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Abstract
The increasing availability of short-read whole genome sequencing (WGS) pro-
vides unprecedented opportunities to study ecological and evolutionary processes. 
Although loci of interest can be extracted from WGS data and combined with target 
sequence data, this requires suitable bioinformatic workflows. Here, we test differ-
ent assembly and locus extraction strategies and implement them into secapr, a pipe-
line that processes short-read data into multilocus alignments for phylogenetics and 
molecular ecology analyses. We integrate the processing of data from low-coverage 
WGS (<30×) and target sequence capture into a flexible framework, while optimiz-
ing de novo contig assembly and loci extraction. Specifically, we test different as-
sembly strategies by contrasting their ability to recover loci from targeted butterfly 
protein-coding genes, using four data sets: a WGS data set across different average 
coverages (10×, 5× and 2×) and a data set for which these loci were enriched prior to 
sequencing via target sequence capture. Using the resulting de novo contigs, we ac-
count for potential errors within contigs and infer phylogenetic trees to evaluate the 
ability of each assembly strategy to recover species relationships. We demonstrate 
that choosing multiple sizes of kmer simultaneously for assembly results in the highest 
yield of extracted loci from de novo assembled contigs, while data sets derived from 
sequencing read depths as low as 5× recovers the expected species relationships in 
phylogenetic trees. By making the tested assembly approaches available in the secapr 
pipeline, we hope to inspire future studies to incorporate complementary data and 
make an informed choice on the optimal assembly strategy.
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1  |  INTRODUC TION

Until recently, the most cost-efficient approaches to obtain genome-
wide data for phylogenomic and molecular ecology studies relied 
on genomic subsampling using size selection or enrichment prior 
to the sequencing process (genomic partitioning and reduced-
representation sequencing; Lemmon & Lemmon, 2013); such 
approaches include restriction site-associated DNA sequencing 
(RADseq) and target sequence capture of conserved genetic regions, 
such as exons or ultraconserved elements (UCEs; e.g., Andermann 
et al., 2020; Burbano et al., 2010; Davey & Blaxter, 2010; Faircloth 
et al., 2012; Lemmon & Lemmon, 2013). The continuing decrease 
of sequencing costs (currently, one megabase [Mbp] of raw DNA 
sequences costs ~0.01 US$; https://www.genome.gov/seque​ncing​
costs​data) have made low-coverage whole-genome sequencing 
(WGS) more economically feasible, and WGS data are also becoming 
widely applied in ecological and evolutionary studies (e.g., Li et al., 
2019; Olofsson et al., 2019). Although the implementation of flexible 
and user-friendly post-sequencing bioinformatic pipelines has flour-
ished within the past 5 years, there is still a gap when it comes to 
integrating data coming from different sequencing approaches (e.g., 
WGS and reduced-representation sequencing).

Loci of interest are often enriched in the laboratory prior to se-
quencing (in vitro enrichment; Albert et al., 2007; Gnirke et al., 2009) 
to achieve a sufficiently high read coverage for its processing into 
multilocus data sets. Moreover, the increasing volume of publicly 
available low read coverage WGS data provides a source for the bio-
informatic (in silico) harvesting of these loci of interest. However, a 
guideline is still missing on how to assemble short reads most effi-
ciently into contigs de novo (i.e., which parameters to use for con-
tig assembly) when simultaneously working with data derived from 
low and high read genomic coverages of loci of interest, especially in 
cases in which the genome size of an organism is unknown or refer-
ence genomes are not available.

Some bioinformatic pipelines have been developed for the 
processing of unassembled WGS data into multiple sequence 
alignments. For example, the Phylogenomics from Low-coverage 
Whole-genome Sequencing pipeline (PLWS; Zhang, Ding, et al., 
2019) runs iterative de novo contig assemblies using the minia3 as-
sembler (Chikhi & Rizk, 2013). Although the PLWS pipeline is compu-
tationally efficient (e.g., 21 hexapod genomes spanning from 0.1 to 2 
gigabases [Gbp] were assembled in a period of 2 to 24 h on 16 [GB] or 
32 [GB] of RAM PCs), it is unclear whether other contig assemblers 
using multi-kmer strategies (see Box 1) can recover more complete 
multilocus alignments. Alternatively, aTRAM (Allen et al., 2017) uses 
iterative blast searches (Altschul et al., 1990) to find matching reads 
within a library of loci of interest (references) and subsequently as-
semble them with different contig assemblers relying on single-kmer 
strategies (Box 1). Other pipelines can extract and assemble repet-
itive and high-copy number genomic regions such as mitochondrial 
loci and rDNA repeat regions. For instance, GRAbB (Brankovics 
et al., 2016) uses computationally efficient assemblers such as edena 

(Hernandez et al., 2008, 2014), whereas mitofinder (Allio et al., 2020) 
maximizes the use of UCE data by retrieving, assembling, and anno-
tating nonenriched mitochondrial loci using multi-kmer assemblers 
such as metaspades (Nurk et al., 2017). There are other software that 
extract loci of interest from metagenomes (anvi'o; Eren et al., 2021; 
also see: https://meren​lab.org/2019/10/17/expor​t-locus), from as-
sembled genomes (Costa et al., 2016; Jarvis et al., 2014), or even 
from DNA data archived in VCF files (seqtailor; Zhang, Boisson, et al., 
2019). To our knowledge, however, no studies have yet attempted to 
integrate WGS data of various underlying read coverages into multi-
locus data sets that have comparable quality to those resulting from 
in vitro target capture data, while comparing assemblers and assem-
bly strategies in the same pipeline.

To improve best-practices in de novo contig assembly from low-
coverage WGS reads and to demonstrate its integration with other 
types of reduced-representation data, we expand the sequence cap-
ture processor pipeline (secapr – Andermann et al., 2018) to include 
the assembler spades (Bankevich et al., 2012). We also implement a 
new iterative assembly approach with the software abyss (Jackman 
et al., 2017; Simpson et al., 2009), in which contigs assembled with 
different sizes of read substrings—kmers—are combined and their 
orthology with reference sequences assessed to obtain new sets of 
contigs (which here we call a multi-kmer approach; Box 1; Figure 2). 
secapr is a Python pipeline, available as a conda package for Linux, 
Windows, and MacOS, that automatically installs and executes soft-
ware dependencies to obtain multilocus alignments from raw short 
sequencing reads. secapr was originally designed to process target 
sequence capture data of multisample data sets (see Figure 1 for 
pipeline workflow), inspired by the Phyluce pipeline workflow for 
UCEs (Faircloth, 2016).

Starting from unassembled low coverage WGS data, the bioinfor-
matic steps for their processing are: (1) sequence quality filtering and 
cleaning, (2) de novo contig assembly (when no reference genome is 
available for read mapping), (3) identification and extraction of loci 
of interest from assembled contigs and (4) alignment of multiple se-
quences. In the new version of secapr, we enhance its efficiency for 
processing WGS data by modifying steps (2)—assembly using abyss 
and now, spades—and (3) - identification (orthology assessment) and 
extraction of loci of interest using blastz (Schwartz et al., 2003). We 
allow for parallelization of multiple jobs in these steps and concom-
itant processing of short sequencing reads derived from different 
types of library preparations (target sequence capture and WGS). 
We tested the updated secapr pipeline (now called secapr version 
2.2.3) on target sequence capture and WGS data and assessed the 
efficiency of using both single-kmer and multi-kmer de novo contig 
assembly (see Box 1 for detailed information on genome assembly 
using spades and abyss) to recover more, and more complete, mul-
tilocus alignments. Our study proposes a way forward to process 
data from different sequencing approaches in a single bioinformatic 
pipeline, assessing the performance of different de novo contig as-
semblers and strategies to enhance the extraction of loci of interest 
from WGS data.

https://www.genome.gov/sequencingcostsdata
https://www.genome.gov/sequencingcostsdata
https://merenlab.org/2019/10/17/export-locus
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2  |  MATERIAL S AND METHODS

2.1  |  Data

We used published low-coverage WGS data (Li et al., 2019) and 
newly generated target sequence capture data from skipper but-
terflies (Lepidoptera: Hesperiidae: Eudaminae). The study group 
was representative of commonly studied taxa in molecular ecology, 
given the lack of annotated reference genomes and the need to in-
tegrate closely related (species within genera) and highly divergent 
(lineages within a subfamily) samples. We downloaded low-coverage 
whole-genome sequences of 10 butterfly species represent-
ing three Eudaminae tribes (Table S1; Li et al., 2019; Bioproject 
PRJNA464409). The WGS data were generated via 150 bp paired-
end Illumina sequencing (HiSeq X Ten platform) at an average of 
~10× genome coverage, which is about 5 Gbp sequencing data per 
sample considering a representative genome size of Eudaminae 
~500–600 Mbp (Shen et al., 2017).

To demonstrate how to integrate data from different sequenc-
ing approaches in a single bioinformatic pipeline, we generated 
target sequence capture data for different individuals represent-
ing the same 10 species in the low-coverage WGS data (Table 
S1; BioProject PRJNA681152). We targeted 406 exons from 
protein-coding genes using the butterfly 1.0 probe kit, which con-
sists of 56,470 baits of 120 bp size each (Espeland et al., 2018). 
DNA was isolated from two to three butterfly legs using Qiagen 
DNA extraction kits following the manufacturer's instructions. 
RapidGenomics (FL, USA) prepared target enrichment libraries 
and conducted high-throughput sequencing using paired-end 
150 bp on an Illumina NovaSeq platform.

Raw reads from the publicly available WGS and the newly gen-
erated target sequence capture data were jointly processed using 
secapr version 2.2.3. We used a Linux centos version 7.9 system 
on a dedicated cluster provided by the Czech National Computing 
Infrastructure Metacentrum. secapr version 2.2.3 can be freely 
downloaded and installed following the detailed documentation at 

BOX 1 Brief description of the assembly process

Most assembler programs carry out three essential steps in order to assemble short reads into longer contigs: (1) Decomposing 
read sequences into kmers to improve efficiency of contig assembly by eliminating redundant short read overlaps; (2) Build a de 
Bruijn graph from the kmer overlapping information, which facilitates the connection of short reads; and (3) de Bruijn graph simplifi-
cation. Decomposing read sequences into kmers requires the user to specify a kmer-size lower than the short-read length. A read is 
decomposed into n kmers by extracting the substring of kmer size length at each nucleotide position of the read. Then, all possible 
kmer are evaluated and two kmers connected if both overlap in kmer length size—1. Connections between kmers create a graph (de 
Bruijn graph) where nodes represent kmer sequences and edges represent connections. In the last step, the graph is simplified using 
information extracted from the reads and kmers themselves: coverage, distances, and pairing of reads. More details on the challenges 
of contig assembly and strategies to tackle those challenges are described in Sohn & Nahm (2018) and Liao et al. (2019).

abyss (Figure 2, left): Starting from paired-end reads (PE reads), abyss version 2 (Jackman et al., 2017) implements two modes to 
extract the kmers using a single kmer-size provided by the user. The first mode, implemented in abyss version 1 (Simpson et al., 2009), 
which is the one used in this study, builds a hash table from kmers across all reads. A hash table is a data structure that efficiently 
stores large amounts of information. Unlike spades, abyss distributes sections of the hash table using a Message-Passing Interface (mpi) 
to independent cluster nodes in order to parallelize the process of building the de Bruijn graph. The graph is extended by evaluating 
the overlap between all kmers and later simplified by using read pairing information. The second mode (abyss version 2, Jackman 
et al., 2017) stores all possible kmers of length = kmer-size and their relative position using a bloom filter (Bloom, 1970) with one or 
more hashing functions used for indexing the information. Then, abyss applies a user-provided threshold to flag infrequent kmers as 
an attempt to remove potential sequencing errors. Reads that do not contain flagged kmers are then used to build and extend the 
de Bruijn graph, which is simplified using the paired-end information to trim off branches (a series of kmers connected to the graph 
only at one end) and bubbles (alternative paths on the graph joint at both ends that arise from single nucleotide polymorphisms or 
sequencing errors).

spades (Figure 2, right): Contrary to abyss, spades simultaneously uses all possible kmers extracted from a range of kmer sizes (the 
default values are 21, 33, 55, 77, 99) to build the initial de Bruijn graph. This multi-kmer approach capitalizes on the advantages of 
building a graph from short and long kmer-sizes. Smaller kmer-sizes minimize contig fragmentation by increasing the probability of 
finding overlapping kmers. However, small kmer-sizes might face difficulties in resolving repetitive regions, and longer kmer-sizes 
further improve the graph (Bankevich et al., 2012). spades runs a read correction step before assembling the first de Bruijn. The initial 
graph architecture is extracted, and a series of graph operations take place on it, leveraging information about kmer coverage, kmer-
to-kmer distances, and paired information to simplify the graph and remove branches and bubbles. Once the graph is simplified, the 
reads retained are mapped back onto the graph in order to extract the extended contigs.
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https://github.com/Anton​elliL​ab/seqcap_proce​ssor (Open Research 
section at the end).

2.2  |  Sequencing quality check and cleaning

The quality of raw Illumina reads from both WGS, and target se-
quence capture was checked using fastqc version 0.11.9 (Andrews, 
2010; https://www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​
c/) via the secapr version 2.2.3 pipeline using the command secapr 
quality_check. Target sequence capture data were filtered by re-
moving low-quality reads and trimming Illumina adapters using 
Trimmomatic (Bolger et al., 2014) via the secapr version 2.2.3 com-
mand secapr clean_reads. The average quality of the filtered, 
adapter-free sequence capture data was assessed again using the 
command secapr quality_check.

2.3  |  De novo contig assembly

We evaluated the performance of abyss version 1.3.7 (Jackman et al., 
2017; Simpson et al., 2009) and spades version 3.14.1 (Bankevich 
et al., 2012) with WGS and target sequence capture data. By default, 
spades uses six kmer values concurrently (21, 33, 55, 77, 99, and 127) 
and abyss uses a single-kmer in each run with values of kmer up to 
97. To make comparable evaluations of both assemblers, we ran abyss 

four times, each with a single-kmer value of 21, 33, 55 or 77 and 
ran spades for the same kmer values concurrently with the command 
secapr assemble_reads.

2.4  |  Extraction of contigs containing 
loci of interest

We created 406 reference sequences representing each of the target 
sequence capture loci. The references are the consensus sequences 
of targeted exons from 129 unpublished Eudaminae samples to en-
hance matching with the assembled contigs.

We extracted contigs of interest from the WGS and target 
sequence capture assemblies using the alignment algorithm blastz 
(Schwartz et al., 2003) via secapr version 2.2.3 using secapr find_
target_contigs. For secapr version 2.2.3, we developed a new ap-
proach to automatically extract loci of interest from multiple abyss 
runs, here termed the multi-kmer abyss approach. For this, we 
combined contigs from all individual kmer assemblies with abyss 
(using kmers = 21, 33, 55, and 77) and used the command secapr 
find_target_contigs to identify matched contigs against the refer-
ence sequences. The approach consists of removing redundant 
contig matches by selecting the longest contig among multiple 
single-kmer runs in abyss, and for each targeted locus using the 
argument --keep_paralogs. This approach is different from the 
automated de novo contig assembly implemented within spades. 

F I G U R E  1  Schematic representation of the workflow implemented in this study using the secapr version 2.2.3 pipeline. The bash 
commands used in each step are shown inside coloured (blue) boxes

https://github.com/AntonelliLab/seqcap_processor
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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spades outputs the assembled contigs resulting from a de Bruijn 
graph incorporating all different kmers across all kmer sizes at 
once. For abyss multi-kmer, the selection of targeted contigs from 
multiple assemblies under different kmer values is done after the 
assembly run, thus, specifically targeting the step (3) in the bio-
informatic pipeline.

2.5  |  DNA alignments and performance assessment

We generated six multilocus data sets, each from a different assem-
bly and locus extraction strategy (spades, four single-kmer abyss—21, 
33, 55, and 77—and multi-kmer abyss) and then we aligned each locus 
within the data sets using mafft version 7.130 (Katoh & Standley, 

2013) in secapr version 2.2.3 with the command secapr align_se-
quences. We produced final alignment data sets of the same length 
as the reference sequences by trimming the exon boundaries using 
the --addfull option in mafft.

To assess the performance of both assemblers and of their 
specific assembly strategies, we counted the number of recovered 
loci per sample across the six multilocus data sets. In addition, we 
evaluated the completeness of final alignments generated by each 
assembly strategy by comparing the alignments before and after ex-
cluding samples with more than 50% missing data (N bases) from 
the extracted loci alignments using Sequence_Cleaner (here named 
processed alignments) (https://github.com/metag​eni/Seque​nce-
Cleaner). Alignments for which we did not remove these sequences 
are named unprocessed alignments.

F I G U R E  2  Flowchart summarizing the process of contig assemblage implemented in abyss (left, Jackman et al., 2017; Simpson et al., 2009) 
and spades (right, Bankevich et al., 2012). The chart briefly describes the de Bruijn graph construction and the differences between both 
assemblers. See Box 1 for more details 

https://github.com/metageni/Sequence-Cleaner
https://github.com/metageni/Sequence-Cleaner
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2.6  |  Producing data sets of different 
genome coverage

To evaluate the performance of assemblers and assembly strate-
gies under different coverage depths, we randomly subsampled 
the original average 10× WGS coverage using BBTools/BBMap 
(Bushnell, 2021). We used the reformat.sh script to subsample 
50% and 20% of the original WGS data set to generate new data 
sets with average genome coverages of 5× and 2×, respectively. 
These data sets were used in subsequent analyses to estimate the 
limitations of contig assembly and the variability in recovering loci 
of interest under lower genome sequencing coverages. We used 
reduced coverages in which differences in assembly performance 
may be more evident.

2.7  |  Statistical analysis

To statistically assess significant differences in the recovered num-
ber of loci amongst assembly approaches, we used linear mixed 
models using the r (R Core Team, 2020) package lme4 (Bates et al., 
2015). We performed model selection using the corrected Akaike 
information criterion (AICc) to assess the best-fit model that explains 
the estimated marginal means of recovered loci.

Our analyses involved two approaches. First, we compared the 
10× coverage WGS data set and the target sequence capture data 
set to test if, overall, there are statistically significant differences 
between estimated means of recovered loci. We considered the 
10 Eudaminae samples as random variables and assembly strat-
egies (single-kmer abyss—21, 33, 55, and 77, multi-kmer abyss and 
spades), sequencing strategy (WGS or target sequence capture), 
and processing of final alignments (whether sequences with more 
than 50% missing data are excluded or not) as fixed variables. 
The number of recovered loci per sample was used as the effect 
variable. Second, we compared the performance of the assembly 
strategies under different average coverages of WGS data. For 
this, we followed the same protocol described above and consid-
ered the subsampled coverages (10×, 5× or 2×) as fixed variables. 
For both approaches, we made a full model considering the whole 
set of fixed variables, models with every possible combination of 
fixed variables and a null model with only our random variable. 
After checking that the residuals fulfilled the assumptions of linear 
models, we also calculated a full model considering the interac-
tions between the fixed variables.

2.8  |  Phylogenetic inference

We inferred species trees for each sequencing data set and assem-
bly strategy to assess if they produced phylogenetically informative 
alignments that were congruent with the expected phylogenetic 
relationships among species. First, we inferred gene trees from 
the alignment of each targeted locus using iq-tree version 2.0.7 

(Minh et al., 2020). We used ModelFinder (Kalyaanamoorthy et al., 
2017) as implemented in iq-tree to estimate the best substitution 
models, and we performed 1000 ultrafast bootstrap replicates 
(Hoang et al., 2017). Second, we used the sets of maximum-
likelihood gene trees to infer coalescent species trees in ASTRAL 
III (Zhang et al., 2018). Support was calculated as local posterior 
probabilities from quartet frequencies (Sayyari & Mirarab, 2016). 
Species trees were also inferred using each of the data sets with 
different sequencing coverages (WGS under 10×, 5×, and 2×) to 
evaluate the informativeness of multilocus alignments under de-
creasing amount of raw WGS data. We considered a species tree 
as well-resolved if it successfully recovered the expected species 
relationships (Li et al., 2019). We also considered branches as well-
supported when they presented a local posterior probability sup-
port higher than 0.95. To assess discordance among species trees, 
we calculated symmetric distances (Robinson & Foulds, 1981) 
using the r package phangorn (Schliep, 2011). Since the symmetric 
distances only consider tree topology, we used a reference spe-
cies tree generated with our WGS data set and under 5× depth of 
coverage, assembled with the multi-kmer abyss approach, which 
retrieved the expected tree topology (as in Li et al., 2019). This 
reference was then compared against each of the species’ trees 
obtained with ASTRAL III.

2.9  |  Assessment of potential errors in de novo 
contig assemblies

To evaluate the accuracy of the de novo contig assembly, we aligned 
queries of the assembled target loci sequences for each species of 
our study, against subject reference sequences of the same species 
using blast (Altschul et al., 1990). Both queries and subject refer-
ences were generated by our own alignments so we could assess 
the performance of our own implemented assembly strategies. We 
then calculated the percentage of errors as the number of nucleotide 
mismatches, multiplied by 100, and divided by the total length of 
the alignment for each locus. We used the number of mismatches 
as reported by blast because ambiguous nucleotides and Ns are not 
considered errors, and the alignment length only counts the posi-
tions in which the queries and the subject sequences match (but it 
includes potential gaps). This procedure allowed us to interpret any 
observed differences (mismatches) between alignments as potential 
assembly errors.

Our target sequence capture data set comes from different 
individuals of the same species present in the WGS data set. 
Therefore, differences from comparing WGS versus target se-
quence capture may as well result from within-species polymor-
phisms and not necessarily due to assembly errors. We therefore 
carried out the analyses for the WGS and target sequence cap-
ture data sets separately. For the WGS data set, first we cre-
ated the blast database of subject sequences for each species, 
each database including all the exons derived from the WGS 
10× data set and assembled with either our multi-kmer abyss 
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approach or spades. We only used the 10× average coverage data 
as subjects since this data set generated the more complete 
alignments in terms of total recovered loci and number of pres-
ent species within alignments, and because they produced well-
resolved species trees (see Section 3.3). Second, we performed 
per-species blast alignments between the query sequences 
and the corresponding species’ subject sequences. The query 
sequences are those generated by multi-kmer abyss and spades, 
and under different depths of coverage (10×, 5×, and 2×). Third, 
we calculated the percentage of error for each blast alignment 
(mismatches relative to matches), grouped the results by locus, 
averaged the percentage of error across species, and plotted 
the kernel density for every alignment. For the target sequence 
capture data set, we chose only the sequences assembled with 
spades to create subject sequences, since only these sequences 
generated well-resolved species trees (see Section 3). Query se-
quences were generated for the multi-kmer abyss approach and 
aligned against the subject. We also calculated the percentage 
of error for the blast alignment and plotted the averaged per-
centages. For all alignments, we used blast’s default values for 
blastn searches. Our factorial pairwise comparisons allowed us 
to quantify any differences in sequences coming from the same 
individual resulting from differences in assembly strategy (same 
data set, different assembly approach) and depths of coverage in 
the case of the WGS data set (same assembly approach, different 
coverages).

3  |  RESULTS

3.1  |  Sequence quality and computing performance

fastqc reports showed that per base sequence quality and per se-
quence quality score for clean and trimmed reads for both the WGS 
and target sequence capture data sets were above 28 Phred score. 
WGS data available from NCBI already contained adapter-free 
Illumina reads.

In general, de novo contig assemblies for the target sequence 
capture data were faster in terms of CPU time and wall time in com-
parison to the WGS data set even at 2× average read depth cover-
age, and they also required less memory usage. Also, single-kmer 
abyss runs used less computational resources than spades for CPU 
time, wall time and memory usage regardless of the type of data. 
A comprehensive table with running times and memory usage for 
assemblies can be found in Table S2.

3.2  |  Recovery of loci of interest and 
statistical analyses

First, we determined which of the six assembly strategies (four single-
kmer runs with abyss—kmers 21, 33, 55, 77, our novel multi-kmer 
approach with abyss, and spades) maximized the recovery of loci of in-
terest from low-coverage WGS (average 10× read depth) and target 

TA B L E  1  Pairwise contrasts of the marginal estimated means of recovered loci per sample between multi-kmer and single-kmer 
strategies and between both multi-kmer strategies

Pairwise comparisons among 
strategies

Completeness of 
alignments

WGS 10× read depth Target sequence capture

Estimate p-value Estimate p-value

abyss Multikmer - abyss 21 Unprocessed 136 <.0001 126 <.0001

abyss Multikmer - abyss 33 99 <.0001 120 <.0001

abyss Multikmer - abyss 55 143 <.0001 115 <.0001

abyss Multikmer - abyss 77 191 <.0001 104 <.0001

abyss Multikmer - spades 68 <.0001 85 <.0001

spades - abyss 21 68 <.0001 41 .012

spades - abyss 33 31 .1311 35 .0535

spades - abyss 55 75 <.0001 30 .1386

spades - abyss 77 123 <.0001 19 .6389

abyss Multikmer - abyss 21 Processed 117 <.0001 107 <.0001

abyss Multikmer - abyss 33 81 <.0001 102 <.0001

abyss Multikmer - abyss 55 129 <.0001 100 <.0001

abyss Multikmer - abyss 77 180 <.0001 92 <.0001

abyss Multikmer - spades 27 .2523 44 .006

spades - abyss 21 90 <.0001 63 <.0001

spades - abyss 33 54 .0002 58 <.0001

spades - abyss 55 102 <.0001 56 .0001

spades - abyss 77 153 <.0001 48 .0015

Note: Contrasts are made considering an average of 10× coverage for the low-coverage WGS and the target sequence capture data sets. Standard 
error = 12.4 for all pairwise comparisons; degrees of freedom = 477 for all pairwise comparisons
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sequence capture data. Our multi-kmer abyss approach significantly 
recovered more loci of interest per sample in both data sets com-
pared to all other strategies, including spades (Table 1). Nevertheless, 
spades significantly recovered more loci than all other single-kmer 
strategies (Table 1). A summary of estimated marginal means for 
every assembly strategy and data set can be found in Table S3. AICc-
based model selection indicated that the best fit model considered 
the interactions among all our fixed variables (Tables S4 and S5).

Second, we analysed the performance of our different assembly 
strategies using low-coverage WGS data under varying degrees of 
read depth. Our multi-kmer abyss strategy significantly recovered 
more loci of interest per sample than any other strategy for the 10× 
and the 5× coverage data sets, in both unprocessed and processed 
final alignments. spades, on the other hand, significantly recovered 
more loci of interest than any other strategy for the 2× coverage 
data set, and more than the single-kmer strategies across all the data 
sets of varying average coverages (Table 2). Overall, the multi-kmer 
strategies (multi-kmer approach with abyss and spades) were signifi-
cantly better than single-kmer strategies in recovering more loci of 
interest (Tables 1 and 2; Figures 3 and 4).

3.3  |  Phylogenetic inference

For the target sequence capture data set, only spades generated align-
ments that led to well-resolved species trees with well-supported 
branches, that were consistent with the expected phylogenetic 

hypothesis (Li et al., 2019; Figure 5). For the low-coverage WGS data 
sets at 10× and 5× coverage, both multi-kmer abyss and spades resulted 
in alignments that recovered species trees with the expected tree 
topology. Single-kmer abyss 21, 33, and 55 resulted in well-resolved 
trees for the 10× coverage subset, although the single-kmer abyss 
55 strategy did not recover a well-resolved species tree for the pro-
cessed alignments (with sequences with more than 50% missing 
data removed). Only abyss 33 and 55 recovered well-resolved spe-
cies trees for the 5× coverage subset. Single-kmer abyss 77 did not 
produce useful alignments for any of the data sets and did not result 
in well-resolved species trees. None of our implemented assemblers 
and strategies using the 2× WGS coverage subset resulted in well-
supported branches in species trees nor recovered the expected tree 
topology in terms of species relationships. Finally, Robinson-Fould dis-
tances showed that the trees with most incongruences were obtained 
from the 2× coverage subset. Single-kmer abyss 77 also presented 
high levels of incongruences in comparison with the expected tree to-
pology (Table S6). All species trees inferred in this study can be found 
at the Zenodo repository (https://doi.org/10.5281/zenodo.5515798).

3.4  |  Assessment of potential errors in de novo 
contig assemblies

When estimating the errors introduced by each assembly strategy 
using multi-kmer abyss 10× as a query and spades 10× as the subject 
reference, most alignments resulted in a low percentage of errors 

TA B L E  2  Pairwise contrasts of the marginal estimated means of recovered loci per sample between multi-kmer and single-kmer 
strategies and between both multi-kmer strategies for each of the subsets of depths of coverage of low-coverage WGS data set

Pairwise comparisons 
among strategies

Completeness of 
alignments

WGS 10× read depth WGS 5× read depth WGS 2× read depth

Estimate p-value Estimate p-value Estimate p-value

abyss Multikmer - abyss 21 Unprocessed 149.1 <.0001 133.55 <.0001 42.55 .0005

abyss Multikmer - abyss 33 116.02 <.0001 126.17 <.0001 61.62 <.0001

abyss Multikmer - abyss 55 166.22 <.0001 172.62 <.0001 95.97 <.0001

abyss Multikmer - abyss 77 217.75 <.0001 229.5 <.0001 109.85 <.0001

abyss Multikmer - spades 70.38 <.0001 69.28 <.0001 −33.97 .0118

spades - abyss 21 78.72 <.0001 64.27 <.0001 76.52 <.0001

spades - abyss 33 45.63 .0001 56.88 <.0001 95.58 <.0001

spades - abyss 55 95.83 <.0001 103.33 <.0001 129.93 <.0001

spades - abyss 77 147.37 <.0001 160.22 <.0001 143.82 <.0001

abyss Multikmer - abyss 21 Processed 117.8 <.0001 102.25 <.0001 11.25 .8786

abyss Multikmer - abyss 33 82.78 <.0001 92.93 <.0001 28.38 .061

abyss Multikmer - abyss 55 131.48 <.0001 137.88 <.0001 61.23 <.0001

abyss Multikmer - abyss 77 182.45 <.0001 194.2 <.0001 74.55 <.0001

abyss Multikmer - spades 33.12 .0155 32.02 <.0001 −71.23 <.0001

spades - abyss 21 84.68 <.0001 70.23 <.0001 82.48 <.0001

spades - abyss 33 49.67 <.0001 60.92 <.0001 99.62 <.0001

spades - abyss 55 98.37 <.0001 105.87 <.0001 132.47 <.0001

spades - abyss 77 149.33 <.0001 162.18 .022 145.78 <.0001

Note: Standard error for all pairwise contrasts = 10.2, degrees of freedom for all pairwise contrasts = 375.

https://doi.org/10.5281/zenodo.5515798
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(<1%; Figure 6). The same was observed when multi-kmer abyss was 
used as query and spades as subject reference but considering the 
target sequence capture data set. This suggests that both assem-
bly strategies produced very similar sequences for both data sets. 
When using the WGS 10× average coverage as subject reference 
(multi-kmer or spades), and reduced depth coverage sequences as 
queries, more alignments resulted in a higher percentage of errors 
(~10%), both for 5× and 2× coverage and using either assembly strat-
egy (Figure 6). This indicates that errors are more likely to appear as 
coverage decreases, regardless of the assembly strategy (Figure 6). 
Averaged results for the performed blast alignments can be found 
in Table S8.

4  |  DISCUSSION

Our study exemplifies how short reads from WGS can be effi-
ciently processed and integrated in multiple sequence alignments. 
By doing this within a single pipeline, we provide a way forward 
for the integration of sequencing strategies and the use of low-
coverage genomic data in phylogenomics and molecular ecology.

We compared the performance of two de novo contig assem-
bly methods and assembly strategies (single-kmer vs. multi-kmer) 
to recover 406 loci that represent exons of protein-coding genes 
from low-coverage WGS and target sequence capture data. We also 
developed a new approach to extract loci of interest from multiple 

single-kmer contig assemblies and compared its performance with 
other assembly strategies including single and multi-kmer de novo 
contig assembly. We implemented this approach in an expanded 
secapr pipeline, which was originally designed to process target se-
quence capture data, but it is now able to jointly process different 
types of sequencing approaches including low-coverage WGS.

4.1  |  Multi-kmer approaches most efficiently 
recover loci of interest

We showed that multi-kmer approaches significantly recovered 
more loci of interest from our set of targeted loci than single-
kmer approaches from both low-coverage WGS (average depth of 
coverages ~10×, 5×, and 2×) and target sequence capture data. 
More loci, however, does not always translate into better phylo-
genetic inferences. For example, for the target sequence capture 
data, the multi-kmer approach with abyss recovered more loci than 
spades (Table 1), but only the alignments from spades assemblies 
recovered well-resolved trees with the expected phylogenetic re-
lationships among species (Li et al., 2019). Since the percentage 
of errors within target sequence capture alignments was similar 
to the percentage of errors for the 10× WGS data set (Figure 6), 
the well-resolved trees only for spades may be the result of spades 
assemblies generating less N bases within sequences in the tar-
get sequence capture data (Table S7). Alternatively, our target 

F I G U R E  3  Boxplot of the median 
recovered loci per sample for each 
assembly strategy for the 10× average 
coverage WGS and target sequence 
capture data sets. (a) Unprocessed data, 
without the exclusion of sequences with 
more than 50% missing information – Ns. 
(b) Processed data (when sequences with 
more than 50% missing information - Ns - 
are excluded). Different colours represent 
the two different types of sequencing 
approaches that our data are derived 
from, target sequence capture and low-
coverage WGS at 10× coverage 
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sequence capture may have recovered a smaller number of align-
ments compared to the WGS at 10× average coverage, due to the 
unspecific nature of probe sequences used for in vitro capture. 
The butterfly probe kit aims to target protein-coding genes of all 

major butterfly lineages (families); thus, probe sequences were not 
designed specifically to target our study organisms, species within 
the butterfly family Hesperiidae. This scenario is widespread in 
target sequence capture studies where the design of sequence 

F I G U R E  4  Boxplot of the median recovered loci per sample for each assembly strategy for the three subsets of different average 
coverages (10×, 5× and 2×). (a) Unprocessed data, without the exclusion of sequences with more than 50% missing information – Ns. (b) 
Processed data (when sequences with more than 50% missing information - Ns - are excluded). Different colours represent the different 
average depths of coverage for the WGS data sets

F I G U R E  5  Species tree obtained with ASTRAL III (Zhang et al., 2018) by using gene trees estimated with iq-tree version 2.0.7 (Minh et al., 
2020). Tips represent each of the studied species and numbers represent local posterior probabilities inferred by ASTRAL III for the specific 
node. This species tree was obtained using the alignment derived from our abyss multi-kmer strategy for the WGS data set with an average of 
10× read depth coverage. Only this tree is shown since topology is the same for other well-resolved species tree
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probes tends to be more universal to increase the cost-efficiency 
of designing baits for library preparation.

spades performs better than multi-kmer abyss with decreasing 
amounts of genomic coverage, since this assembler statistically 
outperformed all the other strategies for the 2× coverage subset 
in recovering more loci of interest per sample. Nevertheless, all the 
alignments for the 2× average coverage data set contained a large 
proportion of missing data in terms of nucleotide calls (more N bases 
in the alignments), and a more pronounced reduction in the mean of 
recovered loci per sample after processing of the data (exclusion of 
sequences with more than 50% N), especially for the abyss strategies 
(Table S7). In fact, it has been shown that abyss consistently gener-
ates more incomplete sequences with reduced genomic coverage 
(Allen et al., 2017). Since spades simultaneously uses different kmer 
sizes during the building of the de Bruijn graph, performing multiple 
graph reduction and correction steps, the final contig assemblies are 
expected to be more complete compared to single-kmer approaches 
(Bankevich et al., 2012).

We advocate the use of multi-kmer approaches, which retrieve 
significantly more loci of interest from assembled contigs, resulting 
in more complete alignments from both target sequence capture and 
low-coverage WGS data. We highlight that our new implementation 

of the multi-kmer abyss strategy was the most efficient approach for 
WGS with averages of 10× and 5× read depth for both extraction of 
loci and phylogenetic inference. A similar multi-kmer approach (post 
contig assembly) was described by Zhang, Ding, et al. (2019) using 
the minia3 assembler. However, it is unclear how the performance of 
this approach compares to multi-kmer approaches when all kmers 
are processed during the contig assembly step as in spades. The new 
expansion of secapr version 2.2.3 including spades (Bankevich et al., 
2012) and our newly developed multi-kmer abyss strategy, there-
fore, represent a significant way forward for molecular ecology and 
phylogenomics.

4.2  |  Sequencing approaches and their impact on 
phylogenetic trees

Average coverages of ~10× from small to medium sized genomes 
(<1  [Gbp]) have been shown to be optimal for extracting single-
copy orthologs amenable to phylogenomics (Allen et al., 2017), 
while a coverage of 5× is sufficient for retrieving UCEs (Zhang, 
Ding, et al., 2019). We showed that multi-kmer approaches signifi-
cantly recover more target loci from both 10× and 5× genomes, and 

F I G U R E  6  Kernel density of the percentage of error per locus, averaged across species. Percentage of error was calculated from the 
mismatches and alignment lengths in the blast results. (a) Comparisons between spades and our multi-kmer abyss approach, showing the 
density of the average percentage of error in assembly strategy (same data set, different assembly approach); WGS indicates our whole 
genome sequence data set with 10× average depth of coverage and TC indicates the target sequence capture data set. (b) Comparisons 
showing the density of the average percentage of error from comparing the same assembly approach but different coverages. Multi-kmer 
indicates the multi-kmer abyss approach. In each density graph, the term before “vs” indicates the subject and the term after “vs” indicates 
the query. Numbers under each density graph indicate the average number of loci aligned per species in the blast alignments. Graphs show 
that the percentage of errors tend to increase when using reduced read coverage, regardless of the used assembly strategy 
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that those loci were useful for the recovery of expected and well-
supported phylogenetic relationships compared to single-kmer as-
sembly approaches.

On average, sequencing a 1  [Gbp] genome at 5× is ~65% the 
cost of sequencing the same genome at 10× read depth and is 
similar to target sequence capture of hundreds of loci for phy-
logenomics. However, library preparations for WGS are more 
straightforward (Allen et al., 2017; Lemmon & Lemmon, 2013) and 
require less initial DNA material compared to target sequence cap-
ture (Zhang, Ding, et al., 2019). Nevertheless, in cases where the 
expected genome size is large (e.g., 2, 3  [Gbp]), target sequence 
capture might still be the most cost-efficient approach to obtain 
phylogenomic markers. Taken together, this shows that low-
coverage WGS aiming for at least 5× read depths and for genomes 
as large as 1  [Gbp] is currently the most cost-efficient approach 
for phylogenomics.

4.3  |  Potential errors within de novo 
contig assemblies

We found that with decreasing depths of coverage in WGS data, 
the percentage of errors generated during de novo contig assem-
bly increases, which might ultimately generate biases in branch 
length and divergence time estimations (Andermann et al., 2019; 
Simion et al., 2020). At lower coverages, individual reads containing 
sequencing errors and those resulting from contamination have a 
higher impact on the assembled contigs, leading to the observed 
increase of assembly errors in low coverage samples. We advise 
caution when using 5× or lower coverages for analyses that re-
quire the estimation of within-species polymorphisms, variant call-
ing, and population genetic studies (Lou et al., 2021; Menelaou & 
Marchini, 2013), unless a reference genome is provided (e.g., Bizon 
et al., 2014; Rustagi et al., 2017). However, we demonstrate that 
5× is sufficient for phylogenomic inference in terms of retrieving 
accurate species relationships. Finally, our results add further evi-
dence showing that a minimum of 10× average coverage is suit-
able for obtaining high numbers of single-copy target loci shared 
between samples of varying evolutionary distances (Zhang, Ding, 
et al., 2019) and to enable accurate phylogenetic inference (Allen 
et al., 2017; Li et al., 2019).

Low-coverage WGS data might bias the estimation of population-
level parameters, genotyping and phasing of alleles in which cases 
the use of genomic imputation to estimate missing genotypes more 
confidently is needed (Lou et al., 2021). Although it is possible to 
phase alleles with secapr version 2.2.3, the implementation of new 
models and software dealing with genotyping and phasing of alleles 
at low WGS coverage (e.g., Lou et al., 2021; Menelaou & Marchini, 
2013; Rubinacci et al., 2021; Zan et al., 2019) would represent an 
important advance to fully integrate different short-read library 
preparations and research scopes (e.g., phylogenomics and popula-
tion genomics using the same WGS data in a single bioinformatic 
pipeline).

5  |  CONCLUSION

Our assessment of assemblers, assembly strategies and WGS se-
quencing depth of coverage provides a guide for improving the 
extraction of more loci of interest from WGS and target sequence 
capture data. With further increases in the cost-benefit of low-
coverage WGS sequencing, researchers are now able to address 
questions in molecular ecology and evolutionary biology using more 
taxa, even in the absence of reference genomes. By using multi-kmer 
approaches, either spades or by merging the assembled contigs of in-
terest from different single-kmer abyss assemblies (multi-kmer abyss), 
we were able to generate alignments with more samples and of bet-
ter quality to infer robust species trees. Also, other available types 
of data, such as RADseq and UCEs, can be tested within our pipeline 
so users are able to recycle these data by extracting other specific 
regions of genomes from them.

For years to come, both types of sequencing techniques will 
likely remain at the center of a myriad of questions in evolutionary 
biology and molecular ecology. Our freely available bioinformatic 
platform and guidelines allow researchers to make informed choices 
on the generations of contigs, be them from low-coverage WGS 
data, specifically enriched target sequence capture data, or a com-
bination of both.
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