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ABSTRACT: SARS-CoV-2 has caused the largest pandemic of the
twenty-first century (COVID-19), threatening the life and economy
of all countries in the world. The identification of novel therapies and
vaccines that can mitigate or control this global health threat is
among the most important challenges facing biomedical sciences. To
construct a long-term strategy to fight both SARS-CoV-2 and other
possible future threats from coronaviruses, it is critical to understand
the molecular mechanisms underlying the virus action. The viral
entry and associated infectivity stems from the formation of the
SARS-CoV-2 spike protein complex with angiotensin-converting
enzyme 2 (ACE2). The detection of putative allosteric sites on the
viral spike protein molecule can be used to elucidate the molecular
pathways that can be targeted with allosteric drugs to weaken the
spike-ACE2 interaction and, thus, reduce viral infectivity. In this
study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-
CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and
perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex
with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric
modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike
protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an
inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.

KEYWORDS: COVID-19, spike protein, ACE2 binding, protein contact networks, allosteric drugs, binding patch softness,
elastic networks modeling, drug discovery

■ INTRODUCTION

The recent pandemic caused by SARS-CoV-2 (COVID-19) has
posed the most challenging global health and sanitation concern
of the twenty-first century, with 6,663,304 confirmed cases of
infected and 392,802 confirmed fatalities (World Health
Organization, updated on June 6th, 20201). Moreover, this
pandemic has caused a widespread lockdown, affecting more
than 1 in 2 individuals in the world.
The virus responsible for COVID-19, SARS-CoV-2, emerged

in late 2019, in the region of Wuhan, China.2 SARS-CoV-2
belongs to the family Coronaviridae, which is characterized by
large, enveloped, positive-stranded RNA viruses that can
potentially cause gastrointestinal, nervous system, and respira-
tory distress.3 This family also includes SARS-CoV and MERS-
CoV,4 which, despite several similarities, present some
interesting differences from SARS-CoV2.4,5

SARS-CoV-2, MERS-CoV, and SARS-CoV use an envelope
protein, termed the spike (S) protein, to gain access to host
cells.4,6 The S protein displays the highest degree of genetic
variability in the virus genome.6 Additionally, the SARS-CoV-2 S

protein exhibits a greater affinity for the ACE2 receptor with
respect to analogs in SARS-CoV andMERS-CoV.7,8 The SARS-
CoV-2 S protein shares a 96.2% sequence similarity with the bat
SARS-like RaTG13 S protein, indicating the natural origin of the
virus.5,9

Due to its crucial role in the very first stage of viral infection,
several studies7,10−14 point to the S protein as an elective target
to develop coronaviruses therapies and vaccines (the S protein is
also the main target of neutralizing antibodies15−17).
The S protein belongs to the viral fusion class I proteins,7 has a

trimeric, crown-like shape, protrudes from the virus envelope,
and targets diverse host cell receptors in different species (see
Table 1 in ref 4). Both SARS and SARS-like (MERS and SARS-
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CoV-2) coronaviruses target the angiotensin-converting-
enzyme 2 (ACE2) present in pneumocytes and enterocytes in
the respiratory system and other susceptible cells (e.g., intestinal
mucosal, renal tubular epithelial, cerebral neurons, and immune
cells).18 The S-ACE2 interaction occurs at the very first stage of
viral entry to initiate viral fusion with the host cell.19,20 The
hallmark of SARS-CoV-2 is that its S protein is optimized for
ACE2 binding.9

The S protein comprises two subunits, termed S1 and S2,
which are cleaved during the first stage of viral infection. The S1
subunit is responsible for the interaction of the S protein with
the host receptor (ACE2), while S2 promotes viral fusion.21 The
receptor binding domain (RBD) resides between residues 318
and 51322 in SARS-CoV-2 and 318 and 510 in SARS-CoV.13

The development of therapeutics targeting the S-ACE2
complex requires a comprehensive study of this complex
interface and its associated dynamics.23 Thus, investigating the
allosteric nature of the S-ACE2 complex will help to understand
and quantify the extent by which the S protein binds to ACE2,
and therefore the molecular basis of virus infectivity.
The identification of allosteric modulation regions (AMRs)

allows for the design and testing of allosteric drugs (i.e., drugs
targeting a different site from the complex interface) with
enhanced bioactivity with respect to orthosteric drugs targeting
the protein−protein interaction interface,24 which are often
tightly packed and scarcely accessible. The field of allosteric
drugs is a rapidly developing field in drug discovery andmay play
a crucial role in the therapeutic strategy for SARS-CoV-2.25−28

In this study, we adopted a multifaceted computational
approach to identify promising “druggable” allosteric sites of
viral S protein. We first applied the method of protein contact
networks (PCNs) to the S-ACE2 complex in SARS-CoV-2 and
SARS-CoV. In previous studies, we adopted this method to
investigate both protein−protein interactions29−31 and the
allosteric nature of binding.32,33

In this work, the application of PCNs clearly highlighted a
region in the SARS-CoV and SARS-CoV-2 S protein, which acts
as the putative locus for allosteric modulation (AMR). AMR was
further investigated in terms of its relevance in the stability of the
complex and ability to transmit modulating signals to the
binding site by means of independent computational
approaches.
Specifically, we adopted a monomer-based approach34 which

can predict the affinity of the S protein to its ligand. In this step,
the ensembles for the ground state of the structures have been
produced using the anisotropic network model (ANM)
approach.35 Moreover, we adopted an unsupervised blind
procedure to predict possible interaction sites on S proteins
and their affinities for tentative partners using a softness-based
prediction of intersubunits affinity (SEPAS). In addition, the
dynamical difference in RBD between the S proteins of the two
virus strains suggested that they may have different binding and
allosteric properties.
We also provided biophysical evidence based on the elastic

network modeling (ENM) approach, combined with perturba-
tion-response scanning (PRS)36 that AMRs in both viruses
acted as a mediator of intermolecular allostery between the S
protein and ACE2. “The three methods converged in allosteric
character for residues in AMR in both complexes. This allowed
us to state that residues in AMR for SARS-CoV-2 AMR aremore
susceptible to allosteric drug targeting than for SARS-CoV.

A recent study37 suggested that themany residues in the AMR
may be one of the most efficient epitopes for antibody
recognition.
Preliminary docking studies individuated somemolecules that

bind to AMR (hepcidin), which were independently shown to
exhibit strong sequence similarities with the AMR.38

■ MATERIALS AND METHODS
The analyzed structures consist of the following: complex SARS-
spike glycoprotein-human ACE2 complex (stabilized variant, all
ACE2-bound particles, PDB code 6CS2,39 termed the SARS-
CoV S/ACE2 complex) and the SARS-CoV-2 analogous spike
glycoprotein-human ACE2 complex40.
Protein Contact Network Methods

Purposed software was used to transform the full structural
information in the PDB files into a protein contact network
(PCN): the network nodes are the amino acid residues
represented by α-carbons. Links between nodes (residues)
exist if the mutual distance of the residues (centered on α-
carbons) were in the range between 4 and 8 Å, thus including
only significant (<8 Å) noncovalent (>4 Å) bonds, while
discarding “obliged” contacts due to proximity along the
sequence.
The adjacency matrix Amathematically represented the PCN

in terms of undirected, unweighted network and is defined as
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The topological role of nodes (residues) addressed the
functional role at the corresponding residues, based on the
value of network descriptors. The method is widely discussed
elsewhere.41

The basic network descriptor was the node degree ki, defined
as
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To detect allosteric sites and, more generally, the functional
regions activating upon binding, we adopted a method based on
network spectral clustering.42,43 Spectral clustering was based on
the Laplacian matrix spectral decomposition, where the
Laplacian matrix L is defined as

L D A= − (3)

where D is the degree matrix (i.e., a diagonal matrix whose
diagonal is the degree vector).
The spectral clustering was based on the eigenvalue

decomposition of Laplacian L. The sign of the Fiedler vector
(the eigenvector corresponding to the secondminor eigenvalue)
was used for binary partition (each network was parted into two
clusters, which in turn could be parted into four, and so on), as
outlined in refs 43 and 44. We previously demonstrated that
network clusters (group of residues) correspond to functional
regions in the protein.43

Once network nodes (again, protein residues) were parted
into the given number of clusters (an independent user-defined
parameter for the clustering software), it was possible to define
the participation coefficient P
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where ksi is the degree of the ith residue computed in the cluster
it belongs (i.e., accounting only for links with nodes pertaining to
the same cluster).
This network descriptor has been demonstrated to represent

the functional role of residues in binding and stability.33,41,43,45

Residues with a high P value are responsible for the
communication between clusters (functional regions) and are
thus addressed via the role in allosteric communication.46 In this
study, the participation coefficient maps were projected onto
ribbon protein structures (as heat maps), to highlight activating
hotspots in the spike-ACE2 complex. Participation coefficient
maps are visualized by PyMol (https://pymol.org/2/).
We characterized the spike protein/ACE2 interface by means

of descriptors stemming from the structural information and the
network analysis described above:

• the interchain degree ki
IC was defined as the node degree,

but was only computed over contacts between nodes
(residues) belonging to different chains

The interface roughness Q/R29 was defined for each chain
participating in an interface,Q was the number of chain residues
in the interface and R, the sequence range of chain residues in
the interface.

• the interface amino acid range29 IAR = R/N, whereN was
the total number of residues in the chain

• the interface energy matrix, E, defined as
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the interface energy EINT is the sum of of eij and ⟨EINT⟩ is the
value averaged over the whole number of residues at the
interface.
Elastic Network Modeling of ANM and GNM

Elastic network models (ENMs) provide efficient methods for
investigating the intrinsic dynamics and allosteric communica-
tion pathways in proteins. We adopted two elastic network
models: (1) anisotropic network model (ANM); and (2)
Gaussian network model (GNM).
In ANM,47 the interaction potential for a protein ofN residues

was:
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N
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In ANM, the 3N × 3N Hessian matrix, H, determined the
systems dynamics.
H generic element was
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whereXi, Yi, and Zi represented the Cartesian components of the
ith residue,Vwas the potential energy of the system.We selected
rc = 13 Å.

ANMs provide information about the amplitudes, as well as
the direction of residue fluctuations. The similarity between two
ANMmodes, uk and vl, evaluated for proteins with two different
conformations, can be quantified in terms of the inner product of
their eigenvectors:

O(u , v ) u vk l k l= · (8)

GNM36 was based on the description of the protein structure as
a network ofCα connected by springs of uniform force constant γ
if they were located within cutoff distance rc. In GNM, the
interaction potential for a protein of N residues was
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where Rij
0 and Rij were the equilibrium and instantaneous

distance between residues i and j, andΓwas theN×NKirchhoff
matrix:
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Thus, the square fluctuations were
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The normal modes were extracted by eigenvalue decomposition
of the matrix Γ = UΛUT, with U being the orthogonal matrix
whose kth column uk was the kth mode eigenvector. Λ was the
diagonal matrix of eigenvalues λk.
The perturbation response scanning (PRS) approach was

based on the linear response theory and allowed evaluation of
residue displacements in response to external forces.48 Our
study performed a PRS analysis based on GNM by constructing
the inverse Laplacian matrix, Γ−1.
The N-dimensional vector ΔR of node displacements in

response to the application of a perturbation (a N-dimensional
force vector F) obeys Hooke’s law (F = H • ΔR).
The purpose of PRS was to exert a force of a given magnitude

on the network, one residue at a time, and F for other residues
not being perturbed, equal to zero. Thus, the force exerted on
residue i was expressed as

F F F F( , )i
x

i
y

i
x

i T( ) ( ) ( ) ( )= (12)

and the resulting response was

R H Fi i( ) 1 ( )Δ = − (13)

ΔR(i) was an N-dimensional vector that described the
deformation of all the residues in response to F(i). A metric for
the response of residue k was the magnitude ⟨∥ΔRk

(i)∥2⟩ of the
kth block of ΔR(i) averaged over multiple F(i), expressed as the
ikth element of theN×N PRSmatrix, SPRS. The elements of SPRS
referred to the unit (or uniform) perturbing force. The response
to unit deformation at each perturbation site was obtained by
dividing each row by its diagonal value
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The average effect of the perturbed effector site i on all other
residues was computed by averaging over all sensors (receivers)
residues j and can be expressed as ⟨(ΔRi)2⟩sensor. The effector
profile ⟨(ΔRi)2⟩effector described the average effect that the local
perturbation in the effector site i had on all other residues. The
maxima along the effector and sensor profiles corresponded to
the functional mobile residues that underwent allosteric
structural change.
Because the crystallized structure presented one snapshot of

the protein dynamic life at the bottom of a potential well, we
created a trajectory of protein dynamics in its ground state by
setting the RMSD cutoff to 5 Å using the ANM36,47 approach
implemented in Prody.49 To predict the most possible protein
binding patches (PBPs) on spike proteins, we utilized ISPRED
to predict the interface residues.50 The ISPRED-predicted
interface residues acted as a seed to create a possible PBP based
on the procedure as previously described.34 The predictions of
monomer-based affinities based on the mechanical softness of
PBPs were performed by utilizing SEPAS ver. 1.34 We
introduced ALA mutations into the Covid-spike using FoldX
suite.51

Additional Computational Methods

We computed the general interface properties of the spike/
ACE2 complex using PISA software,52 specifically the interface
area, SINT, and the energy gain upon the interface formation,
ΔGINT.

■ RESULTS AND DISCUSSION

Protein Contact Network Results

Figure 1 reports the cluster partition (2 clusters) of the SARS-
CoV S/ACE2 complex (Figure 1B). The chains are also shown

to highlight which chains participate in the two clusters (Figure
1A).
The interface between the fusion peptide and the ACE2

ectodomain was so strong (in terms of number of contacts
between viral and host proteins) that the clustering partition
algorithm recognized the fusion+ACE2 region as a single cluster,
even though it comprised sequences belonging to different
chains.
The map of the participation coefficient projected onto the

ribbon structure of the SARS-CoV/ACE2 complex (Figure 1C)
shows an active region (P> 0) in the junction between the fusion
peptide and the trimeric bulk phase of the spike protein. Active
residues are shown more in greater detail in red in Figure 1D. As
previously demonstrated, the participation coefficient describes
the attitude of residues toward participating in the intercommu-
nication between clusters; thus, it was a putative score of the
involvement of the residues in allosteric communication.
Therefore, this region was a good candidate to intervene in
the allosteric regulation of complex formation and there was
value in investigating allosteric drugs that target this portion of
the protein.
Figure 2 refers to the analogous analysis for the SARS-CoV2

S/ACE2 complex.

A similar active region appeared at the junction of the fusion
peptide to the body of the spike protein; however, the active
region in the SARSCoV S/ACE2wasmore compact than that of
SARS-CoV2 S/ACE2. Active regions in both complexes were
characterized by two β-sheets and unfolded traits, and could
thus be targeted to peptides due to flexibility of the region and
absence of a pocket to bind small organic molecules.53

Table 1 reports the values of the participation coefficient P in
residues with P > 0, all of which were located in the chain
carrying the fusion peptides of the SARS-CoV S/ACE2 (chain B,
in cyan in Figure 1A) and SARS-CoV2 S/ACE2 (chain C, in
magenta in Figure 1A) complexes.

Figure 1. SARS-CoV S/ACE2 complex (PDB code 6cs239). (A)
Partition into two clusters (green cluster 1, comprising the ectodomain
of ACE2 and the fusion peptide, in red cluster 2, the remaining part of
the spike protein); (B) chains in the complex: in green chain A, in cyan
chain B, carrying the fusion peptide, in magenta chain C, in yellow the
ACE2 ectodomain.

Figure 2. SARS-COV 2 S/ACE2 complex: (A) Partition into two
clusters (green cluster 1, comprising the ectodomain of ACE2 and the
fusion peptide, in red cluster 2, the remaining part of the spike protein);
(B) chains in the complex: in green the chain A, in cyan the chain B, in
magenta the chain C, carrying the fusion peptide, in yellow the ACE2
ectodomain.
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The SARS CoV S/ACE2 and SARS-CoV2 S/ACE2
complexes accounted for 21 and 22 active residues, respectively.
The average value was similar for the two distributions (0.47 for
SARS CoV S/ACE2, 0.48 for SARS-CoV2 S/ACE2). However,
the absolute values of higher P residues (>0.6) were higher for
COVID19 S/ACE2, indicative of a corresponding larger
reactivity of the active region.
Characterization of the S-ACE2 Interface

Table 2 reports the properties of interface S/ACE2 in the two
complexes. The interface area and the absolute value of energy of

the SARS CoV S/ACE2 complex were higher than the
corresponding area for the SARS-CoV-2 S/ACE2 complex;
however, the specific values for the unit area and single residues
were higher for SARS-CoV-2 S/ACE2, indicating a more
efficient yet less stable interface.
This implied an optimized complex formation with the ACE2

of SARS-CoV-2, as observed in ref 9. This helped to explain the

more rapid kinetics of infection, mediated by a faster complex
formation with main receptor, ACE2.
The RBDs for the two proteins are reported as a wide peptide,

which comprised approximately 200 residues for both
structures; however, a more limited core region, termed the
receptor binding motif (RBM), was claimed to actively
participate in the complex formation of the spike protein with
its receptor, ACE2. We independently identified the residues in
the spike protein for SARS-CoV and SARS-CoV2 using the
method of PCNs. The position and the value of the interchain
degree are reported in Table 3 for both complexes. The two
residues in the two structures with the highest value of interface
degree were 488G in SARS-CoV and 502G in SARS-CoV-2,
respectively.

These two residues could be considered the hotspots of the
PPI interface in the S/ACE2 complex; both are glycine residues,
likely due to the high steric adaptability of the small glycine
residues in the most tightly packed region of the S-ACE2
interface. This confirmed the high density of the interface and its
extremely scarce accessibility to small molecules targeting the
region, which also suggested the need to interfere with the S/
ACE2 interface through allosteric regulation.
Spike Binding Affinity and the Allosteric Modulation
Region (AMR)

In the previous sections, the AMRs of the S/ACE2 complexes
have been identified for SARS-CoV-2 and SARS-CoV using the
PCNs approach (Table 1). The AMR is accessible for binding,
which is at odds with the PBD.
One critical property of the protein complexes was the

intersubunit affinity. Therefore, besides the S/ACE2 stability,
we predicted the affinity between the AMR and incoming-
designed molecule (peptide molecules), which will be designed
to affect the function of AMR.
This was a crucial step that will provide an independent proof-

of-concept of both the allosteric features of AMR (by definition,
an allosteric site must “sense” the microenvironment) and the
druggability of the predicted AMR.
We reviewed the need for complete 3D knowledge of the S/

ACE2 complex by means of a recently introduced method to
predict the intersubunit affinity of protein complexes using
protein binding patch (PBP) on a single subunit by computing
the PBP mechanical softness.34,54

Table 1. Values of the Participation Coefficient P for the
SARS-CoV S/ACE2 and nCoV2019 S/ACE2 Complexes
(Only Positive Values Are Reported, with Corresponding
Position, in Italic Values Larger than 0.6)

SARS CoV S/ACE2 SARS-CoV2 S/ACE2

aa P aa P

312D 0.31 320Q 0.61
313V 0.56 321P 0.56
314 V 0.69 322T 0.64
315R 0.47 323E 0.67
316F 0.23 531N 0.75
516S 0.31 532L 0.75
517T 0.64 533V 0.44
518D 0.64 534 K 0.31
519L 0.56 537C 0.15
520I 0.36 538V 0.44
527F 0.19 539N 0.70
528N 0.51 540F 0.51
529N 0.61 542F 0.21
530N 0.64 546T 0.31
532L 0.36 547G 0.36
563R 0.21 548T 0.51
564D 0.27 549G 0.44
565P 0.61 576R 0.21
566 K 0.56 577D 0.21
567T 0.56 578P 0.84
568S 0.64 580T 0.56
- - 581L 0.36

Table 2. Properties of the Spike Protein/ACE2 Interface

SARS-CoV SA/ACE2 SARS-CoV2 S/ACE2

IARSP 0.01 0.008
IARACE 0.62 0.56
(Q/R)SP 0.45 0.37
(Q/R)ACE 0.05 0.04
EINT 5.37 4.35
⟨EINT⟩ 0.17 0.17
nIC = QSP + QACE 31 26
SINT, Å

2 962.2 739.9
ΔGINT, kcal/mol −7.9 −7.4

( G
S

INT

INT

Δ
Δ

, cal/(mol Å2)) 8.21 10.00

Table 3. Residues in the Interface S/ACE2, with
Corresponding Interface Degree

SARS-CoV S/ACE2 SARS-CoV2 S/ACE2

Position kIC Position kIC

462P 3 475A 2
463D 2 476G 1
464G 1 487N 2
473N 3 489Y 1
475Y 1 493Q 1
479N 3 500T 4
482G 1 501N 4
486T 4 502G 8
487T 4 503V 3
488G 6 504G 1
489I 4 505Y 2
490G 1 - -
491Y 2 - -

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00273
J. Proteome Res. XXXX, XXX, XXX−XXX

E

pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00273?ref=pdf


To alleviate the static presentation of the protein structure in a
crystallized state, we created ensembles of protein complexes in
their ground state using the ANM approach. In the first step, we
predicted the affinity of the SARS-CoV-2 and SARS-CoV S
proteins for ACE2.
We compared the predicted affinity between the S protein and

ACE2 when the S protein was in its monomeric or trimeric state
to obtain some hints about the effect of adjacent subunits on the
affinity between spike and its ligand (Figure 3). Subunits
(chains) are denoted as SA, SB, and SC.
To manage the potential states of the spike protein, we

propose different forms of PBPs on the S protein:

• The SA subunit is alone and waiting for its partner (left
column, Figure 3). We suppose that SA may interact with
ACE2 using PBPs similar to those in the ensemble of S/
ACE2 in its dimeric state (the first row, Figure 3) or by
using PBPs similar to ones SA displays in the trimer spike
and ACE2 ensemble (second row, Figure 3)

• Subunit SA finds ACE2 and binds it directly (right
column, Figure 3). SA binds to ACE2 via the PBPs that it
displays, either when no SB subunit is available (the first
row, Figure 3) or in association with SB monomers
(second row, Figure 3).

Our computations suggested that SARS-CoV-2 SA (dark blue
curves, Figure 3) was more sensitive to the presence of the SB
subunit than SARS-CoV SA (red curves, Figure 3). This result
suggested approaches that potentially disrupted the SA-SB
association may provide an efficient therapeutic route.
We observed a higher affinity between S and ACE2 in SARS-

CoV-2 in SARS-CoV. This observation may explain the higher
infectivity of SARS-CoV-2.
We are interested in predicting the affinities between possible

PBPs on spike proteins and tentative protein partners. In this
case, we did not know the PBPs on spike proteins because we did
not have the resolved 3D structures of all possible protein
complexes between the spike protein and other natural or
synthesized partners. We predicted the seed interface residues
on the spike surface using the ISPRED approach.50 By

expanding the selection radius for defining the PBP region,34

many possible PBPs were generated for both SARS-CoV-2 and
SARS-CoV spike proteins. Using SEPAS, the affinities between
the generated PBPs and unknown partners were predicted.
The affinities averaged over the whole are presented in Figure

4a and b (for SARS-CoV-2 and SARS-CoV spikes, respectively);
the average affinities mapped on the surface of the spike proteins
are reported in Supporting Information Figures 1 and 2. Some of
the predicted regions with an affinity < −5 kcal/mol resided in
the interface region of the spike subunits. There were some
residues in the proposed PBPs that belonged to AMR (indicated
as red triangles in Figure 4). This meant that AMR could act as a
distinct PBP for some partners, suggesting that targeting AMR
may be a good choice for drug design.
Thus, in considering AMR as distinct PBP, we were able to

1. Predict the affinities between AMR and unknown drug-
like protein partners, simply by using a 3D structure of
AMR on the spike subunit in different ensembles
(monomer, case “C” in Figure 5a)

2. Account for the effect of ACE2 binding on AMR affinity
for its possible partners. We assumed the spike monomer
in association with ACE2 then predicted the affinity
between AMR and its possible partners (dimer, case “DC”
in Figure 5a)

3. Address the effect of the SB spike chains on the affinity of
AMR in the SA spike chain for its partners, feeding SEPAS
with the trimeric state of spikes (trimer, case “ABC” in
Figure 5a)

4. Analyze the condition of a trimer spike and ACE2 in terms
of a holo-complex (S/ACE2 complex, case “ABCD” in
Figure 5a)

These results indicated that the AMR of SARS-CoV-2 spike
exhibited a higher affinity for generic peptides than the AMR of
SARS-CoV spike. Interestingly, the affinity of AMR for their
partners was increased upon binding to ACE2, which suggested
an interplay between the two distant regions, the ACE2-binding
site of spike and AMR. This last result could be considered to be
another proof-of-concept of the allosteric character of the AMR.

Figure 3. Predicted affinities of spikes to ACE2 are presented. The affinity of SARS-CoV 2 spike (blue curve) and SARS-CoV spike (red curve) to
ACE2 is predicted using SARS-CoV 2/SARS_X_C/B_Y summarized the state of spike proteins in affinity prediction: X denotes number of chain in
predictions. X = 1means S1 protein in monomer form is considered, X = 2means S1 + ACE2 complex, and X = 4means whole spike complex + ACE2.
Y notes the considered PBP in computations: Y = 2 means the PBP’s residues of S1 in S1-ACE2 complex is used to predict the affinity and Y = 4 means
the PBP’s residues of S1 in whole spike proteins-ACE2 complex is used to predict the affinity between S1 and ACE2. Horizontal axis presents predicted
affinity (kcal/mol). Normalized density denotes in Y-axis.
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To further investigate the effect of the induced structural
perturbation in AMR on the binding affinity of the spike protein
to ACE2, we introduced two sets of ALA mutations in AMR. In
one set, the AMR residues that play a major role in allosteric
modulation (P > 0.5 in Table 1) were mutated to ALA, and in
the other set, all residues of AMR on SARS-CoV-2 SA were
mutated to ALA.
To simulate an SA perturbation, we used the ensemble of

structures generated using the ANM approach after setting the
RMSD cutoff to 8 Å for selecting normal mode states. Such
global perturbation only distorts the ACE2-binding site of SA to
less than 1.5 Å. In Figure 5b, we reported that wild-type SA
exhibits a shoulder in its affinity density curve at a high affinity
region. Our observations suggested that the structural
perturbation of AMR due to the ALA mutation of native
residues decreased the affinity of SA for ACE2. This was further
confirmation of the allosteric properties of the AMR.
In order to explore AMR druggability, we started by

recognizing the strict structural similarity of the AMR region
with hepcidin, a crucial protein for iron regulation. Moreover, a
recent preprint reported a distant (albeit relevant) sequence
similarity between hepcidin and the SARS-CoV-2 spike
protein.38 It has been established that there was some proof of
the similarity between the hydrophobicity spectra of ligand−

receptor pairs, which fostered the observed sequence similarity
between hepcidin and the SARS-CoV-2 S-protein.55,56

Moreover, hepcidin is strictly involved in interleukin 6 (IL-6)
regulation,57 given that IL-6 is the main actor associated with the
“cytokine storm” that is linked to fatalities provoked by SARS-
CoV-2 infection.58 A preliminary docking analysis showed a
perfect fit between hepcidin and the AMR region; however, this
now must only be considered as a first step with which to
prioritize different peptides as allosteric effectors.
Dynamical RBDs Comparison of SARS-CoV and SARS-CoV-2

In addition to the characterization of the S/ACE2 interface, a
comparison of RBD dynamics between SARS-CoV and SARS-
CoV-2 was also important to understand the functional
mechanism of the S/ACE2 interaction. To this aim, the
overlapping values between the slowest ANM modes
(eigenvectors) were calculated to compare the intrinsic
dynamics of RBDs in both S proteins (eq 8 in Materials and
Methods). In Figure 6a, the dot products (overlap values) were
plotted in the map for the RBDs in SARS-CoV versus SARS-
CoV-2 for the first 10 ANMmodes. In this map, the upper limit
of 1 indicated a perfect overlap (red) correspondent to a
perfectly shared dynamics, while 0 indicated no overlap (blue),

Figure 4. Affinity of possible PBPs on the S1 subunit of the spike to
tentative proteins are predicted. Possible PBPs are defined for the S1
subunit. The affinity of the PBPs on SARS-CoV2 (a) and SARS-CoV
(b) S1 protein for their possible partners is presented. Left vertical axis
points to the averaged predicted affinity (kcal/mol) of the proposed
PBPs. Right vertical axis denotes the P metric (Table 1) of the AMR
participat residues. X-axis notes the residue of the PBP’s central residue.
Red triangles represent the position of AMR residues on the S1 protein
sequence.

Figure 5.Affinity of AMR for tentative protein partners and the effect of
AMR perturbation on ACE2 affinity are presented. (a) Affinity (kcal/
mol) of AMR to possible partners are predicted when S1 is a monomer
(state C), S1 is associated with ACE2 (stade DC), S1 is accompanied by
two S2 subunits (state ABC), and when the whole spike binds to ACE2
(state ABCD). (b) Affinity of S1 for ACE2 is predicted when AMR is
intact (WT), residues of AMR with P > 0.5 are mutated to ALA (P >
0.5), or all AMR residues are mutated to ALA (P > 0). The affected
region of affinity density curve is marked with vertical gray arrow.X-axis
notes predicted affinity (kcal/mol) and vertical axis presents
normalized density of affinities.
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indicating that they showed independent dynamics. Although
RBDs in the two complexes showed very high structural
similarity with an RMSD of 0.68 Å, the overlap between the first
10 ANM modes of two RBDs exhibited some differences.
Overlap values with ∼0.6 for the first three modes indicated a
weaker dynamical overlap, even at the lowest frequencies, which
were those endowed with most important functional meaning.
To further understand the relative motions and dynamics of

the interface structures, the ANM motions of the first mode for
two RBDs are shown in Figure 6b and c. In ANM 1, most of the
interfacial residues were very stable (blue), while the peripheral
loop exhibited the highest fluctuation (red). The most relevant
dynamical difference between the two systems referred to this
loop motion. For SARS-CoV RBD, the highest fluctuations

point to residues 463D and 465 K, while the SARS-CoV-2 RBD
displayed higher flexibilities at 476G to 479P (orange beads).
This loop was found to be located at the C terminal of the α1
helix of the RBD, interacting with ACE2 through van der Waals
forces, hereinafter referred to as an “interfacial C loop”. We
suppose that the difference in the dynamics of such an interfacial
C loop may be caused by the amino acid mutations in their
respective interfaces with ACE2 (i.e., 442Y to 455L, 443L to F,
460F to 473Y, and 479N to 493Q) from SARS-CoV-RBD to
SARS-CoV-2-RBD.59 Thus, we further mapped these interfacial
mutations onto the structures (yellow beads). Thus, the lower
fluctuations of these mutations in SARS-CoV-2-RBD may
account for the higher affinity of such interface.
Accordingly, despite the overall structural similarity, RBDs in

the two S proteins showed different dynamics, especially for the
S-ACE2 interfaces. These differences in dynamics may also
indicate that these two S-ACE2 interfaces achieved their
activities, including substrate binding and allosteric regulation.
PRS Analysis Identifies the Long-Range Allosteric Potential
of the AMR

We performed perturbation response scanning (PRS) based on
GNM to quantify the allosteric properties of AMRs and identify
the key residues for which perturbation provokes structural
dynamical changes at a long distance. First, the PRS map
provided information regarding the sensitivity and effectiveness
of a given residue in transmitting signals. The column of the
matrix corresponding to a single residue (e.g., for r313V)
described how well-connected that residue was within the AMR
region and its likely relevance in transmitting allosteric signals to
distal parts of the S-ACE2 complex.
Here, we adapted this method to probe the allosteric response

of the AMR region upon perturbation on residues with P > 0.5
from the PCN prediction (Table 1).

Figure 6. ANM results for RBDs. (a) Overlap map between the ten
slowest ANM modes of SARS-CoV and SARS-CoV-2 RBDs, in which
dark red and blue regions indicate strong and weak similar dynamics,
respectively. The motions of the first ANM mode of RDBs in SARS-
CoV (b) and SARS-CoV2 (c). The color scale from red to blue changes
from the highest to lowest flexibilities.

Figure 7.Allosteric effects obtained upon unit perturbation on the AMR residues, obtained from the PRS analysis. Effectiveness/influence profiles with
respect to the linker residue (A) 568S in SARS-CoV AMR, and (B) 320Q, 531N, and 580T in SARS-CoV-2 AMR. Peaks indicate the most influential
residues, while some important regions are highlighted.
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For the S/ACE2 complex in SARS-CoV, the dynamical
changes of the other residues in AMR (red arrows in Figure 7a)
have been caught due to their close distance in space. In
addition, all AMR residues have allosteric effects on the
interfacial C loop with high fluctuation. Because the
effectiveness of the three residues with P > 0.5 was almost
identical, we only reported in Figure 7a for the case of the
perturbation of 568S that had the highest P value (0.64). It is
appreciated that three residues (313V, 529N, and 568S)
displayed long-range allosteric effects on some particular regions
in ACE2 through the S/ACE interface. The residues relative to
the AMR in SARS-CoV-2 could be classified into three types
according to their allosteric character.
The first class included most residues, including 320Q, 321P,

322T, 323E, 539N, 548T, and 578P. Upon perturbation, these
residues exerted a moderate dynamical effect on other AMR
residues, and a relatively weak but sensible intramolecular
allosteric effect on residues of the S/ACE2 interface, especially
on the highly flexible C loop. The perturbation of these AMR
residues largely affected the dynamics of ACE2 through stronger
long-range allosteric communications.
The perturbation of the second type of (531N and 532L)

residues provokes a large intermolecular allosteric effect in the
RBD, including some peaks at the interfacial C loop (Figure 7c).
In addition, the perturbation weakened the intermolecular
communications from AMR to ACE2.
The last type only included 580T, which exhibited similar

dynamical effects on three regions (AMR, RBD, and ACE2) via
long-range communications.
Accordingly, our PRS analysis provided important insight into

AMR allostery. Among other findings, 3 residues in SARS-CoV
AMR and 10 residues in SARS-CoV-2 AMR were predicted to
have wide-ranging allosteric effects on the ACE2 protein. This
result in conjunction with the statistically significant higher
effectiveness of the SARS-CoV-2 AMR perturbation (SI Figure
3), suggested that its allosteric character was stronger than that
of AMR in SARS-CoV. Notably, in both complexes, the
interfacial C loop formed a bridge to transmit the signal from
AMR to ACE2. The reported RBD-ACE2 interfacial mutations
from SARS-CoV to SARS-CoV-2 were close to the interfacial C
loop. Therefore, we propose that the different allosteric
properties of AMR residues were due to mutations in the S-
ACE2 interface.
In Figure S3, the box plot shows that AMR in SARS-CoV-2

had a statistically higher effectiveness than that of SARS-CoV
(under the p-value of 7.4 × 10−5 by Wilcoxon signed-ranked
test).

■ CONCLUSIONS
The application of PCNs, SEPAS (Affinity by Flexibility) and
PRS based on Elastic Network modes to two complexes of the
spike protein with its receptor, ACE2, generated highly
consistent results. The integrated computational approach
disclosed active zones in the SARS-CoV and SARS-CoV2
complexes with the ACE2 ectodomain. These active zones, as
demonstrated in previous studies41,60,61 and in the present
research by the convergence among different approaches, have
an extremely high probability of acting as allosteric sites, which
can modulate spike/ACE2 protein binding.
These regions are worthy of further investigation from the

perspective of drug or vaccine development as indicated by a
preliminary docking simulation. From a methodological
perspective, our results highlighted the need to identify

convergence of different simulation methods arising from
independent theoretical premises, in order to obtain a reliable
picture of the associated biomolecular systems.
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