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Abstract
Purpose The segmentation of organs at risk (OAR) is a required precondition for the cancer treatment with image- guided
radiation therapy. The automation of the segmentation task is therefore of high clinical relevance. Deep learning (DL)-based
medical image segmentation is currently the most successful approach, but suffers from the over-presence of the background
class and the anatomically given organ size difference, which is most severe in the head and neck (HAN) area.
Methods To tackle the HAN area-specific class imbalance problem, we first optimize the patch size of the currently best
performing general-purpose segmentation framework, the nnU-Net, based on the introduced class imbalance measurement,
and second introduce the class adaptive Dice loss to further compensate for the highly imbalanced setting.
Results Both the patch size and the loss function are parameters with direct influence on the class imbalance, and their
optimization leads to a 3% increase in the Dice score and 22% reduction in the 95% Hausdorff distance compared to the
baseline, finally reaching 0.8± 0.15 and 3.17± 1.7 mm for the segmentation of seven HAN organs using a single and simple
neural network.
Conclusion The patch size optimization and the class adaptive Dice loss are both simply integrable in current DL-based
segmentation approaches and allow to increase the performance for class imbalance segmentation tasks.

Keywords Deep learning · Segmentation · Head and neck · Class imbalance · Radiation therapy

Introduction

Cancer is after cardiovascular diseases the secondmost com-
mon cause of death. Among the newly diagnosed cancer
incidences, statistically 3% are tumors of the head and neck
(HAN) region [1]. Due to the complex anatomy of the area,
characterized by a large number of small soft tissue organs,
image-guided radiotherapy is the primary choice of treat-
ment for HAN cancer. The segmentation of the organs at risk
(OAR) on the planning CT scans is necessary for the radio-
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therapy and the main reason of treatment delivery delays
throughout the clinical pathway of the therapy. The segmen-
tation is time-consuming, requires several highly educated
medical experts and is still mainly performed manually; fur-
ther observer variations are well documented [2]. Due to the
time-consuming and subjective manual process, a field of
research has developed around the automated segmentation
of the HAN organs on medical images, with deep learning
(DL) being the dominant andmost successful learning- based
approach [3]. Segmentation with DL can be interpreted as a
voxel-wise classification problem using fully convolutional
neural networks. The large difference in size of classes to be
segmented can be defined as the class imbalance problem.
Since the first introduction of a DL-based multi-organ HAN
segmentation approach [4], it is known that the HAN area is
specially affected by the class imbalance problem. In addition
to the large difference in ratio of background and foreground
voxels, the HAN area is characterized by large size differ-
ences between the foreground classes themselves, which is
anatomically given through the differently sized organs to be
segmented.As a result, the class imbalance causes a large per-
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formance difference in the segmentation of large and small
organs [3].

In thiswork,we focus on the trainingwindowor patch size
as the hyper-parameter with a direct influence on the class
imbalance, as most segmentation networks are, due to GPU
memory constraints, trained with randomly sampled patches
of the original 3D image.Hence,we introduce ameasurement
for the class imbalance of differently sized training patches
and optimize the patch size accordingly. Additionally, we
adapt the classical multi-class Dice loss formulation which
does not account for missing classes within patches. Our
class adaptiveDice loss formulation is robust against missing
classes, which is relevant for sparse class distributions within
the image dataset and for the training with smaller patch
sizes. We incorporate both the class imbalance optimized
patches and the class adaptive Dice loss into the currently
best performing general-purpose segmentation approach, the
nnU-Net framework [5], and are able to increase the perfor-
mance of its baseline version. The introduced multi-class
confidence analysis following the work of Li et al. [6] also
reveals an increased segmentation confidence for mid-sized
organs due to the class label imbalance optimized patch size.

Related work

Guo et al. [7] and Gao et al. [8] were the first to specifi-
cally address and solve the class imbalance problem of the
HAN area by using several different cascaded networks. The
approaches are inspired by the work of clinical experts, first
segmenting large and easy anchor organs and then zooming
in to segment the harder small soft tissue organs. Similarly,
the authors combined a strong large organ segmentation net-
work, a small organ localization network and specific small
organ segmentation networks effectively reducing the class
imbalance of each network. In their follow-up work, the
FocusNetv2, Gao et al. [9] further incorporated autoencoder-
based shape priors [10] and adversarial training [11] into the
small organ networks, achieving a Dice score (DSC) of 0.84
and a 95%Hausdorff distance (95HD) of 2.17 mmwhich are
the currently best reported results on theMICCAI 2015HAN
segmentation challenge reference dataset [12]. An implicit
reduction in the class imbalance, especially in favor of the
small organs that are often visible in just a few CT slices, is
recently achieved by hybrid networks using 2D convolutions
and 3D convolutions in their architecture. Chen et al. [13]
used 2D convolutions for the extraction of fine edges and 3D
convolutions for coarse and fine semantic features in a sin-
gle UNet [14]-based architecture. Tang et al. [15] extended a
2D UNet with an additional 3D convolution-based context-
aware attention path and were able to achieve state of the art
using a single HAN organ segmentation network.

Differently to architectural changes of the network,
adapted cost functions can also reduce the class imbalance
problem of DL. Roth et al. [16] presented the first DL-based
multi-organ segmentation approach of the abdominal area
and applied a class weighted cross-entropy (CE) loss func-
tion. The CE is an information theoretical measurement for
probability distribution differences and allows to calculate
the difference between the network’s voxel-wise class pre-
diction and the ground truth. As the CE is the classical loss
function for image classification, Milletari et al. [17] pro-
posed theDSC as a volume-based overlapmeasurement to be
used as a loss function for image segmentation. TheDice loss
transforms the voxel-wisemeasurement into a semantic label
overlapmeasurement andhas become the state-of-the-art loss
function of the field. Effectively reducing the number ofmea-
surements to the number of labels, the Dice loss also reduces
the sensitivity of the loss regarding the class imbalance effect.
However, the Dice loss is not able to eliminate the problem
due to its intrinsic bias toward large volumes [2] as well as
the remaining severe over-presence of the largest class dur-
ing training. Consequently, Carole et al. [18] introduced the
generalized Dice score (GDSC), which adaptively weights
the DSC by the current class size. However, in a previous
work [4] we showed that the GDSC introduces noise in the
learning curve by the adaptive weights and missing classes
in case of the common patch-based training setting. Zhu et
al. [19] investigated different loss functions specifically for
the imbalancedHANarea and showed the combination of the
Dice loss and the focal loss [20] to outperform the plain Dice
loss. Isensee et al. [5] proposed to combine the CE and dice
loss to measure both the voxel-wise class predictions and the
semantic label overlap and were able to show advancements
inmany different segmentation tasks using the combined loss
function in their nnU-Net.

Another approach to analyze the class imbalance in neu-
ral networks for image segmentation is presented by Li
et al. [6]. The authors found that the network output of
under-represented classes tends to shift toward the decision
boundary during test time, whereas well-represented classes
are unaffected. As a result, the authors claim that an over-
fitting of the small-sized classes occurs during the training.
For their analysis of the class imbalance-induced overfitting,
the authors suggest to plot the logit output of the training
data against the test data, which we adapt and confirm for
our given multi-class setting.

Method

Dataset

For our study of the class imbalance problem in the HAN
area, we utilize the MICCAI 2015 HAN auto segmentation
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challenge dataset [12]. The CT images of the dataset are from
the 0522 multi-institutional clinical study of the Radiation
Therapy Oncology Group [21], which made the data pub-
licly available. The study contained multiple images of 111
patients with HAN cancer of the oropharynx, the hypophar-
ynx or the larynx. The challenge dataset includes 40 patient
CT scans,withmanual reference segmentations of nine struc-
tures: the left and right Parotid Gland (PG), the left and
right Submandibular Gland (SG), the Optic Chiasm (OC),
the Brainstem (BS), theMandible (MA) and the left and right
OpticNerves (ON). Although the original images of the 0522
study contained OAR reference segmentations for the radio-
therapy planning, no standardized segmentation protocols
existed at the time of the study and the segmented structures
showed considerable differences in contouring. Accordingly,
the nine organs for the dataset creation are iteratively re-
contoured according to current scientific standard protocols
until all segmentation experts agree and the observer bias is
eliminated. For the scope of the challenge, 25 specific images
identified by their file names are released as training images,
10 as an offsite test set and the last 5 as an additional test
set for the onsite event of the challenge. In our work, we fol-
low the challenge protocol regarding the dataset splits and
combine the off- and onsite test images to one test set for
our result presentation. The Submandibular Glands are not
considered in our work as not all 40 CT scans contain the
corresponding reference data.

Segmentation network design

Our work is based on the 3D nnU-Net framework of
Isensee et al. [5]. The authors claimed and showed that
a well-parameterized UNet [14] is hard to beat for any
segmentation task and accordingly defined a set of well-
proven fixed parameters and additional dataset-dependent
rule-based parameters for a dynamically deep UNet. The
fixed parameters are the learning rate, the optimizer, the data
augmentation, the number of training iterations, the patch
sampling strategy, the loss function, the inference using a
sliding window approach and the post-processing as a largest
component analysis. The most relevant dataset-dependent
parameters are the spacing and the patch size further defin-
ing the UNet architecture. The spacing is evaluated as the
median of the dataset in-plane spacing and the 10th per-
centile of the out-plane spacing resulting in a spacing of
0.98 × 0.98 × 2.5 mm. The patch size is initialized to the
dataset median after resampling and iteratively enlarged,
simultaneously with the depth of the UNet to fill the avail-
able GPU memory using a fixed batch size of two resulting
in a patch size of 192 × 160 × 56. The skeleton UNet is
a basic UNet with two blocks of convolution, instance nor-
malization [22] and nonlinearity in each resolution, starting
with a channel size of 32, which is getting doubled (halved)

with each downsampling (upsampling) operation. To inject
gradients deeper in the network, deep supervision with aux-
iliary losses are used for the upsampling layer of the encoder.
For further details regarding the original 3D version of the
nnU-Net, we refer to the work of Isensee et al. [5].

Class imbalancemeasurement

As the currently most advanced general-purpose approach
for medical image segmentation, we mainly follow the 3D
nnU-Net framework, but adapt the loss function and also
the patch size based on our class imbalance measurement
as the parameters directly influencing the class imbalance
while training. Figure 1 shows the average imbalance of the
organ and background volume ratios of the dataset within a
training epoch for different training strategies. For the ratio
measurement, the dataset is rescaled following the spacing
definition of the nnU-Net. Although the histograms visually
show the difference of the organ volume ratios for the pre-
sented patch size strategies, we propose to use the standard
deviation σ of the class ratios as a singlemeasurement for the
class imbalance. The standard deviation of the averaged in-
patch organ ratios is a single and easily interpretable value.
The ratios sum up to one; accordingly, the standard deviation
is the average distance to an ideally uniform distribution of
in-patch organ ratios. Utilizing σ as a cost function with the
patch size as parameter allows us to find the training param-
eter with a minimal imbalance for the given dataset.

Class adaptive dice loss

The loss function proposed by the nnU-Net is the CE+Dice
loss combining probabilistic voxel-wise class predictions and
label overlap measurements, which is also advised by the
currently largest study of loss functions for medical image
segmentation by Ma et al. [23]. The CE loss is used in its
basic multi-class formulation as:

CE(P,G) = 1

B
−

∑

b,c,v

Gbcv log(Pbcv) , (1)

with P and G being the one-hot-encoded prediction and
ground truth volumes, consisting of B batches, C classes
and V voxels. The multi-class Dice loss using ε as a small
value for numeric stability is defined as:

Dice(P,G) = 1

BC

∑

b,c

2
∑

v PbcvGbcv + ε∑
v Pbcv + ∑

v Gbcv + ε
. (2)

The Dice loss formulation of the nnU-Net follows the batch
Dice loss of Kodym et al. [24] with the adaptation of ignoring
thebackgroundclass.Contrary to the originalDice definition,
Kodym et al. propose to evaluate the DSC with the batch as
part of the volume instead of averaging the DSC over the
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Fig. 1 Average background and
organ volume imbalance ratios
of seven HAN organs (from left
to right: background, Brainstem,
Optic Chiasm, Optic Nerve
left/right, Parotid Gland
left/right, Mandible) for four
different patch size sampling
strategies, evaluated over one
training epoch
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batches. Accordingly, the Dice loss formulation used in the
nnU-Net is given by:

nnU-Dice(P,G) = 1

C − 1

∑

c−1

2
∑

b,v PbcvGbcv + ε
∑

b,v Pbcv + ∑
b,v Gbcv + ε

. (3)

However, due to the applied patch-based training,we propose
to used the class adaptive Dice loss formulation in combina-

tion with the basic CE loss.We define the class adaptive Dice
loss as:

ca-Dice(P,G) = 1

N

∑

b,c

2
∑

v PbcvGbcv∑
v Pbcv + ∑

v Gbcv + ε
,

N =
∑

b,c

{
0, if

∑
v Gbcv = 0

1, else
(4)
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Differently to the original Dice loss, our definition only
involves the N classes present in the sampled patch and thus
evaluates to the real DSC of the sampled patch instead of
considering missing classes as perfectly segmented, which
biases the loss toward incorrect scores.

Results

The nnU-Net as a general-purpose segmentation framework
is based on a fixed and a dataset-dependent set of parame-
ters. The patch size defining rule of the network is based on
the assumption that large windows have a more global con-
text and hence improve the segmentation result. However,
using the standard deviation σ of the organ volume ratios as
a cost function to optimize the class imbalance within the
patches results in smaller patch sizes than the global con-
text maximizing patch size assumption of the nnU-Net. Our
measurement of the class ratio standard deviation σ naturally
shows that the class imbalance is maximal (σ = 0.3301) if a
whole image approach is used andminimal if the patch size is
minimal (σ = 0.27146 for a patch size of 8×8×8). Figure 1
shows the organ volume ratios, including the background of
the sampling process using four different patch sizes.

In our experiments, to investigate the effect of the patch
size and thus the class imbalance on the segmentation quality
we use the suggested patch size of the nnU-Net framework
and half of the patch size in-plane and a slightly reduced
size out-plane to still give the network enough context in
axial direction, resulting in the small patch size 96×80×48
(σ = 0.32337). We omit the full volume strategy presented
in Fig. 1 as being infeasible due to its GPUmemory demands
as well as the minimal possible patch size only allowing a
shallow U-Net with one downsampling (upsampling) layer.
Additionally, we include our class adaptive Dice loss formu-
lation (“Class adaptive dice loss” section) into the nnU-Net
loss, as a robust cost function for the patch-based training of
datasets with sparse class distributions as given in the HAN
area.Consequently,we conduct experimentswith the original
nnU-Net parameters (large patch size 192× 160× 56, nnU-
Dice+CE loss) and our introduced class imbalance optimized
patch size and the class adaptive loss function (ca-Dice).

Table 1 shows the average results of the networks trained
on the MICCAI 2015 HAN challenge dataset [12], accord-
ing to the challenge protocol. The results on the test data are
evaluated using the DSC, the 95HD as well as the surface
Dice (SD) as introduced by Nikolov et al. [2] combining
a volume and a surface-based measurement (with surface
tolerance τ identified by the authors in their observer agree-
ment study). The bold values indicate the best results for
the given measurement and values marked with stars signif-
icance (Wilcoxon signed rank test with p < 0.05) over the
baseline. Following the work of Li et al. [6] in order to ana-

lyze a potential overfitting of the small organs we present in
Fig. 2 a comparison of the output confidence distribution of
the training and the test samples for the segmented organs of
our experiments as violin plot. The values in each plot indi-
cate the distance of the average confidence from the training
to the test data.

Implementation details

Our implementation is based on theMonaiDynUNet pipeline
module,1 a reimplementation of the dynamic UNet used in
the nnU-Net framework [5] and further adapted to follow the
nnU-Net parameterization.Monai is a PyTorch-based frame-
work for deep learning in healthcare imaging.2 Our models
are trained on Nvidia Titan RTX GPUs with 24 GB of mem-
ory for an average of 67 hours.

Discussion

The results of our experiments in Table 1 reveal that the pre-
sented extensions to the nnU-Net framework, the patch size
adjustment especially in conjunction with the class adaptive
Dice loss, are favorable for the present class imbalance in the
HAN area.

Reducing the patch size directly influences the class
imbalance within the sampled patches. The standard devi-
ation, introduced as a measurement for the volume ratio
imbalance within a training image patch, changes from
σ = 0.32605 to σ = 0.32337 using the GPU memory
optimized large patch size of 192 × 160 × 56 compared to
the suggested class imbalance optimized small patch size
of 96 × 80 × 48. As visible in Fig. 1, especially the ratio
of the smaller classes increases within a patch. The improve-
ment in the class imbalance therefore reduces the bias toward
the large classes during the training and effectively results
in an increase in performance of 2% in terms of the DSC
and a significant increase of 2% regarding SD compared to
the baseline nnU-Net framework. The 95HD is significantly
reduced by 0.91 mm, yielding an improvement of 22% com-
pared the baseline.

The utilization of the class adaptive Dice loss in the
loss formulation of the nnU-Net improves the segmentation
results regarding theDSCand significantly the SDby another
1%. The average of the 95HD is not improved as the Optic
Chiasm is not segmented in one test sample; however, all
other single organ measurements show improvements over
the baseline. Contrary to the standard multi-class Dice loss
formulation, the class adaptive Dice loss only evaluates the
classes available within each patch, whereas the standard

1 https://github.com/Project-MONAI/tutorials/ (accessed 21-12-21).
2 https://monai.io/ (accessed 21-12-21).
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Table 1 Segmentation results
on the combined on- and off-site
test data of the MICCAI 2015
HAN challenge dataset [12], for
the evaluated configurations in
terms of DSC, 95HD and
surface Dice (SD)

Config (patch size, loss) Organ DSC 95HD [mm] SD

Large, nnU-Dice+CE Brainstem 0.88 ± 0.02 3.29 ± 0.67 0.96 ± 0.03

Optic Chiasm 0.54 ± 0.21 3.48 ± 2.02 0.84 ± 0.25

Mandible 0.94 ± 0.01 2.13 ± 1.04 0.91 ± 0.05

Optic Nerve_L 0.68 ± 0.11 4.91 ± 3.95 0.92 ± 0.10

Optic Nerve_R 0.70 ± 0.08 3.10 ± 2.46 0.96 ± 0.06

Parotid_L 0.82 ± 0.08 5.36 ± 2.45 0.91 ± 0.06

Parotid_R 0.84 ± 0.11 6.07 ± 4.77 0.91 ± 0.10

Large, ca-Dice+CE Brainstem 0.88 ± 0.02 3.16 ± 0.45 0.96 ± 0.06

Optic Chiasm 0.53 ± 0.21 69.42 ± 257.44 0.85 ± 0.25

Mandible 0.94 ± 0.01 1.86 ± 0.65 0.91 ± 0.05

Optic Nerve_L 0.72 ± 0.08 2.82 ± 2.06 0.97 ± 0.05

Optic Nerve_R 0.70 ± 0.07 2.21 ± 0.45 0.99 ± 0.01

Parotid_L 0.86 ± 0.04 4.43 ± 1.62 0.94 ± 0.04

Parotid_R 0.83 ± 0.12 5.83 ± 5.27 0.91 ± 0.12

Small, nnU-Dice+CE Brainstem 0.88 ± 0.02 3.13 ± 0.63 0.96 ± 0.02

Optic Chiasm 0.53 ± 0.21 3.23 ± 1.22 0.89 ± 0.13

Mandible 0.94 ± 0.02 1.74 ± 0.75 0.92 ± 0.04

Optic Nerve_L 0.71 ± 0.07 3.03 ± 2.08 0.96 ± 0.06

Optic Nerve_R 0.73 ± 0.05 2.29 ± 0.48 0.98 ± 0.02

Parotid_L 0.88 ± 0.02 4.34 ± 2.44 0.95 ± 0.03

Parotid_R 0.88 ± 0.02 4.24 ± 1.61 0.93 ± 0.05

Small, ca-Dice+CE Brainstem 0.88 ± 0.02 3.33 ± 0.69 0.96 ± 0.06

Optic Chiasm 0.55 ± 0.20 3.38 ± 1.86 0.87 ± 0.19

Mandible 0.94 ± 0.02 1.72 ± 0.69 0.92 ± 0.04

Optic Nerve_L 0.73 ± 0.08 2.86 ± 2.13 0.97 ± 0.06

Optic Nerve_R 0.72 ± 0.07 2.53 ± 1.45 0.98 ± 0.03

Parotid_L 0.88 ± 0.02 4.27 ± 1.83 0.95 ± 0.02

Parotid_R 0.87 ± 0.04 4.08 ± 1.39 0.94 ± 0.04

Large, nnU-Dice+CE average 0.77 ± 0.17 4.05 ± 3.05 0.92 ± 0.12

Large, ca-Dice+CE average 0.78 ± 0.16 12.82 ± 97.3* 0.93 ± 0.11*

Small, nnU-Dice+CE average 0.79 ± 0.16 3.14 ± 1.69* 0.94 ± 0.07*

Small, ca-Dice+CE average 0.80 ± 0.15* 3.17 ± 1.70* 0.94 ± 0.09*

Bold values indicate the best results for the respective organ in each column and values marked with stars
significance (Wilcoxon signed rank test with p < 0.05) over the baseline

Dice loss calculates the average over all classes, distorting
the average DSC depending on the current network predic-
tion of the missing classes. The nnU-Dice which is based on
the batch-Dice formulation [24], however, reduces the risk
of missing classes by considering the batch dimension as
part of the patch volume. The risk of missing classes within
a patch depends on the volume size, the class distribution
within the whole volume and, as adjustable training parame-
ters, the patch size and the sampling strategy. As the nnU-Net
framework uses a 33% random foreground oversampling
strategy, the large patches and the batch-Dice formulation
make the baseline nnU-Net already stable against missing
classes. Nonetheless, we argue to use the class adaptive
Dice, as it is robust against missing classes, especially if

the patch size is smaller and the class distribution within the
volume sparse. By showing significantly improved segmen-
tation results for all measures, our experiments support the
usage of a combined small patch size and the class adaptive
Dice for imbalanced segmentation problems.

Deviating from the suggestion of the original work of Li et
al. [6], Fig. 2 does not show the direct network output (the log-
its) of the segmented classes and its corresponding decision
boundaries, which is only possible for up to three classes, but
the confidence distribution after the softmax normalization
of the eight HAN organs to be segmented. Although no deci-
sion boundary can be depicted formore than three classes, the
presentation of the organ-wise normalized confidence values
allows a direct comparison of the average confidence drift
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Fig. 2 Violin plot of the output confidence distribution of the training and the test samples for the segmented organs of our experiments, with the
distance of the average confidence from the training to the test data indicating the potential of overfitting

from train to test time and thus the identification of overfit-
ting. The results in Fig. 2 confirm the findings of Li et al. [6]
for the class imbalance HAN area and show that the small
organs (the Optic Chiasm and the Optic Nerves) are sub-
ject to larger differences in training and test time confidence
and accordingly prone to overfitting. The measurements also
indicate the overall performance enhancement of the ca-Dice
loss over the baseline, visible in the increased average confi-
dence values, but do not show a reduction in the overfitting of
the small organs by the loss function adaption. Contrary, the
experiments with the small patch size optimized to reduce
the class imbalance show a clear average confidence differ-
ence reduction in the Parotid Glands. The Parotid Glands can
be considered as mid-sized organs, allowing the assumption
that a further reduction in the class imbalance can reduce the
confidence drift for the small organs too and hence increase
their final segmentation results. The assumption is also sup-
ported by the constantly small average confidence drift of the
Mandible and the Brainstem being the largest organs with the
largest patch ratio and consequently the least overfitting.

Finally, in Table 2 we present the segmentation results
combining the small patch size and the class adaptive Dice
and chronologically compare them with the segmentation
results of the most important works in the field also pre-
senting their results on the MICCAI 2015 HAN challenge

dataset. The table also indicates the number of organs and
data samples used, as the original challenge protocol and its
defined data splits are not followed in general.

Conclusion

In summary, in this work we present an intuitive mea-
surement for the organ volume ratio difference, which is
a central problem appearing in the DL-based segmentation
of the HAN area. Based on the measurement, we opti-
mize the patch size parameter regarding the class imbalance
for a single network-based HAN segmentation architecture.
Additionally, we utilize the class adaptive Dice as a robust
loss function for missing classes within a training patch.
Both adaptions are incorporated in the nnU-Net framework
where we are able to increase the segmentation results by
an additional 3% in terms of the DSC and the SD and by
22% regarding the 95HD, resulting in an average DSC of
0.8± 0.15 and a 95HD of 3.17± 1.7 mm for the segmented
HAN organs, respectively.

The patch size optimization and the class adaptive Dice
loss can both easily be integrated into current DL-based seg-
mentation approaches. In future work, we want to improve
the state-of-the-art performance of the recently presented
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Table 2 Average DSC and
95HD on the MICCAI HAN
challenge dataset

Literature DSC 95HD [mm] Data Organs

Raudaschl et al.[12] 0.76 – 25/15 9 (2 partly)

Fritscher et al. [25] 0.66 ± 0.08 – 20/10 6

Tappeiner et al.[4] 0.72 ± 0.18 6.30 ± 16.2 25/15 7

Zhu et al. [19] 0.79 ± 0.05 – 38/10 9 (3 partly)

Tappeiner et al. [26] 0.75 ± 0.16 3.02 ± 1.92 25/15 7

Guo et al. [7] 0.82 ± 0.05 – 33/15 9 (3 partly)

Gao et al. [9] 0.85 ± 0.06 2.17 ± 0.93 38/10 9 (3 partly)

Nikolov et al. [2] 0.81 ± 0.05 – (663)/15 8 (2 partly)

Chen et al. [13] 0.81 ± 0.05 – 33/10 9 (3 partly)

Tang et al. [15] 0.83 ± 0.05 – 33/15 9 (3 partly)

Our (small, ca-Dice+CE) 0.80 ± 0.15 3.17 ± 1.69 25/15 7

hybrid 2D-3D, single-network approachofChen et al. [13] by
integrating our adaptations. Single-network approaches are
end-to-end trainable, less complex and therefore of higher
practical interest compared to complex multi-network solu-
tions. As an addition to the overfitting analysis, we like to
investigate and combine asymmetric loss functions terms,
proposed by Li et al. [6] with our ca-Dice loss to increase
the distance to the decision boundaries of the small classes
to further increase their test time performance.
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