 1

Artificial Intelligence in Medicine 1

Medical Dosimetry 1

Physica Medica 1

Practice of Radiation Oncology 1

Frontiers in Oncology 1

KBP, knowledge-based planning.

TABLE II. The number of articles that performed studies on each cancer site.

Cancer sites Number of KBP articles

Prostate 31

Head & Neck 16

Lung 13

Breast 7

Brain 3

Cervical cancer 3

Spine 3

Esophageal cancer 2

Nasopharyngeal carcinoma 2

Rectal 2

Hepatocellular carcinoma 1

CNS, GI, Genitourinary, GYN, Pediatric 1

Glioblastoma 1

Malignant pleural mesothelioma 1

Pancreatic 1

Pelvic 1

Thoracic 1

KBP, knowledge-based planning.
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TABLE III. Case- and atlas-based methods: similarity measure and knowledge transfer.

Articles Approach Similarity measure Knowledge transfer

Chanyavanich
et al.56,57,61

Direct Mutual information of the beam’s eye view projections Treatment parameters such as beam
geometry and structure constraints and
weights were transferred to the query
case. The fluence maps were transferred
after a deformable registration

Mishra et al.43 –
Case-based reasoning
framework

Direct Similarity is measured by both clinical variables such as clinical
stage, Gleason score, and prostate-specific antigen as well as rectum
DVH values at five selected points

Dose constraints were transferred after
adaptation

Petrovic et al.74 Direct Further introduced knowledge-light adaptation into the case
retrieval process to improve case selection accuracy.

Dose constraints were transferred after
adaptation

Wu et al.44–47,55 Direct Based on the concept of OVH, which describes the fractional
volume of an OAR that is within a specified distance from a PTV.
For each OVH percent volume, the set of matching cases included
all cases with smaller OVH values

The minimal DVH value at the
percentage volume of the matching cases
was transferred to the new case

Zhang et al.3 belongs
to the automatic
planning approach.
We include it here
because its beam
selection is based on a
database of prior
clinical plans

Direct Based on tumor location Beam number and angles

Schreibmann
et al.62,71

Direct Based on an iterative closest point registration algorithm and a score
based on point to point distance

The beam settings and multileaf
collimator positions for the best match
were transferred to the new case

Zarepisheh et al.14 Direct Based on machine learning algorithm that finds the best match of
DVH curve using geometric features such as overlapping volume
and mutual information

Zhou et al.49 Direct The overlap area of OVH curves as the basis for similarity Transferred DVH of OARs and PTV as
optimization constraints.

Sheng et al.63 – Atlas-
based method

Direct The generation of atlases and matching of a query case to the best
atlas were both based on two specially designed features, the PTV
and SV concaveness angle and the percent distance (from SV) to the
PTV

Treatment parameters of the atlas case
were transferred

Deshpande et al.24 Direct Weighted sum of three difference values, the prescription dose
differences, the OVH differences, and the difference of STS, which
is a four-dimensional histogram encoding the radial distance,
azimuth, and elevation of PTV in relation to the center of an OAR.
The difference of histograms is calculated by the earth mover’s
distance

The DVHs of top matching cases were
presented for reviewing

McIntosh et al.64,67,68 Indirect Each case in the database was associated with a contextual ARF that
predicts dose at each voxel based on its location and image features.
Each case was also associated with a random forest (pRF) that
predicted the accuracy of the ARF for a new case based on its
similarity to the new case’s ARF. The set of matching cases had the
smallest predicted errors from the associated pRF’s.

The average predicted dose at voxel level
from the ARF’s of the matching cases
was transferred as the voxel-level dose of
the new case

Li et al.33 – Atlas-
based method

Direct A single atlas FDG-PETvolume was created from a set of prior
clinical volumes using deformable registration of images and
averaging of intensity values

The atlas was used as a template to
generate a substructure of ABM within
the pelvic bone marrow with a goal to
improve sparing of ABM without manual
contouring of ABM.

Valdes et al.53 Indirect Differences between dosimetric indices of a database case and the
predicted dosimetric indices of a query case must be smaller than
predetermined thresholds. The predictions were based on boosted
decision trees (random forest) that use features of anatomical
information, medical records, treatment intent, and radiation
transport.

Dosimetric information of matching
cases was displayed

ABM, active bone marrow; ARF, atlas regression forest; PTV, planning target volume; OAR, Organ at Risk; OVH, overlap volume histogram; STS, spatial target signature;
SV, seminal vesicle.
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useful knowledge from prior plans to the present case. There
are twenty-four (24) articles in this category; the similarity
measures and transferred knowledge of each are summarized
in Table III.

We can divide the similarity measures into two general
categories. The direct approach defines similarity directly
based on some features of the images, structures, and clinical
variables. The indirect approach uses models and features to
predict dose parameters first and then use the similarity of
predicted dose parameters to select matching cases. Trans-
ferred knowledge ranges from planning parameters to voxel-
level dose.

3.B.2. Statistical modeling and machine learning
methods

The statistical modeling and machine learning approaches
attempt to create a predictive model from the database of
prior clinical cases. We summarized these methods in
Table IV in terms of input features, modeling methods, and
prediction outcomes.

There are 51 articles in this category. Most methods are
based on regression models such as multivariate linear
regression, stepwise regression, logistic regression, Poisson
regression, and support vector regression. Other methods
include curve fitting, function fitting, kernel density estima-
tion, artificial neural networks, random forest, active shape
model, optical flow model, support vector machine, and clus-
tering. An important factor of the modeling approach is the
definition and selection of features. Table IV lists the major
features that are used by each model.

A number of articles describe validation results of the
commercially available RapidPlan system (Varian Medical
Systems, Palo Alto, CA, USA). According to Varian’s com-
pany website, this system is largely inspired by the multivari-
ate linear regression approach described by Yuan et al.9 In
Table IV, these articles are grouped together under Fogliata
et al.

3.C. Performance of KBP

Most studies of KBP methods provide validation results
using either cross-validation or holdout test data. Since pros-
tate, H&N, and lung are the most studied cancer types, we
summarize the outcomes of KBP methods for these three
cancers in Tables V–VII in terms of method type, test sample
size, validation target, validation metric, and results for OARs
and planning target volume (PTV). Note that we included in
these tables only studies that used at least 10 test samples and
reported validation results in comparison to clinical plans. As
shown in Table VII, only three studies have more than 10 test
samples and validation results comparing to clinical planning
results although 13 studies have involved lung cancer plan-
ning.

As these tables show, the validation sample size is rela-
tively small with the prostate and H&N studies using 36 cases
on average and lung studies using 21 cases on average. There

are generally two types of validation studies, (a) comparing
predicted dose metrics against those from the original clinical
plans, and (b) comparing dose metrics of re-planned cases,
using the predicted dose parameters, against dose metrics of
the original clinical plans. If the ultimate purpose of KBP is
to produce treatment plans using the predicted dose parame-
ters, the second type of comparison gives a more direct
assessment of the KBP methods provided the implementation
includes optimal use of the optimization engine.

The overall performance of KBP methods is difficult to
evaluate because different studies use different metrics. For
example, in prostate cancer KBP studies, we have seen vari-
ous subsets of D90, D70, D50, D40, D35, D30, D25, D20,
D17, D10, D1; D10 cc, Dmean; V100, V90, V75, V70, V65,
V62, V56, V54.3, V50, V40, V39; gEUD, and NTCP to
assess the dose distribution in bladder and rectum. While
these endpoints are basically different ways to sample the
DVH curve, most studies do not provide enough samples to
allow reconstruction of the entire curve with reasonable accu-
racy. Furthermore, many studies do not report sufficient
information. For example, some studies do not include pre-
scription and planning constraints, while many studies report
only the difference of dosimetric values. These factors make
it difficult to carry out a meta-analysis of the overall perfor-
mance of KBP methods. This is especially true for H&N,
lung, and other more complex cancer types.

For prostate cancer, we have found four KBP stud-
ies27,34,35,55 that reported statistically significant reduction in
mean dose to rectum and bladder after cases were re-planned
using the KBP methods. The pooled mean of reduction is 2.6
and 2.0 Gy for rectum and bladder, respectively. Incidentally,
a more recent study of rectal cancer treatment published after
the review articles were collected also resulted in an average
reduction of 2.06 Gy in bladder mean dose.79

To gain further understanding of the overall performance
of KBP in prostate cancer planning, we have developed a
visualization scheme to provide a summary view of nine
KBP prostate studies that compared re-planned results with
original clinically approved values.20,25,27,34,35,56,57,60,63 As
mentioned previously, the challenge of summarizing results
across all studies lie in two aspects: (a) the results are based
on different sample points of the DVH curve and measure
changes along different directions (e.g., one study may use
D35 while another use V65); (b) some of the studies report
only the differences in DVH point metrics (e.g., D35 is
reduced by 1.5) without providing the original clinically
approved values. The first issue makes it difficult to quantita-
tively compare results from different studies even though
many DVH point metrics assess performance in similar areas
of the DVH curve. While we cannot provide quantitative
summaries, we can visualize the performance of different
studies if we can define a base DVH curve, for example, by
forming an average DVH curve of clinically approved plans.
We can then identify the DVH points (e.g., D35 and V65) on
the base DVH curve and display changes measured in KBP
plans at these points to provide an overview of performance
across all studies. We note that, since the study performance
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TABLE IV. Statistical modeling and machine learning: features, models, and prediction outcomes.

Articles Input features Modeling methods Prediction outcomes

Zhu
et al.7,9,10,13,17,20,82

Volume features: PTV-OAR overlap volume
etc.
Distance features: first three PCA
components of Distance-to-Target Histogram

Support vector regression
Multivariate stepwise regression
Model/regression tree

The first three PCA
components of DVH

Appenzoler et al.8 OAR distance-to-PTV Sub-DVH as basis functions of an OAR
volume function of overlap subvolumes
Function fitting using least squares
minimization

DVH

Lee et al.69,70 OVH values Logistic regression
Linear regression
K-nearest neighbor

Weight for an OAR
constraint (Rectum,
Bladder)

Yang et al.48 Lx – distance from PTV that result in x% of
overlap in OVH

Linear regression Dx – dose received by x%
of OAR volume

Fogliata et al.
11,12,15,16,18,22,23,25–

29,31,32,34,35,37–41,75

Volume features: PTV-OAR overlap volume
etc.Distance features: PCA components of
Distance-to-target histogram
Other unpublished features

Multivariate regression (RapidPlan) DVH

Nwankwo et al.59,60 Distance-to-PTV
Slice level

Mean-dose-at-distance function
Mean dose standard deviation function
Slice weight function

Voxel dose

Amit et al.72 Beam-independent features: tumor
distribution, tumor height
Beam-dependent features: tumor-organ
overlap, beam distance, tumor projection
shape

Random forest regression Beam angle

Liu et al.58 3D OAR structures Active shape model
Active optical flow model

Voxel dose

Wang et al.19 First two PCA component scores of OVH of
OARs
Z-axis overlap index

Stepwise multiple regression Mean lung dose
Mean heart dose
(forming a Pareto Front)

Yuan et al.73 Beam number and angles K-medoids clustering Standard beam bouquets

Cooper et al.50 Distance to the tangent field edge Logistic regression Left anterior descending
artery maximum dose

Kuo et al.51 Contralateral/ipsilateral lung volumes
Ipsilateral normal/total lung volume
MILD

Linear regression Prescription dose
MILD
Prescription dose

Shiraishi et al.65 PTV volume
Number of fields
Azimuthal angle Elevation angle
Distance from PTV Distance from OARs

Artificial neural network (1 hidden layer with
10 nodes)

Voxel dose

Valdes et al.76, 77 78 complexity metrics: faction of MU per
dose, jaw position, etc.

Poisson regression with Lasso regularization Passing rate

Campbell et al.66 Geometric features: distance-to-PTV,
distance to OARs, etc.
Plan features: target volume, photon energy,
etc.

Artificial Neural Network (1 hidden layer
with 25 nodes)

Voxel dose

Fan et al.30 Distance-to-PTV
Angle with respect to origin of coordinate
(center of CT)

KDE DVH

Powis et al.52 Fractional OAR-PTV volume overlap
Prescription dose

Curve fitting Mean rectum dose

Brown et al.78 Control point features
Beam features
Fraction group features
Plan features

Ensemble-outlier filtering
Normalized cut sampling
SVM

Classification (acceptable
vs unacceptable plans)

Millunchick et al.54 Fractional overlap of parotid with combined
targets, and with 0.5 and 1.0 cm margins

Stepwise regression Parotid mean dose

PCA, principal component analysis; PTV, planning target volume; OAR, organ at risk; OVH, overlap volume histogram; MILD, mean ipsilateral lung dose; KDE, Kernel
density estimate.
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TABLE V. Performance of KBP on prostate IMRT/VMAT (studies with 10 or more test cases).

Articles Method type
Sample
size

Validation
target Validation metrics Rectum Bladder Target

Chanyavanich
et al56

Case/voxel dose 10 Re-planned vs
clinical

Percent difference:
mean

D20 1.8
D30 -2.5
D50 -13.9

D20 -5.9
D30 -12.2
D50 -24.9

D98 -0.03
D95 0.62
D1 2.5

Appenzoller
et al.8

Model/DVH 20 Predicted vs
clinical

Sum of residuals:
mean
Restricted sum of
residuals: mean

0.003
0.02

�0.008
0.013

Yuan et al.9 Model/DVH 24 Predicted vs
clinical

Error bound of
V99,85, 50%

71% of cases within
6% of error bound

71% of cases within
6% of error bound

Good et al.57 Case/voxel 55 Re-planned vs
clinical

Percent difference:
mean

V75 -1.15*
V65 -4.10*
V40 -11.97*

V75 -0.48
V65 -1.18*
V40 -2.18

HI -2.8*
D1 -2.5*

Nwankwo
et al.59

Case/voxel 33 Predicted vs
clinical

Mean voxel dose
difference
(magnitude)

0.23 – 8.22 0.26 – 12.19

Nwankwo
et al.60

Case/voxel 30 Re-planned vs
clinical

Mean difference D10 3.0*
D30 5.6*
D50 2.4
D70 -0.3
D90 -0.7

D10 0.1
D30 -3.0*
D50 -2.7
D70 0.0
D90 1.0

D05, D95, UI =

Sheng et al.63 Atlas/voxel 20 Re-planned vs
clinical

Mean difference gEUD ++*
V65 =
V100 + +*

gEUD ++*
V65 + +*
V100 + +*

CI ++*
HI =

Yang et al.20 Model/DVH 10 Re-planned vs
clinical

Percent difference Dmax ++0.14%
D10 cc ++2.11%
D17 + +2.72%
D40 + +0.27%

Dmax –0.46%
D10 cc –<1.54%
D25 + +0.69%
D40 + +0.81%

D98 = <2.31%
Dmax –0.06%

Boutilier
et al.21

Model/DVH 100 Predicted vs
clinical

Absolute
difference

D30 ~10
D50 ~7

D30 ~7
D50 ~3

Hussein
et al.25

RapidPlan 10 Re-planned vs
clinical

Mean difference V30 -0.8
V50 -3.1*
V70 -0.4
D1 cm -0.3*

V50 -3.5
V75 -0.2
D1 cm 0.0

PTV High
D98 0.1
D2 0.7*
PTV Inter
D98 -0.2
D2 0.3*
PTV Low
CI -0.1*
D98 0.8*
D2 -1.2*

Cagni et al.27 RapidPlan 20 Re-planned vs
clinical

Percent
differences

Dmean -1.66*
V20 -6.32*
V50 -1.03
V60 0.54
V65 3.71*
V70 0.55
NTCP 3.02*

Dmean 0.52
V20 0.93
V60 0.61
V70 0.15
NTCP 3.72*

D98 0.63*
D50 0.44
D2 1.09*
HI 2.03*
CI 5.02

Masi et al.34 RapidPlan 10 Re-planned vs
clinical

Mean difference Dmean -3.6*
Max to 0.1 cc 0.2*
V70 -0.8
V65 -1.5
V50 -4.0*

Dmean -3.9*
V75 -1.8*
V70 -0.6
V65 -2.9*

D95 -0.1
Dmax 0.3
HI5% -0.01*
HI1% -0.01

Schubert
et al.35

RapidPlan 60 Re-planned vs
clinical

Mean difference Dmean 0.9*
D1% -0.4*
V40 0.0
V45 -2.4*
V50 1.6

Dmean 0.6*
D1% 0.1
V40 -2.5*
V45 -1.1
V50 1.9*

Dmean 0.0
D2% 0.2
D98 0.0
HI 0.0
CI 0.0
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is based on DVH point metrics that are measured at multiple
points along the DVH curve, it is important that we under-
stand not only the extent of changes in the metrics, but also
the spatial relationship of these metrics along the DVH curve.
Unfortunately, the second issue makes it impossible to estab-
lish the base DVH curve and thus makes it difficult to
visualize the spatial relationship of the various DVH point
metrics, such as D35 and V65, that are reported in different
studies.

In the proposed visualization scheme, we assume that the
only common measure of performance reported across all
studies is the difference between KBP re-planned plans and
clinical plans (i.e., KBP-Clinical) for a set of DVH point met-
rics (e.g., D35 or V65). We overcome the second issue men-
tioned before by approximating the base DVH curve with a
straight diagonal line connecting (0, 100) and (100, 0) in the
dose-volume space. We identify DVH point metrics, such as
D35 or V65, along this approximate base DVH curve and dis-
play the differences (KBP-Clinical) in these metrics as dis-
placements along respective directions (e.g., horizontal
displacements for D35 and vertical displacements for V65) to
illustrate how well various KBP methods compare with the
original clinical plans. Furthermore, we link the displaced
points into approximate DVH-change curves in the visualiza-
tion scheme, so that the area below the diagonal line (i.e., the
approximate base DVH curve) indicates the overall improve-
ment over original clinical plans. In contrast, the curves that
mostly lie above the diagonal line would indicate worse per-
formance than clinical plans.

We note that the choice of the straight diagonal line is
somewhat arbitrary. The goal is to define a common frame-
work to anchor the many different DVH point metrics from
different studies and illustrate the relative region and extent
of performance improvements. Incidentally, for rectum and
bladder in prostate cases, we found that the diagonal line con-
necting (0, 100) and (100, 0) in the normalized dose-volume
space (percent volume and dose) is a good and simple proxy
for the base DVH curves. As shown in Fig. 3, the prescribed
dose-volume constraints used for clinical planning in all nine
published studies mostly lie just above the diagonal line. If
we assume that most clinical plans achieve or slightly surpass

the prescribed constraints, the base DVH curve of the clinical
plans should be well approximated by the diagonal line to the
first order.

Using the diagonal line as the approximate base DVH
curve, we have plotted all the (KBP-Clinical) differences of
the DVH point metrics of the nine prostate studies in the
same dose-volume space after normalizing all values to the
prescription dose. Figures 4 and 5 show the results for rec-
tum and bladder, respectively. In these plots, we encoded the
case/atlas-based methods in green and the model-based meth-
ods in red. Furthermore, we displayed the larger studies with
30 or more samples in thicker lines. As seen in these figures,
most studies show an overall improvement in OAR sparing
for both rectum and bladder although the improvement is
mainly in the mid-dose region. In the high-dose region, the
KBP methods perform about the same as the clinical plans.
The mid-dose region improvement is supported by significant
mean dose reduction demonstrated in some studies. More-
over, the KBP approach and sample size do not appear to
make a difference in performance although the case/atlas-
based methods (green curves) appear to have a larger varia-
tion.

The overall conclusion from all validation studies suggests
that the KBP methods performed equally well on the target
and mostly on par on the OARs with some improvements
against the manual clinical methods. And some studies sug-
gest that this is true especially for models learned from expe-
rienced planners’ datasets and applied to cases generated by
either inexperienced planners or planners who are not experi-
enced with a planning system.

Some studies15,20,22,28,31 have also compared the time and
efficiency of KBP methods to the current manual planning
process. In all cases, the KBP methods were faster and the
improvement is more significant for more complex cases.
Typically, timing comparison is between minutes of KBP
methods and hours of manual planning process. However,
these timing studies are preliminary because while the KBP
methods can be precisely timed, the manual planning process
is more difficult to measure objectively. Carefully designed
prospective studies are needed to objectively assess the effi-
ciency gains of KBP methods.

TABLE V. Continued.

Articles Method type
Sample
size

Validation
target Validation metrics Rectum Bladder Target

Wall et al.55 Case/DVH indices 31 Re-planned vs
clinical

Mean difference Dmean -9.41 Dmean -7.81 V98 =
V100 =
Dmean =
Dmax =

Zhang et al.42 Model/DVH 111 Predicted vs
clinical

Weighted root
mean square error
of DVH

~3% ~3%

KBP, knowledge-based planning; IMRT, intensity-modulated radiation therapy; VMAT, volumetric arc therapy.
The difference direction is “KBP - Clinical”. Thus, negative values mean KBP value is smaller. Where no value is provided, ++ indicates better metrics, – indicates worse
metrics, = indicates similar metrics. The sign * means the metric is statistically significant with a P-value < 0.05. The sign ~ indicates the value is estimated from a graph.
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4. DISCUSSION

The literature indicates that major growth in research efforts
in the narrowly defined data-driven KBP started in 2011 and
has accelerated in the past a few years (See Fig. 2). We believe
two factors contributed to this development. First, IMRT and
related technologies that started in the turn of the century made
the design of high-quality treatment plans possible in this past
decade. Second, the advent of IMRT over this period allowed
large treatment centers to accumulate significant experience
and a sizeable number of high-quality plan data that enabled
major progress in knowledge-based research.

Most KBP studies have focused on prostate, head and
neck, and lung cancers, although other types of cancer have
received increasing attention in recent years. This trend will
likely increase as more and more data and experiences are
accumulated for the more complex or rare cancer types. Fur-
thermore, although one case-based decision support system
has made use of clinical variables and a few others have
incorporated trade-off decisions into their models, most KBP
methods are based on geometric and dosimetric parameters
alone. It can be expected that more integral use of clinical,
biological, and physics-based parameters will further improve
the performance of knowledge-based approaches.

TABLE VI. Performance of KBP on H&N IMRT/VMAT (studies with 10 or more test cases).

Articles Method type
Sample
size Validation target Validation metrics OARs Target

Wu et al.44 Case/DVH 15 Re-planned vs clinical Mean difference Cord + 4 D0.1 cc -6.9
Bstem D0.1 cc -7.7
Cparotid V30 -8.7

Wu et al.45 Case/DVH 40 Re-planned vs clinical Mean difference Cord + 4 D0.1 cc -1.68
Bstem D0.1 cc -2.77 Esoph
D1 cc 1.52
I-inn ear Dmean -3.65
C-inn ear Dmean -4.83

PTV70 V95 0.31
PTV63 V95 0.4
PTV70 D5-95 -0.9
Ring63 D5-95 -0.87
Ring58.1 D5-95 -1.61

Yuan et al.9 Model/DVH 24 Predicted vs clinical Error bound of parotid
mean dose

63% cases are within 6% error
bound

Lian et al.10 – fixed
gantry predicting
tomo IMRT

Model/DVH 44
Tomo/53
FG

Predicted vs clinical Error bound FG predict Tomo parotid mean
dose: 92% cases within 10% error
bound

Wu et al.47 – IMRT
predict VMAT

Case/DVH 12 Re-planned VMATvs
clinical IMRT

Mean difference Cord + 4 D.1 cc -3.7
Bstem D.1 cc -4.9
Larynx V50 -5.3
Brach plexus D.1 cc -1.6
Inner ear Dmean -4.4

Tol et al.12 RapidPlan 15 Re-planned vs clinical Mean difference Dmeans:
Oral Cavity -2.7
Cparotid -1.2
Lower Larynx -5
Upper Larynx -5.7
Inferior PCM -5.8
Superior PCM –4.4
UES -3.5
Comp_swal -4.4

PTVb V95 0.5

Yuan et al.13 Model/DVH 20 Predicted vs clinical Median difference of
parotid D50
Sum of residuals of
parotid DVH

Bilateral sparing cases: 0.34
Single-side sparing cases: 2.2
Bilateral sparing cases: -0.002
Single-side sparing cases: -0.08

Schmidt et al.61 Case/voxel 10 Re-planned vs clinical Mean difference Larynx Dmedian -3.6
Oral cavity Dmedian -5.5

Primary Dmax 1.3
Boost Dmax -1.3
HI -2.4
S_index -0.5

Tol et al.18 RapidPlan 20 Re-planned vs clinical Mean difference Dmean:#
Comp_sali -2.0
Oral cavity -3.6
Comp_swal -5.9

Zhang et al.42 Model/DVH 148 Predicted vs clinical Weighted root mean
square error of DVH

~5.5%

KBP, knowledge-based planning; IMRT, intensity-modulated radiation therapy; VMAT, volumetric arc therapy.
The difference direction is “KBP – Clinical”. Thus, negative values mean KBP value is smaller. Where differences are reported, only those that are statistically significant
with a P-value < 0.05 are listed in this table. The sign # indicates the significance is unclear and the sign ~ indicates the value is estimated from a graph.
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Most studies are retrospective and use relatively small
datasets. Figure 6 shows the average size of training and test
datasets used in studies reported each year since 2011. We
can see from this figure that the number of cases used for
training and testing has not increased significantly in the
existing studies. This is likely why multivariate linear regres-
sion has been quite successful in KBP modeling. More pow-
erful machine learning models such as the artificial neural
network will quickly overfit the small number of training
samples and underperform the simpler regression methods.
Even though the study by Boutilier21 suggests the number of
cases required for training KBP models is relatively small,
we believe these numbers are the result of simpler models.
We should aim to develop larger training databases, so that

we can use more sophisticated models to further improve the
accuracy of KBP methods. It is probably unlikely that indi-
vidual cancer centers will be able to boost sample size dra-
matically in short order. Thus, integration of cases from
multiple centers or tapping into the national clinical trial
datasets would help increase the sample size, although careful
assessment of consistency across the cases is crucial. Further-
more, as the technology becomes mature enough, large-scale
prospective studies will be important to fully assess its perfor-
mance in clinical applications.

Our reviews identify an important issue that the reported
data and metrics used in validation studies are quite different
and this is true especially for OAR sparing. These differences
make it difficult, if not impossible, to pool accuracy results

TABLE VII. Performance of KBP on lung IMRT/VMAT (studies with 10 or more test cases).

Articles Method type Sample size Validation target Validation metrics OARs Target

Snyder et al. RapidPlan 25 Re-planned vs clinical Mean difference IMRT:
Spinal Cord:
D1.2 cc -0.5
D0.35 cc -0.8
D0.035 cc -1.0
VMAT:
Esphagus:
D0.035 1.1

IMRT:
GI 0.66
VMAT:
GI 0.25

McIntosh et al. Case/voxel 17 Predicted vs clinical Mean average difference over
DVH of all ROIs

1.33a

Faught et al. RapidPlan 20 (functional-guided plans) Re-planned vs clinical Mean difference Functional lung:
V20 -1.8
Dmean -0.95
Lung-GTV:
V20 -1.6
Dmean -0.66
Esophagus:
Dmean –2.6

KBP, knowledge-based planning; IMRT, intensity-modulated radiation therapy; VMAT, volumetric arc therapy.
The difference direction is “KBP – Clinical”. Thus, negative values mean KBP value is smaller. Where differences are reported, only those that are statistically significant
with a P-value < 0.05 are listed in this table.
aNote that mean average difference (MAD) is not significant.

FIG. 3. Prescribed dose-volume constraints used for manual planning. (a) Rectum constraints; (b) Bladder constraints. Notice that in each case, the diagonal line
(thick brown) is a reasonable first-order approximation of the dose-volume histogram curve. [Color figure can be viewed at wileyonlinelibrary.com]
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from multiple studies together in any statistically meaningful
manner. The proposed visualization scheme allowed us to
gain important insights into how well different types of KBP
methods have performed in prostate cancer planning.

However, this method is qualitative in nature. And its applica-
bility to other types of cancer planning warrants further
investigation. We believe it is critical to promote more stan-
dardized metrics and data reporting in future KBP studies, so

FIG. 5. Visualization of knowledge-based planning (KBP) method performance in bladder dose sparing. The thick diagonal line in black is the proxy dosevolume
histogram (DVH) curve of clinical plans. The green and red DVH curves represent the approximated average performance of the re-planned cases in nine KBP
studies relative to the clinical plans. The green curves indicate case/atlas-based methods while the red curves indicate model-based methods. The thicker lines
indicate studies with 30 or more sample cases. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Visualization of knowledge-based planning (KBP) method performance in rectum dose sparing. The thick diagonal line in black is the proxy dosevolume
histogram (DVH) curve of clinical plans. The green and red DVH curves represent the approximated average performance of the re-planned cases in nine KBP
studies relative to the clinical plans. The green curves indicate case/atlas-based methods while the red curves indicate model-based methods. The thicker lines
indicate studies with 30 or more sample cases. [Color figure can be viewed at wileyonlinelibrary.com]
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that proper meta-analysis can be applied to quantitatively esti-
mate the performance of KBP methods. Without the strong
evidences, clinical centers will not be able to objectively
select and implement the most appropriate KBP methods.

In addition to larger scale and more standardized evalua-
tion of data-driven KBP methods, future research in this area
will likely focus on more sophisticated modeling methods
and more complex planning scenarios. Both directions will
be enabled by the development of larger database of high-
quality clinical plans through integration efforts across con-
sortium of institutions as well as accumulation of planning
cases within individual institutions. Recent publications have
shown promising results using complex nonlinear models
such as convolutional neural networks to successfully predict
voxel-level dose in some cancer sites. Work has also begun to
handle more complex cancer targets, more complex trade-off
decisions, as well as more complex treatment techniques.
Beyond more complex and powerful models, the sophistica-
tion of modeling methods will also mean more advanced
algorithms for learning, evolving, and integrating models. So
far, data-driven KBP has focused on building models in a
batch mode, that is, learning from static datasets. As these
models mature and are deployed in clinical use, another
important research question will address how these models
can be improved as new clinical cases are accumulated and
new treatment techniques are developed.

As discussed in the Introduction, automatic planning
methods represent another class of knowledge-based methods
for IMRT planning. These methods directly encode planning
knowledge as rules and algorithms.3–5 A similarly large num-
ber of articles have been published in the past decade. A
number of methods have also been implemented commer-
cially. These methods were not included in this review
because the central mechanisms are significantly different
from the data-driven KBP approaches. These methods
deserve a separate review to properly understand the state-of-

the-art of its approaches and performance. Interestingly, a
recent study by Wang et al.80 has applied a data-driven KBP
model to perform quality assurance of a commercially avail-
able automatic planning algorithm and demonstrated the
potential of using KBP models to improve the performance
of automatic planning algorithms. Another study by Babier
et al.81 incorporated a KBP method into an automated plan-
ning method. We believe the combination of KBP models
and automatic planning algorithms has a great potential to
lead to further improvement of planning quality and effi-
ciency in the future.

This review has examined KBP-related papers since 2011.
There are a few limitations. First, the review may have missed
some papers due to use of a single Medline database and
incomplete search strings. Second, the article selection crite-
ria may have missed some relevant articles. For example, this
review included only journal articles written in English lan-
guage. Other publication venues and other languages may
include valuable reports on KBP studies. Finally, as sug-
gested in the publication trends numerous additional works
have been published after the start of this project (e.g., Ref.
[79,81]). These methods employ innovative strategies for
using the KBP models to further improve plan quality and
efficiency suggesting the need for a timely update of this
review in the near future.

5. CONCLUSION

We have performed a systematic review of KBP methods
and their validation results. A total of 73 articles are included
in this review. These articles appeared in 16 journals and cov-
ered 21 cancer types and the number of publications has been
increasing in the past years. We identified two major
approaches to KBP, one based on cases and atlases, and the
other based on statistical models and machine learning. In
validation studies, both approaches have performed strongly.

FIG. 6. The size of datasets used for training and validating knowledge models. The error bars indicate standard deviation. Note that the large deviations in 2016
and 2017 are due to one significantly larger dataset. [Color figure can be viewed at wileyonlinelibrary.com]
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The KBP methods are generally equivalent to expert level
planners in terms of plan quality but preliminary results indi-
cate that they are significantly more efficient. These encour-
aging results suggest that clinical application of KBP to some
cancer types such as prostate is achievable in the near future,
ideally following additional validation studies using standard-
ized metrics and prospective designs. Further development of
KBP is warranted for more rare and more complex cancer
sites. Larger datasets that are integrated across multiple institu-
tions will be critical to achieve these more challenging goals.
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