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Environment, diseases, lack of exercise, and aged tendency of population have

becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable

risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia.

Effective interventions to combat this vascular function decline is becoming increasingly

urgent as the rising hospitalization rate caused by vascular aging-related diseases.

Fortunately, recent transformative omics approaches have enabled us to examine

vascular aging mechanisms at unprecedented levels and precision, which make our

understanding of slowing down or reversing vascular aging become possible. Epigenetic

viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms,

is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes

in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and

histone proteins, consequently, influence the sensitivity and activities of signaling

pathways in cells and tissues. A growing body of evidence supports correlations between

epigenetic changes and vascular aging. In this article, we will provide a comprehensive

overview of epigenetic changes associated with vascular aging based on the recent

findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic

changes, and future perspectives.

Keywords: vascular aging, epigenetics regulation, DNAmethylation, histonemodifications, chromatin architecture

INTRODUCTION

Aging processes are accompanied with the accumulation of degenerative processes and changes in
both physiological and functional parameters in mammals. In humans, aging associated vascular
diseases constitutes a significant risk to health and the quality of life for individuals. Indeed,
approximately 4 million people die from cardiovascular diseases (CVDs) each year in China (1).
With the dramatic growth in aged populations around the world, CVDs are one of the biggest
global challenges to health care systems.

Undoubtedly, a substantial amount of aging research has focused on finding ways to remove or
counteract the loss of biological function in cells and tissues, with the hope of maintaining health or
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to even extend lifespan. Advances in our understanding of
genetics including, “the central dogma,” “heritable traits” and
the molecular mechanisms of gene regulation has underpinned
breakthroughs in this field and has spawned a growing branch of
research known as epigenetics. Epigenetics refers to a phenotype
or changes in gene expression caused by mechanisms other than
the alteration in a genetic or DNA sequence. These changes result
from random events, the impact of environmental factors, diet,
and stress, each of which can have significant influence on health
and diseases processes in humans (2). Our understanding of
the biological processes associated with the aging has advanced
in recent years. Indeed, the causes and consequences of aging
have been categorized by some researchers into specific “aging
phenotypes” grouped by association like for example, oxidative
stress and energetics, mitochondrial dysfunction, homeostatic
mechanisms, shortening of telomeres, cell senescence, DNA
damage, defects in proteostasis, and exhaustion of progenitor
cells (3, 4). One common thread linking each of these catagories
is that the biological aging process takes many years before it
finally translates into structural and functional deterioration.
Therefore, to delay aging or, to prevent it from worsening, we
first need to understand the fundamental processes that govern
these changes.

During vascular aging dysfunctions in blood vessels, including
cellular senescence, vascular remodeling, vascular homeostatic
imbalance, inflammation, VSMCs invasion, fibrosis, calcification,
the decline in oxygen and nutrient delivery that drives disease
severity (5). In each of these scenarios, epigenetic changes have
been reported to play important roles in these processes (6).
To date, various studies have reported on the mechanisms by
which vascular damage occurs during aging, particularly in
vascular-related tissues viz. ECs, VSMCs, epidermal cells, and
extracellular matrix (ECM). Vascular aging provides instructions
for selective gene expression, and it is closely related to a
variety of vessel-related diseases, such as hypertension, diabetes,
atherosclerosis, and hyperlipidemia. Dysregulation in these
systems affects DNA modifications, chromatin structure, and
gene expression, and is partly responsible for the occurrence and
development of vascular aging and age-related diseases in the
cardiovascular system (7). Therefore, an understanding of the
intrinsic mechanisms of epigenetic regulation in vascular tissues
is paramount for the future development of strategies to reduce
disease burden in the general population. Currently, epigenetic-
mediated aging mechanisms have gained interest from the
academic community fueled by advances in omics technologies.
These epigenetic mechanisms including DNA methylation
(DNAm), RNA methylation (RNAm), histone modifications,
and non-coding RNAs (ncRNAs) regulation. In the current
review, the pathophysiological changes and roles of epigenetic-
mediated vascular aging will be discussed. In addition, advances
in our understanding of the underlying molecular mechanisms,
and potential therapeutic strategies to manage these changes
will be covered. It is hoped this information will assist in
the development of novel approaches to diagnosis, treat, and
manage vascular-related diseases in humans as summarized in
Figure 1.

EPIGENETIC MECHANISMS IN VASCULAR
AGING

DNA Methylation
The process of DNA methylation (DNAm) has been known
since 1950 (8), and a further 17 types of chemical modifications
have since been discovered that impact on DNA (9). DNAm
acts via the attachment of methyl groups, hydroxymethyl, or
other moieties to the carbon-5 position in the dinucleotide
CpG. CpG islands (regions of DNA with a high G+C
content and a high frequency of CpG dinucleotides) usually
reside in or adjacent to the transcription start site (TSS).
The DNAm status of DNA can therefore influence gene
expression (either suppresses or activates) by influencing the
interactions of transcription factors (TFs) with target sequences.
The addition of methyl groups to DNA is regulated by
DNAmethyltransferases (DNMTs) including DNMT1, DNMT2,
DNMT3A, DNMT3B, DNMT3L. Interestingly, both DNMT2
and DNMT3L are non-canonical family members that lack
DNMT activity (10). DNAm can be divided into two main
processes viz. hypermethylation and hypomethylation. DNA
hypermethylation (promotor region) usually leads to the gene
transcriptional repression, whereas hypomethylation causes gene
transcriptional activation (11). Interestingly, Agha and colleagues
recently showed that hypermethylation levels at 52 CpG regions
in blood leukocytes can be used as a predictive risk marker for
myocardial infarction and coronary heart disease (12). Similarly,
in atherosclerotic patients, global DNA hypomethylation was
found in peripheral white blood cells, vascular smooth muscle
cells (VSMCs), and plaques (13), which means that deleterious
genes could be overexpressed, of note, it depends on the balance
between hazardous genes and the good ones.

DNA hydroxymethylation is also a crucial component of
the epigenetic system, and it is governed by the activities of
serine hydroxymethyltransferases (14). Ten-methylcytosine
dioxygenase family members 2 (TET2) is one of the serine
hydroxymethyltransferase involved in the oxidation of 5-
methylcytosine (5-mC) to generate 5-hydroxymethylcytosine
(5-hmC). Overexpression of TET2 attenuates intimal hyperplasia
(15). DNA modification rarely affects vascular aging through
a single enzymatic pathway, but rather alters multiple
genes networks. DNMT1, DNMT3A, DNMT3B, TET2,
and sensitive components of these networks are crucial as
vascular aging targets. Decreased DNMT1 expression occurs
in replicative senescent aortic SMCs and correlates with
rates of hypomethylation of COL15A1 (over-expressed in
the atherosclerotic lesion and localized to the atherosclerotic
cap), this linking epigenetic regulation of DNMT1 with SMC
phenotypes and prevalence rates of atherosclerosis (16).
Epigenetic network including DNMT3A and TET2 are thought
to act as tumor suppressor genes via their propensity to
aid recruitment of histone deacetylases to gene promoters.
Interestingly, in the cardiovascular system, reduced activity
of DNMT3A and TET2 promotes artery smooth muscle cell
proliferation and endothelial cell dysfunction. It is likely that
these two genes also play corresponding roles in aging (17).
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FIGURE 1 | Schematic diagram of epigenetics-mediated vascular aging in cardiovascular system. Multiple factors contribute to vascular aging phenotypes, including

environment factors like smoking and virus, various diseases like diabetes and metabolic syndrome, lack of exercise, and normal aging. Epigeneitc modifications of

nucleic acid (DNA and RNA) like methylation and demethylation, histone modifications [like methylation, acetylation, ubiquitination, phosphorylation, 3-dimensional

(3D) chromatin architecture], and non-coding RNAs, drive vascular aging processes. Ac, acetylation; Me, methylation; P, phosphorylation; Ub, ubiquitination.

Indeed, DNMT3B together with DNMT3A form a protein
complex that interacts with histone deacetylases HDAC1,
HDAC2, Sin3A, and the transcriptional suppressor proteins,
Rb, TAZ-1, and heterochromatin proteins HP1, SUV39H1. As a
result of these interactions, normal levels of DNA methylation
and gene silencing are maintained. For example, complex in
CpG sites in the promoter of p16(INK4A, an aging marker) leads
to downregulation of p16(INK4A) expression (18). Methylation
processes also affected by the supply of methyl groups,
methylation patterns, folic acid metabolism, and hormone
levels. There are still many unknown phenomena in the current
research, and many studies need to be further conducted, such
as the relationship between random DNA methylation drift in
vascular aging. We believe that the methylation regulation is still
in the experimental/initial stage, but has attracted the attention
of many scholars.

Histone Modifications
Histone proteins are basic proteins abundant in lysine and
arginine residues and include H1, H2A, H2B, H3, and H4.
These proteins are responsible for maintaining chromatin
structure, mediating dynamic and long-term gene regulation,
post-translational mutations, and functional variation. These
proteins are subjected to a myriad of modifications including
acetylation, methylation, phosphorylation, ubiquitination,
butyrylation, formylation, and succinylation. Histones are
tightly associated with DNA and altered histone modifications
impacts on DNA replication and repair, and the rates of
transcription thus impacting on gene expression. Indeed,
aberrant histone modifications, for example the dysregulation

of histone deacetylase (HDACs), site- specific loss, and gains of
heterochromatin are proposed as hallmarks of epigenetic change
that can impact on 3D chromatin structure and control gene
expression (19). However, many functional changes brought
by histone modifications remained largely uncharacterized
but research points to a complex regulatory network affected
by the spatial structural features and external stress (20). For
example, omics approaches reveals that the alteration in the
three-dimensional (3D) chromatin architecture caused by
histone modification is a crucial epigenetic element important in
development, cancer, and aging (21).

Another important class of enzymes are the histone
methyltransferases (HMTs) that catalyze histone methylation,
typically at lysine and arginine residues present in histone
proteins. The mono-methylation of H3K27, H3K9, H4K20,
H3K79, and H2BK5 is usually related to gene activation, while
that of tri-methylation of H3K27, H3K9, and H3K79 confers
inhibition (22).

Histone acetyltransferases (HATs) and histone deacetylases
(HDACs) are the most widely studied histone-modifying
enzymes in vascular aging. HATs transfer acetyl group onto
histone proteins, which in turn neutralizes the charge of histone,
and weakens its interaction with DNA. Acetylation of H3K122
and H3K64 breaks the interaction between histone tails on
adjacent nucleosomes and loosens the connection between
nucleosomes (23). Histone acetylation can be identified by
the bromodomain of TATA-binding protein-associated factor1
(TAF1), which attracts various TFs, and promotes transcription.
HDACs have opposite effects to that of HATs and a dynamic
balance between the activities of HATs and HDACs governs
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gene expression. In addition, histone phosphorylation plays a
role in altering chromatin architecture like for example, the
phosphorylation of H3T118 that enhances DNA accessibility,
nucleosome mobility, and nucleosome disassembly (24). Other
modifications including histone H2A ubiquitination reinforce
nucleosome stability (25), and the hyper-ubiquitination of this
target is considered an aging associated biomarker (26). In
addition, chromatin architecture is also a crucial regulator.
Chromatin is composed of different structural units, from the
compartment, topologically associated domains to loops, and
all these units have their characteristics and regulate chromatin
function and gene expression (27). Indeed, the CCCTC-binding
factor (CTCF) architectural protein can be up-regulated in
pluripotent stem cells (iPSCs) helping in the formation of
compact chromatin loops. However, reductions in CTCF disrupts
the loop structure and promotes the overexpression of the
p16 (INK4a), an aging-induced gene (28). Histone modification
in the cardiovascular system is an active field of research
with growing evidence implicating a role of HDACs in the
regulation of vessel homeostasis. Indeed, HDAC4 regulates
vascular inflammation via activation of autophagy in endothelial
cells (29) and the deletion of HDAC9 promotes inflammation
resolution and reverse cholesterol transport in atherosclerosis
and coronary heart diseases (30, 31). In addition, elevation of
acetyltransferase p300 accelerates aging (32). Histone H3 lysine
4 (H3K4) methyltransferase Smyd3 (SET- and MYND- domain-
containing proteins) directly binds to the promoter region of
Cdkn1a (coding for p21). This interaction causes an increase
in H3K4me3 and leads to the activation of p21 giving rise
to SASP. These SASPs can be reversed by the Smyd3-specific
inhibitor EPZ031686 (33), but enhanced when the Hsp90α binds
to Smyd3 (34). Collectively, the available research clearly shows
that modification of histone proteins, either by methylation,
acetylation, or ubiquitination, has downstream impacts on genes
associated with vascular aging. Other systems include the Smyd
family proteins that methylate H3K9, H3K27, H3K36, H4K20,
and H3K79 (35). Interestingly, tri-methylation of H3K27 and
H3K36 is associated with accelerated epigenetic aging in humans
(36). These impacts are linked to changes in 3’ untranslated
region (UTR) length and the methyltransferase (MET-1)
activities (37, 38). H3K27 is also a target for histone demethylase
Jumonji domain-containing protein 3 (JMJD3) regulates vascular
neointimal hyperplasia by mediating H3K27 tri-methylation
(39). These modifications enlighten us that modifications at
variant sites impact gene function in different styles.

In addition, NAD+ -dependent processes are critical for
maintaining tissue andmetabolic homeostasis relative to vascular
aging. Diminished tissue concentrations of NAD+ leads to
downregulation of SIRT family expression. The SIRT family
proteins are positively associated with longevity and roles for
SIRT1 in reducing vascular senescence, inflammation, DNA
damage, and atherosclerosis are widely reported (40). Here
we focused on SIRT6 and SIRT3 in vascular function. SIRT3
enhances the expression of the blood pressure regulator GATA5
(GATA-binding protein 5). The endothelial specific loss of
GATA5 causes vascular endothelial dysfunction via the inhibition
of transcriptional repressor Nkx3 mediated by deacetylation

of histone H3K9. The SIRT6/GATA5 signaling pathways could
be a way to reduce endothelial senescence and apoptosis (41).
Another anti-atherosclerotic mechanism linked to SIRT6 is in
the maintenance of endothelial function via its propensity to
deacetylate H3K9 in the promoter region of the pro-atherogenic
target TNFSF4 (42). Other components associated with vascular
function include the p66shc, an epigenetic factor associated
with diabetes-induced vascular senescence via its ability to
inactivation miR-34a (43) and SIRT3 (44). SIRT3 is mainly
expressed in mitochondria, while SIRT6 in the nucleus this fact
highlighting the challenging nature of developing drugs targeting
these proteins.

Non-coding RNAs
NcRNAs have been shown to be crucial for the maintenance of
vascular function by regulating nuclear transcription and gene
translation in cytoplasm. NcRNAs are divided into small or
short ncRNAs [(smaller than 200 nucleotides (nt)], long ncRNAs
(lncRNAs, longer than 200 nt), microRNAs (miRNAs, 21–25 nt)
belonging to the small class of RNAs, and circular RNAs (circ
RNAs, 300–500 nt) pertain to lncRNAs. To date, various classes of
ncRNAs have been shown to influence inflammation, senescence,
cellular function, and differentiation. For example, miR-92a
blocks endothelial proliferation while miR-24 promotes vascular
stress (45). miRNA bind to mRNA promoting degradation or
the inhibition of translation. CircRNAs interact with miRNAs
to form a circRNA-miRNA-mRNA loop regulatory unit, and
crosstalk between components of this system plays a crucial role
in the development of vascular diseases by altering pathways
like cell adhesion, immune response, and regulation of cell
adhesion (46). LncRNAs are often associated with homologous
DNA and RNA sequences exerting their regulatory role in
cells and tissues (47). Small nucleolar RNA (Sno-ncRNAs, 60–
300 nt) are a class of nuclear-enriched intron-derived ncRNAs
lacking 5’ caps and 3’ poly(A) tails. These molecules are widely
expressed in tissues and are composed of two types, box C/D
and box H/ACA snoRNAs; these types respond to 2’-O-ribose
methylation and pseudouridylation, respectively (48). SnoRNAs
are involved in oxidative stress responses and may therefore be
important in regulate aging processes (49). MiR-22 and miR-128
possess therapeutic and prognostic potential as a novel target
to treat post-infarct and aged-VSMC remodeling (50, 51). This
ncRNA controls VSMC phenotypes and injury-induced arterial
remodeling by modulating multiple genes including methyl-
CpG binding protein 2 (MeCP2), SIRT1, HDAC4, and EVI1.
Other epigenetic modifications including the hypomethylation
of the lncRNA H19 (H19) promoter region can lead to the
silence of NOTCH1. In this cascade, silencing of NOTCH1
prevents the recruitment of p53 to the NOTCH1 promoter.
In turn, this leads to calcific aortic valve disease, endothelial
injury, matrix remodeling, angiogenesis, and calcification (52).
CircRNAs and snoRNAs are also regarded as critical components
of ncRNAs. For example, circ ANRIL levels correlate with
increased atherosclerosis risk (53). Moreover, the target SnoRNA
U17 regulates cellular cholesterol trafficking (54). However, the
molecular mechanism of action for each of these regulates is still
unclear and warrants further investigation.
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Factors Link to Epigenetic Mechanisms
The epigenetic network encompasses a wide range of biological
reactions, and it is likely that even with current technologies,
researchers only capture a fraction of the changes that occurs
in cells and tissues. Here we hold the opinion that some factors
linked to epigenetic systems associated with vascular aging is of
importance, as summarized in Table 1.

ROS
ROS (reactive oxygen species) regulates vascular aging by
impairing the function of endothelial nitric oxide synthesis
(eNOS). Two regulatory mechanisms are involved. The first
involves epigenetic mechanisms impacting on ROS accumulation
like for example, NADPH oxidase (NOX). NOX is a source
of ROS that is significantly increased in vascular aging. It is
regulated by the transcription factor megakaryocytic leukemia 1
(MKL1). MKL1 recruits the histone acetyltransferase (MOF) to
modify the chromatin structure surrounding NOX promoters,
and this leads to the enhancement of NOX catalytic activity.
Increased NOX activity drives rates of ROS accumulation in
tissues (55). The second mechanism involved in ROS production
involves the epigenetic processes that abolish ROS production or
damage. In this regard, ROS scavenging enzymes like superoxide
dismutase 2 (SOD2) are critical. Excessive ROS promotes
increased levels of methylation at the SOD2 promoter region
causing transcriptional silencing. Moreover, expression levels
of SOD2 can be enhanced by SIRT3 (56). We speculate that
SOD2 activator molecules would be useful therapeutic tools to
manipulate SOD levels on tissues and deserves investigation.
Indeed, SOD can reduce excess ROS and contributes to
facilitating femoral artery endothelial function (57).

ECs synthesized NO at discrete concentrations whereby
it suppresses VSMC relaxation and maintains low rates of
cellular proliferation. However, under physiological conditions
of excessive ROS production rates of NO production become
dysregulated, promoting arterial stiffness, collagen synthesis,
intimal hyperplasia, and apoptosis. Interestingly, treating
with the NOX1/4 inhibitor, GKT137831, dampens ROS
generation and is protective in this setting (58). Furthermore,
endogenous ROS contribute to DNA repair and impairment,
and this regulates cell development and differentiation in
a PI3K/Akt-dependent manner (59). Aberrant activation of
AKT disturbs rates of cellular proliferation, cell survival, and
metabolic homeostasis by altering DNA methylation and
histone modifications; processes impacted by the activities of
Foxo1/3, p53/21-dependent pathways that drives rates of cellular
senescence (60, 61).

Integrin Family
Integrins are a family of membrane receptors that are expressed
widely on the surface of cell membranes. These proteins
mediate cellular adhesion to the extracellular matrix and
function by allowing cells to sense changes to their localized
environment. Integrins are crucial components with roles
in thrombosis, leukocyte infiltration, VSMC aggregation, cell
migration, ECM deposition, and in the vascular phenotype
switch (62). Interestingly, integrin β1, has recently been found

to mediate capillary aging and angiogenesis. Indeed, loss of
endothelial integrin β1 leads to endothelial cell differentiation
defects, cell adhesion suppression, reduced capacity to aid
cellular migration, and survival inhibition during angiogenesis.
In contrast, upregulation of integrin β1 results in SASP
(63, 64). In terms of epigenetic mechanism, integrin β1
expression is regulated by β-galactoside α2,6-sialyltransferase-
1 (St6gal1) DNAm (65). Other integrin proteins like integrin
αvβ3 promote coronary arteriolar dilation and angiogenesis in a
HDAC5-dependent manner (66). Furthermore, integrin Gα13 is
atheroprotective (67).

Toll-Like Receptor (TLR) Family
TLRs can be activated during physiological and pathological
aging, and induction results in a robust inflammatory response.
For example, endothelial TLR4 drives lesion formation and
causes stroke and seizure (68). TLR4 expression negatively
correlates with regulatory factor X1 (RFX1). RFX1 reportedly
increases rates of methylation of histone H3K9, and decreased
levels of H3 and H4 acetylation in the TLR4 promoter
via the involvement of DNMT1, HDAC1, and histone-
lysine N-methyltransferase SUV39H1 (SUV39H1), respectively.
In addition, TET2 impacts on TLR4 via the NF-κB p65
pathway (69). Dimerization of TLR2 and 4 induces the
activation of the NLRP3-inflammasome resulting in diminished
endothelial regeneration (70). TLR9 recognized CpG-motif of
oligodeoxynucleotides (ODN) and elicited immune responses
that lead to the induction of apoptosis (71). Clearly, given the
intimate role that TLRs play in vascular damage and aging, these
proteins could be useful drug targets.

Ca2+ Channels
Ion channels are involved in signaling networks and homeostatic
regulation. Genetic variants coding for ion channels and
epigenetics targets can impact on structural disorganization and
functional defects. Ca2+ is a secondary messenger needed for
proper cell function. The Ca2+ channel superfamily includes
transient receptor potential (TRP) family of proteins namely,
TRPC, TRPV, TRPM, TRPA, TRPML, TRPP, the ORAI family,
and Ca2+-activated K+ (KCa) channel family (72). Combined
these channels are critically important in the regulation of
calcium signaling systems in cells and tissues. Some Ca2+

channels play a direct role in vascular aging. For example, TRPCs
are non-selective cation channels permeable to calcium ions.
Among them, TRPM7 affects histones H3K9, H3K27 acetylation,
H3 phosphorylation, and chromatin covalent modifications
(73). Increased acetylation status of H3K27 is associated
with vascular aging. Tentative links between the Orai family
members and vascular aging have also been proposed in recent
times (74), however, the epigenetic mechanisms involved in
their regulation are still unknown. Other calcium channels
including the Ca2+-activated K+ (KCa) channels that act as
transducers, that respond to elevated intracellular calcium
([Ca2+]i) signals causing hyperpolarization of Vm and decreased
vascular resistance thereby enhancing blood flow. KCa channels
facilitate Ca2+ influx into cells via non-selective cation channels
that can stimulate increased synthesis of nitric oxide (NO)
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TABLE 1 | Vascular aging-associated epigenetic alterations and its rationale.

Gene/protein Function Aberration Suggested mechanisms Study model Tissue/cell type Outlook

DNA and RNA modification

DNMT1 DNMT LOF/OE Gene-specific DNA methylation in vitro Coronary Plaque,

ECs, Aortic SMCs

Inhibitors have been in clinical

use, more small molecular

compounds are under

developing

DNMT3A DNMT LOF/OE Gene-specific DNA methylation in vitro -

DNMT3B DNMT LOF/OE Gene-specific DNA methylation in vitro -

METTL3 RNA

methylation

LOF Gene-specific RNA methylation in vitro Human, mouse

aortic VSMCs

Alleviates cellular senescence

TET2 DNA

hydroxylase

LOF Gene-specific DNA methylation,

increase 5-Mc and decrease 5-hmC

in vitro and in vivo SMCs Potential DNMT inhibitor

Histone modification

HDAC4 HDAC OE Regulates vascular inflammation in vitro and in vivo VECs Inflammation inhibition

HDAC9 HDAC OE HDAC9 deficiency promotes

inflammation resolution

in vivo Human Block atherosclerosis

progression

P300 HAT OE Elevated P300 leads to vascular injury in vitro and in vivo Human/cardio-

vascular

system

Inhibition P300 relieves

cardiovascular aging

SMYD3 HMT OE SMYD3 increases p21 and promote

cellular senescence

in vitro and in vivo VECs Prohibit SMYD3 rescue

endothelial senescence

JMJD3 HDM OE Attenuates vascular remodeling in vitro and in vivo VSMCs Inhibit neointima formation after

injury

SIRT1 HDAC LOF SIRT1 homeostasis reduce vascular

senescence, inflammation, DNA

damage

in vitro and in vivo VECs, VSMCs Positively associated with

longevity

SIRT3 HDAC LOF Modulates age-associated

mitochondrial biology and function

in vivo Human, mouse

aortic

Diabetes-induced vascular

senescence

SIRT6 HDAC LOF Prevents endothelial injury in vivo VECs Anti-atherosclerotic

Non-coding RNAs

miR-22 miRNA LOF Promotes arterial remodeling by

mediating MeCP2, SIRT1, HDAC4,

and EVI1

in vivo VSMCs A potential therapeutic agent in

coronary atherosclerosis

miR-128 miRNA OE Targeting KLF4 and regulate VSMCs

phenotypic switch

in vitro and in vivo VSMCs Inhibition of miR-128 is beneficial

to cardiovascular

miR-214 miRNA OE Preventes Ang II-induced periaortic

fibrosis

in vitro and in vivo Human, mouse,

rat aortic and

plasma

A target to prevent vascular

stiffening

H19 lncRNA OE H19 silenced NOTCH1 by preventing

the recruitment of p53 to its promoter

in vitro and in vivo Human, mouse

calcific aortic valve

-

ANRIL circRNA LOF Promotion of ASVD by modulating

INK4/ARF gene transcription

in vitro HUVEC and other

cells

A possible ASVD diagnostic

marker

U17 SnoRNA LOF Regulates cellular cholesterol

homeostasis

in vitro CHO-K1 cells and

NIH3T3 cells

-

ROS-mediate epigenetic changes

MOF HAT OE Modify the chromatin structure

surrounding the NOX promoters

in vitro and in vivo Macrophages and

cardiomyocytes

-

SIRT3 HDAC LOF Enhance the expression of SOD2 in vivo Human, mouse,

and arterioles

-

Epigenetic in Integrin family

Integrin β1 membrane

receptor

LOF Hypermethylation status of St6gal1

restrains Integrin β1 and actives

adipogenesis

in vitro and in vivo Mouse, 3T3-L1

cells

A possible suppressor targeting

St6gal1 hypomethylation

Integrin αvβ3 membrane

receptor

LOF Influence angiogenesis and relate to

HDAC5

in vitro HUVECs -

(Continued)
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TABLE 1 | Continued

Gene/protein Function Aberration Suggested mechanisms Study model Tissue/cell type Outlook

Integrin Gα13 membrane

receptor

LOF Suppress the phosphorylation of

YAP/ TAZ-JNK and reduces plaque

formation

in vitro and in vivo Mouse carotid

artery, HUVECs

-

Epigenetic in toll like receptor family

TLR2 Toll like

receptor

OE Through the association with

epigenetic markers, DNMT1, HDAC1,

SUV39H1, TET2, and promote NF-κB

in vitro and in vivo Coronary artery

disease

An inflammation inhibition target

TLR4 OE

TLR9 Toll like

receptor

OE Mediate immune responses by

recognizing CpG-motif of ODN

in vitro Raw264.7

macrophage

-

Epigenetic in Ca2+ family

TRPM7 calcium

channel

OE Promotes histones H3K9, H3K27

acetylation, H3 phosphorylation107,

and chromatin covalent modifications

in vitro and in vivo Mouse, ESCs -

LTCCs calcium

channel

OE Negatively regulating by miR-328 in

hypertensive rats

in vitro VSMCs -

Epigenetic in hormone family

Testosterone hormone LOF Ameliorates vascular aging via the

GAS6/AXL signaling pathway, GAS6

can be activated by lncRNA SWINGN.

in vivo Mouse, carotid

artery

-

Progesterone hormone LOF Changing the responses of NO

handling via a H3K27ac- and

H3K27me3-dependent manner

in vitro Endometrial

stromal cells and

decidualized cells

-

Estrogen hormone LOF Activates SIRT1, H3 acetylation,

inhibits VSMCs proliferation,

increases endothelial migration

in vitro and in vivo Human, rat carotid

artery

-

Epigenetic in MMP family

MMP2 ECM enzyme OE SIRT1 negatively regulates aortic

MMP2 and MMP9 expression, and

blocks medial degeneration

in vitro and in vivo Mouse, thoracic

aorta SMCs

-

MMP3 ECM enzyme OE Regulated by H3K9me2 in vitro and in vivo Mouse,

atherosclerotic

lesions, VSMCs

-

MMP9 ECM enzyme OE Is a driving factor in

macrophage-dependent inflammation

in vitro and in vivo Mouse,

atherosclerotic

lesions, VSMCs

Inhibition of MMP is a target to

reduce macrophage polarization

MMP12 ECM enzyme OE Regulated by H3K9me2 in vitro and in vivo Mouse,

atherosclerotic

lesions, VSMCs

-

HAT, histone acetyltransferase; HMT, histone methyltransferase; HDM, histone demethylase; DNMT, DNA methyltransferase; HDAC, histone deacetylase; VECs, vascular endothelial

cells; ASVD, Atherosclerotic vascular disease; NOX, NADPH oxidase; HUVEC, Human Umbilical Vein Endothelial Cells; VSMCs, vascular smooth muscle cells; LOF, loss of function;

OE, overexpression; ESCs, embryonic stem cells; ECM, extracellular matrix.

(75). Dysregulation of Ca2+ handling and the activities of
KCa channels precipitate reductions in NO levels, leading to
increased vascular stiffness, and eventually vascular aging. Lastly,
dysfunction of L-type voltage-gated Ca2+ channels (LTCCs) exert
an epigenetic influence by negatively regulating levels of miR-328
in artery-derived VSMCs (76).

Hormone
After entering adolescence, males and females produce germ cells
and secrete sex hormones (the sex steroid estrogens, androgens,
and progesterone). Sex hormones promote the development
of mature reproductive organs, reproductive function, and the
secretion of sex hormones and regulatory systems. Mounting

evidences have shown that the incidence of vascular diseases in
elder male and postmenopausal female were age- and gender-
specific. Both estradiol and testosterone, which modulate female
and male endothelial function, typically fall in post-menopause
females and elderly males. The low level of these two hormones
correlates with vascular aging in women and vasomotor
instability in male (77). The sex hormone cytosolic/nuclear
receptors for estrogen, progesterone, and testosterone have been
identified, and shown to function in vascular endothelium
and smooth muscle cells signaling networks (78). Indeed,
it is likely that these hormones are involved in vascular
cell proliferation, development, and in cellular senescence.
For example, testosterone ameliorates vascular aging via the
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GAS6/AXL signaling pathway (79). GAS6 signaling is reported to
increase NO bioavailability via the androgen receptor-mediated
activation of endothelial NO synthase (eNOS) (80). Testosterone
may also function via lncRNA-SWI/SNF complex crosstalk
(81). Interestingly, while therapeutic doses of testosterone can
benefit elderly individuals, excessive circulatory testosterone has
a detrimental effect. This negative impact of testosterone appears
to be due to impaired endothelial progenitor cells function
partly linked to the hypermethylation on the estrogen receptor
β’s promoter. Similarly, the administration of progesterone in
postmenopausal women have been widely used therapeutically
for the existence of epigenetic phenomena that progesterone
influences the responses of cells to NO handling via a H3K27ac-
and H3K27me3 dependent process (82, 83). Similarly, estrogen
acts on vascular aging by activating SIRT1, H3 acetylation, and
promotes miR-203 expression. These changes inhibiting VSMCs
proliferation and promoting miR-126-3p expression that results
in endothelial migration (84, 85). It is feasible that the activation
of SIRT1 by estrogen partly explains why female have a higher life
expectancy than that of males.

MMP Family
Metalloproteinases are a group of proteolytic enzymes that are
involved in the metabolism of the extracellular matrix. These
enzymes play essential roles in angiogenesis, wound healing,
and fibrosis. Interestingly, overexpression of SIRT1 resulted in
lower MMP2 expression in VSMCs and this correlates with
the deacetylating of histone H3 lysine 9 (H3K9) sites within
the MMP2 promoter (86). In addition, metalloproteinase 9
(MMP9) is involved in the decomposition of extracellular
matrix and is essential for driving macrophage-dependent
inflammation in the vascular system (87). MMP9 levels are
regulated by TET2, miR-212, miR-132, and the long non-
coding RNA, TETILA (88, 89). H3 lysine 9 di-methylation
(H3K9me2), is a repressive epigenetic marker and the levels of
which are often reduced in atherosclerotic lesions. H3K9me2
is down-regulation in the promotor regions of MMP3, MMP9,
and MMP12 in VSMCs of arteries. Clearly, these three
proteins play important roles in controlling VSMCs response to
vascular inflammation.

RNA Methylation
In the 1970s, scientists discovered that RNA methylation can
also occur in cells and tissues and that these modifications
are now known to be crucial epigenetic regulators. At present,
more than 160 RNA modifications have been identified,
including N6-methyladenosine (m6A), 5-methylcytosine (m5C),
N7-methylguanosine (m7G), and so on (90). Among these
modifications, m6A is the most abundant mRNA modification
in eukaryotes, which is mediated by methyltransferase like
proteins namely METTL3, METTL14, WTAP (91), and this
modification can be reversed by demethylase like FTO, ALKBH5.
Besides, m6A binding proteins like YTHDF1/2/3, YTHDC1/2
also take part in the dynamic reversible m6A modification.
METTL3 alleviates human mesenchymal stem cell senescence
through m6Amodification-dependent stabilization of the MIS12
transcript (92), the overexpression of METTL3 coupled with

METTL14 promoted SASP-related cytokines (such as CXCL1,
CXCL3, CXCL5, CXCL6, IL1α, IL1β, and IL6) releasing (93).
The loss of FTO was also reported to antagonize the vascular
dysfunction by improving the insulin sensitivity in obesity mice
(94). These experimental results showed that RNAmethylation is
vital in regulating vascular aging processes.

MEDIATORS IN VASCULAR AGING

Environmental Factors
Life expectancy is increasing due to advances in the clinical
management of diseases, and due to our understanding of
lifestyle factors that negatively impact on health. Numerous
environmental factors including toxins, heavy metal ions,
pollutants, gases, infections, smoking, and alcohol consumption
are known to impact on vascular function and influence
gene expression. In addition, some epigenetic alterations are
heritable like for example, a parental high-fat diet that renders
offspring more susceptible to developing obesity and diabetes
(95). Of the known environmental drivers of cardiovascular
diseases, smoking and microorganism infection are the most
widely studied:

Smoking
The adverse effects of smoking on human health have been
known for thousands of years and this habit remains one of
the leading drivers of premature death and disability worldwide.
Tobacco use and its chemical constituents are associated with
causing cellular damage including rates of apoptosis, cell
cycle arrest, DNA damage, ER stress, and oxidative stress in
vascular endothelial cells (96). Moreover, as shown in Figure 2,
smoking hastens vascular aging by affecting multiple biochemical
pathways. Indeed, the reactive metabolite benzo[a]pyrene
diolepoxide (BPDE) causes the accumulation of DNA adducts,
that can block the formation of the DNA replication forks in
mammalian cells. Persistent blockage of the replication fork by
bulky lesions causes DNA double-strand breaks. In turn, these
strand breaks elicit histone H2AX phosphorylation (γH2AX, a
marker of DNA double-strand breaks) and ataxia telangiectasia-
mutated kinase (ATM)/CHK2-mediated events, and this is often
seen in aging and in some cancers (97). Furthermore, reductions
in DNMT1 and DNMT3B activities protect aging cells from
BPDE-induced DNA damage via the inhibition of H2AX by
ataxia telangiectasia-mutated kinase phosphorylation (98). BPDE
also suppresses retinoic acid receptor-β2 (RAR-β2) expression by
promoting DNMT 3A interactions with the promotor region of
RAR-β2. This interaction causes the increased expression of c-
Jun, extracellular signal-regulated protein kinases 1/2 (ERK1/2),
and cyclooxygenase-2 (COX-2) (99). Of these targets, c-Jun is
reported to associate with Fos-related antigen 1 (Fra1), allowing
for its binding to the promoter region of Cdkn1a (coding for p21)
and Cdkn2a (coding for p16), and this triggers the senescence-
related phenotypes, often seen in many cardiovascular disorders
and in vascular senescence (100).

Decreased rates of hydroxymethylation in DNA correlates
with smoking status. Cigarette smoke ingredients like
propylene glycol, glycerin, additives, and nicotine trigger
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FIGURE 2 | Environment-mediated vascular aging. Smoking and virus are two factors that cause epigenetic alterations in cells and tissues and induce vascular aging.

BPDE, Benzo[a]pyrene diol epoxide, DNMT, DNA methyltransferase, eNOS, endothelial NO synthase, TET2, ten-methylcytosine- dioxygenase 2, SIRT, Sirtuin. A detail

of these epigenetic pathway is elaborated in section environmental factors.

the hypomethylation of LINE-1 repeat elements by reducing
global levels of DNA hydroxymethylation. Hypomethylation
is typically caused by reductions in TET2 (101), leading to
the overexpression of the LINE-1 gene (an aging biomarker)
(102). Moreover, TET2 down-regulation is linked with arterial
hypertension and immune activation (103, 104).

A study of 20 young healthy smokers including 10 males and
10 females was employed to study the alterations in microRNA
signatures. The results showed that miR-29b (associated with
aortic aneurysm and fibrosis) was significantly up-regulated and
miR-223 is downregulated (105), the loss of miR-223 could lead
to severe coronary artery pathology through a miR-223/PDGFRβ

vascular smooth muscle cell axis (106). In endothelial cells, the
miR-155 inhibition rescued the deleterious effects of cigarette
smoke condensate on endothelial-mediated vascular relaxation
and oxidative stress (107). Moreover, ncRNAs are critical
to the regulation of transcription and in conjunction with
DNA methylation rates can influence RNA–DNMT interactions.
Indeed, it has been reported that NUP153, EF1a, and CHD
RNA are bound to DNMT3A, yet only CHD RNA is capable
of inhibiting the catalytic function of DNMT3A (108). These
findings are similar to the inhibition of DNMT1 by miR-155-5p
(109), suggesting that CHD RNA and miR-155-5p are potential
therapeutic targets that could be used to restore DNMT3A,
DNMT1 (107).

In other studies, the histone deacetylase SIRTUIN1 (SIRT1),
which acts as a longevity gene and plays an instrumental role
in cell cycle progression, energy metabolism, and aging (110).
SIRT1 is reduced by smoking, resulting in an imbalance of
downstream histone modifications, like H1K26, H3K9, H3K14,
H3K56, and H4K16 (111). Under normal circumstances, SIRT1
binds to the promoter of p53 (a proapoptotic gene) decreasing
H3K9 acetylation, and thereby inhibiting p53 gene transcription
(112). A similar mechanism has been reported in the suppression
of the NF-kappaB gene (113). Smoking clearly disturbs patterns
of histone modification and this correlates with a vascular aging
phenotype, inflammation, and apoptosis. In addition, smoking
causes increased blood pressure leading to elevated fluid shear
stress. This in turn, inhibits Ca2+ channel signaling, reduces
eNOS, and blocks HDAC5 phosphorylation (114).

Microorganism Infections
Microorganism infections contribute to vascular aging. For
example, the hypercoagulable and hyperinflammatory states
caused by the viral infections make vascular endothelial cells
more susceptible to infection, resulting in endothelialitis
(115). Persistent inflammation promotes the accumulation
of toxic metabolites and reactive oxygen species, and further
leads to genetic and epigenetic alterations. In this setting,
DNA hypermethylation usually activates the senescence-
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associated secretory phenotype (SASP) (116). Some virus
possesses an ADP-ribosylhydrolase that can deplete NAD+, and
causes a decline in the activities of NAD+-dependent lysine
deacetylases like the SIRT family proteins, SIRT1 and SIRT6
(117, 118). Loss of SIRT1 attenuates its deacetylation function
on the target proteins H4K16 located in the TNF-α promotor
region; this leads to increased TNF-α levels, a widely known
proinflammatory mediator. Moreover, dramatic reduction
in claudin-1 and vascular endothelial-cadherin inactivate
DNA repair mechanisms and increase the rates of vascular
inflammation and senescence (119). Importantly, TNF-α and
IFN-γ triggered inflammation, causing cell death, tissue damage,
and mortality (120). In a similar manner to SIRT1, SIRT6
attenuates inflammation via reducing NF-κB signaling following
the deacetylation of the target H3K9 (113). Based on the available
evidence, moderate activation of SIRT1 and SIRT6 could be
used to dampen rates of vascular inflammation and could have
potential in reducing rates of vascular aging in humans. A
summary of environment factors linked to vascular aging are
shown in Figure 2.

Diseases
A wide range of epigenetic alterations has been discovered
that are associated with the diseases-induced vascular aging
phenotype (121). T-cell–derived miR-214 facilitates perivascular
fibrosis in hypertension (122), nuclear miR-320 promotes lipid
accumulation (hyperlipidemia) in the heart (123), and genome-
wide DNA methylation profiling has discovered significant
differences in promoter CpG islands in genes like HIF3A,
CPT1A, CD38, PHGDH, ABCG1, SREBF1, CPT1A, PDX1 (124).
In addition, the HDAC inhibitor trichostatin A, is reported to
reduce atherosclerosis in ApoE-deficient mice, suggesting an
important role of epigenetic modifications in the cardiovascular
system (125). Other researchers have shown that the histone
methyltransferases, SET7 and SET 9, and various histone
deacetylases (HDAC4, HDAC7, HDAC10, and KMT2D), along
with ncRNA, miRNA-199a-3p, miRNA 34a, circ HIPK3, and circ
ZNF609 are linked with vascular dysfunction (126, 127).

Lack of Exercise
Exercise is an exogenous stimulus that influences cellular
metabolism by altering the expression of enzymes and proteins
involved in numerous metabolic pathways involved in energy
production. A lack of physical activity or a sedentary lifestyle
can increase the risk of vascular aging disease, such as
arterial stiffening and hypertension (128). However, moderate
rates of exercise are seen as beneficial since this makes the
myocardial systole more powerful, increases stroke output,
enlarges the coronary artery diameter, improves the heart’s blood
supply, enhances the elasticity of systemic blood vessels, and
delays arteriosclerosis. The epigenetic mechanism of exercise
in reducing vascular aging will be illustrated in section Health
lifestyle.

Normal AGING
In addition to accelerating aging (above three mediators), the
prevalence of vascular diseases is also on the increase as the

number of elderly people is increasing worldwide. Even in
the absence of overt injury, structural and functional changes
occur in vessels as they age. Physiological functions, such as
antioxidant enzyme activity, muscle composition, inflammatory
factors expression, thickening of the intima, and changes in
metabolic enzyme activities rise during normal aging. These age-
related vascular changes often accompany or even precede CVD
development. Over time, normal aging increases transcriptional
noise and stochastic effects in tissues and drives dysregulation of
genetic and epigenetic control in the ECM (129). Phenotypically,
the aging vessels begin to show moderate increases in the level
of peripheral resistance, increased lumen diameter, and changes
to the media thickness in small-sized muscular arteries. No
accompanying changes in the media-to-lumen ratio occur with
this indicating that it is an outward hypertrophic remodeling.
Currently, the epigenetic mechanisms that slow down normal
vascular aging are usually associated with regulating the
daily environment, exercise, and reducing the incidence of
disease, which mediate alterations on DNA methylation, histone
modification, and ncRNA changes.

THE EPIGENETIC INTERVENTION
STRATEGIES OF VASCULAR AGING

Evidence points to the possibility that structural and functional
vascular aging can be reversed. Age-related declines in vascular
function can be halted by lifestyle changes, such as exercise,
diet, sleep, and genetic/epigenetic pharmacological intervention.
These activities slow down age-related changes and the loss of
functional blood vessels. A summary of epigenetic intervention
mechanisms is shown in Figure 3.

Health Lifestyle
Exercise
Regular physical activity improves vascular health and brings
about discrete epigenetic modifications in tissues. For example,
exercise increases the methylation levels of the pro-inflammatory
factor apoptosis-associated speck-like protein containing
CARD (ASC) gene (encoding IL-1β and IL-18), and thus
suppress ASC-induced inflammation (130). Other evidence,
shows that the histone methyltransferase, Smyd1, is protective
roles in the pathological remodeling process (131), and that
regular exercises increase SIRT1 expression and stimulates of
NAD (+) biosynthesis (132). In addition, ubiquitination and
phosphorylation have also been considered crucial regulatory
mechanisms because they reduce protein misfolding, the
accumulation of toxic proteins, and redundant “junk” proteins
that occasionally accumulate in cells and tissues. Regular exercise
stimulates ubiquitination and phosphorylation while promoting
the elimination of defective proteins (133). MicroRNAs like miR-
20a, miR-126, miR-210, and miR-221/222 reportedly regulating
angiogenesis and maintaining vascular integrity and again the
levels of these molecules are changed following exercise (134).
Finally, exercise alters CTCF-based 3D chromatin architecture
via an unknown mechanism (135).
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FIGURE 3 | Epigenetic strategies to reduce vascular aging. Exercise, drug, circadian clock, and diet play important role in altering epigenetic modifications and in

reducing vascular aging. ASC, factor–apoptosis-associated speck-like protein containing CARD, SMYD1, SET- and MYND- domain containing protein 1; SIRT, sirtuin;

SCM-198, leonurine; β-HB, β-hydroxybutyrate. A detail of this figure is elaborated in section the epigenetic intervention strategies of vascular aging.

Circadian Clock
The circadian clock significantly affects the expression of genes
associated with obesity and type 2 diabetes. Poor circadian
rhythm promotes hypomethylation in deleterious genes and
hypermethylation in beneficial genes. This triggers an increase
in transcriptional and genomic instability, chronic damage, and
impacts on vascular homeostasis viz. the release of NO and
growth hormone, MMP and ECM remodeling, and vascular
stem cells niche. Circadian patterns also influence chromatin and
promote self-repairing mechanisms like the activation of histone
ubiquitination, and SIRT1 activation (136, 137).

Diet
Keeping a balanced and healthy diet delays vascular aging-
related DNA methylation by regulating the methionine and S-
adenosylmethionine cycle (95, 138). Caloric restriction is also
thought to be a major factor in slowing down the aging processes
of blood vessels (139).

Drugs and Small Molecule Compounds
Renin-Angiotensin-Aldosterone-Systems (RAAS)
RAAS inhibits vascular remodeling and increases the
expression of pro-survival genes like nicotinamide
phosphoribosyltransferase, and SIRT3. This occurs via
reducing mitochondrial oxidative stress, and highlights that
the suppression of the RAAS system could be a possible way of
managing vascular aging (140).

Statins
Statins have an ability to decrease DNAdamage by inducingDNA
damage repair systems and by suppressing oxidative stress by
increasing antioxidant defenses (141). However, use of statins
is often associated with adverse reactions like rhabdomyolysis
that are of clinical significance. Here, we speculate leonurine
(SCM-198), which is still in the clinical trial but shows fewer
adverse reactions, will be a more promising drug in the
future based on the present findings that it regulates H3K27
demethylase JMJD3 (142, 143). Moreover, the phase I clinical
trial of 36 subjects uncover that SCM-198 affected homocysteine-
methionine metabolism (144), which means that it can reduce
ROS-induced endothelial cell damage and lipid peroxidation,
thereby reversing vascular damage and destruction. The basic
experimental studies also confirm its therapeutical effect (145,
146).

Metformin
A 78,241 people observational study has shown that the
use of metformin increases life span (147). It is a known
inducer of SIRT1, which increased SIRT1 promoter chromatin
accessibility (148).

Spermidine
Spermidine prevents histone H3 hyperacetylation, can activate
autophagy, and prolong life span (149). This anti-aging effect
may be associated with its ability for restoring cellular metabolic
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dysfunction. A study of 85 elder adults reveals that spermidine
significantly improved cognitive performance (150, 151).

Gut Microbiota
Long-term studies have found that gut microbiota disorders are
related to malnutrition, obesity, diabetes, and diseases. ProBiotic-
4, composed of mixture of Bifidobacterium lactis, Lactobacillus
casei, Bifidobacterium bifidum, and Lactobacillus acidophilus, has
been shown to attenuate aging-induced gut microbiota dysbiosis
by reducing toll-like receptor 4 (TLR4) expression and influence
nuclear factor-κB (NF-κB) nuclear translocation (152).

Other Small Molecule Compounds
Resveratrol is the only SIRT1 agonist that has been shown
to delay vascular aging (110). Other molecules like, β-
hydroxybutyrate (β-HB) have been found to prevent vascular
senescence and can activate Oct4 expression level via stimulating
DNA hydroxymethylation (153). Kallistatin attenuates TNF-α-
induced endothelial progenitor cells (EPCs) senescence and STZ-
induced aortic senescence by abolishing miR-34, and SIR-2.1
(154), Kallistatin is a candidate molecule that could be further
developed as an epigenetic drug in the treatment of diabetes-
induced vascular aging.

DISCUSSION AND PERSPECTIVES

In summary, the following review has addressed the roles
of epigenetic-mediated vascular aging, current discoveries,
and possible roles of epigenetic processes in vascular aging.
An understanding of these regulatory mechanisms critical in
vascular aging will be paramount in developing novel treatment
strategies. Epigenetic aging mechanisms that focus of much
attention by researchers and growing evidence shows DNAm,
post-translational histone modifications, ncRNAs, chromatin
structure alteration are important in the cardiovascular system.
In addition, several epigenetic-related drugs in clinical trials
as highlighted by the WHO International Clinical Trial
Registration Platform (WHO ICTRP). However, only two
DNMTs inhibitors (azacytidine and decitabine), six HDACs
inhibitors (vorinostat, romidepsin, belinostat, chidamide,

panobinostat, and tazemetostat), and one ncRNA (siPCSK9)
have been so far approved for clinical use. In the future, we are
optimistic that other epigenetic based drugs will be developed.
These developments arising from methodological improvements
that allow for the analysis of epigenetic changes occurring at
the single-cell and 3D level. These advances will make research
easier and allow for studies addressing endothelial metabolism,
angiogenesis, and pathological progress of arteriosclerosis during
aging and collectively this will provide a dynamic pattern of
change in cells and tissues. Most studies to date have stepped
toward finding the role of 5mC reader (BAZ2A,MBD1/2, MBD4,
MeCP2, SETDB1/2, UHRF1/2, and ZBTBR4/33/28), 5hmC and
5fmC readers (MHS6, PRP8, RPL26, UHRF2, EHMT1,
FOXI3, FOXK1/2, FOXP1/4, L3MBTL2, MPG, and TDG),
histone modification writer (EZH2, MMSET, DOT1L, SETD7,
MLL1, PRMT1/3/5, and SMYD2/3), histone modification
reader (CREBBP, EP200, MOZ, MOF, BRD2/3/4/7/9, and
SMARCA2/4), histone modification eraser (HDAC4, JMJD3,
and LSD1), and some ncRNAs in vascular aging. Many in vitro
and in vivo studies have demonstrated some of these targets
show the capacity in reducing vascular aging processes, but their
pathologies and pharmacology are mostly unknown. Effects of
these epigenetic targets that underpins the aging therapeutic
should be considered in future studies.
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