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The dramatically increasing costs related to the research 
and development of new anticancer drugs has attracted 
special attention on drug repurposing. Metformin, the most 
widely prescribed drug worldwide for patients suffering 
from type 2 diabetes, is one of the potential candidates. 
At the time of writing this editorial, according to the 
website clinicaltrial.gov, metformin has been included 
in 427 clinical trials in cancer patients, including 37 
studies for prostate cancer. However, so far, combining 
metformin with conventional anticancer treatments has 
been inconclusive: while several reports [reviewed in (1)] 
suggested a potential benefit, including for treating prostate 
cancer (2), clinical trials failed to prove any benefit on the 
outcome of prostate cancer patients (3,4). The discrepancy 
in conclusions from these trials suggests that the anticancer 
activity of metformin in prostate cancer therapy (if any) 
could be dependent on the presence or absence of specific 
factors in individual tumors. In this context, a recent 
paper of Papachristodoulou et al. suggests that prostate 
cancer patients with low expression of the prostate-specific 
homeobox gene NKX3.1, but not those with high NKX3.1 
expression, are likely to benefit from metformin to impede 
cancer progression (5). In this editorial, we provide a timely 
perspective on the potential utility of metformin to treat 

prostate cancer, given its multiple molecular mechanisms of 
action, with a special focus on the mitochondrial electron 
transport chain (ETC).

In diabetic patients, metformin benefits are related to glucose 
metabolism and diabetes-related complications. Mechanistically, 
metformin inhibits the ETC in the liver, consequently activating 
AMP-activated protein kinase (AMPK), enhancing insulin 
sensitivity and lowering cAMP, which collectively decrease 
the expression of gluconeogenic enzymes (6). Comparatively, 
the anti-neoplastic effects of metformin are far from being 
fully elucidated. As most cancer cells exhibit high glucose 
consumption and a dysregulated glucose metabolism, a 
simplistic explanation would be that metformin could decrease 
energy production by proliferative cancer cells. However, 
metformin may act by several other mechanisms, as reviewed by  
Zhao et al. (7). The most important mechanisms are 
summarized in Figure 1. In the tumor microenvironment, 
metformin can indeed stimulate anticancer immunity 
through the NF-κB signaling pathway (8). It also exerts 
antiangiogenic effects (9) and can also improve the 
sensitivity to chemotherapeutics (10). Direct effects on 
cancer cells further encompass the capability of metformin 
to arrest the cell cycle through activating the AMPK and 
phosphatidylinositol 3-kinase (PI3K) pathways (7), and to 
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alter DNA methylation and histone acetylation through 
modulation of one- and two-carbon metabolism. Several 
studies further highlighted that metformin affects cancer 
cell mitochondria (Figure 2), as it inhibits ETC complex 
I and ATP production, including in prostate cancer cells 
(11-13). The drop in ATP production supports AMPK 
activation, which consequently inhibits the mTOR pathway, 
biosynthesis and cancer cell proliferation (7). In prostate 
cancer cells, lipogenesis is strongly affected (14). Metformin 
may also induce cancer cell death by sequentially triggering 
the translocation of Bax into mitochondria, cytochrome 
c release, apoptosome formation, caspase activation 
and apoptosis (7,15). ETC complex I inhibition by 
metformin also modulates the mitochondrial production 
of reactive oxygen species (ROS) by cancer cells: while 
some reports described enhanced antioxidants defenses  
(mitohormesis) (16), others rather highlighted enhanced 
mitochondrial ROS production, including in prostate cancer 
cells (17-19). Of note, ROS plays a key role in prostate 
cancer onset (20) and castration resistance occurrence is 
favored in prostate cancer cells expressing high antioxidant 
capacity (21,22).

Integra t ing  the  broad  spectrum of  ac t ions  o f 

metformin is important to contextualize the new report 
of Papachristodoulou et al. These authors suggest that 
determining NKX3.1 expression levels may help to identify 
prostate cancer patients who are likely to benefit from 
metformin administration (5). NKX3.1 is a homeobox gene, 
i.e., a DNA sequence that normally regulates anatomical 
features during embryogenesis, known to support the normal 
differentiation of the prostatic epithelium. Conversely, 
NKX3.1 loss of function is considered as an initiating event 
in prostate carcinogenesis (23). In a previous publication, 
Papachristodoulou et al. described a nonnuclear function 
of NKX3.1 that suppresses prostate cancer (24). In human 
prostate cancer cells exposed to oxidative stress, they found 
that NKX3.1 is imported into mitochondria where it 
stimulates the transcription of mitochondrial-encoded ETC 
genes, thereby restoring oxidative phosphorylation and 
preventing cancer initiation (24). They also demonstrated 
an association between NKX3.1 expression and cancer 
outcome: by analyzing human biopsies, they found 
that low levels of NKX3.1 combined with low levels of 
mitochondrial ETC genes were associated with a poor 
clinical outcome, whereas high expression of NKX3.1 
was associated with a more favorable outcome (24). The 
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Figure 1 Multiple molecular mechanisms of action of metformin on cancer cells. Created with BioRender.com (license to Bernard Gallez). 
AMPK, AMP-activated protein kinase; ETC, electron transport chain.
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Figure 2 Consequences of inhibition of the electron transport chain by metformin on cancer cells. Created with BioRender.com (license to 
Bernard Gallez). AMPK, AMP-activated protein kinase; TCA, tricarboxylic acid; ROS, reactive oxygen species.

new study published in European Urology (5) suggests 
that metformin could potentially overcome the adverse 
consequences of loss NKX3.1 by protecting prostate 
cancer cells against oxidative stress and promoting normal 
mitochondrial functions. 

As the benefit of using metformin in prostate cancer 
has been so far inconclusive, seeking predictive markers to 
stratify patients is unquestionably important. The results 
from the retrospective analyses presented in this study 
are interesting. The authors performed tissue microarray 
analyses in specimens coming from radical prostatectomy 
in two independent cohorts of patients who were taking or 
not taking metformin. Patients with low or high NKX3.1 
expression were distributed among those taking or not 
taking metformin across Gleason grades and risk groups 
according to the European Association of Urology (EAU) 
guidelines. Patients from both cohorts who displayed 
low levels of NKX3.1 and were taking metformin had 
significantly improved biochemical recurrence-free survival 
compared to patients who were not taking metformin. 
Papachristodoulou et al. also found that patients with high 
levels of NKX3.1 displayed no difference in overall survival 
regardless of whether they were taking or not taking 

metformin (5). In their conclusions, the authors suggested 
that prospective randomized controlled clinical trials should 
now evaluate the association of NKX3.1 expression and 
metformin usage in prostate cancer (5). 

While we fully support the need to complement 
clinical data to better define the role played by NKX3.1 
in prostate cancer progression, the mechanisms proposed 
by the authors to link NKX3.1 expression and the benefits 
of metformin deserve a more balanced commentary. For 
Papachristodoulou et al., metformin could overcome the 
adverse consequences of NKX3.1 loss in prostate cancer 
cells by protecting them against oxidative stress and 
restoring normal mitochondrial functions (5). Their starting 
hypothesis is that excessive ROS production due to oxidative 
stress may impair mitochondrial functions and that NKX3.1 
could protect the organelles against the consequences 
of the oxidative damage. To demonstrate this, they 
experimentally induced oxidative stress with paraquat, an 
herbicide known for its devastating toxicity after accidental 
or voluntary poisoning. NKX3.1 wild-type (NKX3.1+/+) or 
homozygous deficient (NKX3.1–/–) mice received paraquat 
for 9 months and metformin during the last 3 months of 
paraquat administration. The authors justified the use 
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of paraquat because it “has been observed to have negligible 
effects other than in prostate”, which is contradictory to what 
has been observed by others in numerous toxicological 
studies. It is well established that paraquat undergoes a 
NADPH-dependent one-electron reduction to produce 
its free radical, which then instantly reacts with oxygen 
to reform the cation and produce superoxide anion (25). 
In addition, paraquat may initiate a global inflammatory 
response by affecting multiple redox-sensitive signaling 
pathways, including activation of mitogen-activated protein 
kinases (MAPKs), protein kinase B (Akt)/β-catenin, toll-like 
receptors, and suppression of PPAR-γ receptor activity (25). 
Paraquat is known for its dramatic toxicity, mainly in the 
lungs, liver and brain. Due to the pleiotropic effects that can 
be induced by paraquat, the selection of this drug to induce 
chronic oxidative stress is questionable to analyze the effect 
of metformin, especially because metformin may act by 
many different mechanisms, as previously stated. Paraquat 
is known to induce a massive production of free radicals. 
It is therefore quite intriguing that the authors report that 
paraquat increased ROS production in NKX3.1–/–, but not 
in NKX3.1+/+ mice (5). One could wonder whether the 
unspecific assays used for quantifying ROS (5) could have 
led to artifactual estimates of ROS levels (26). Another 
unexpected result of the study is the apparent absence of any 
effect of metformin used alone on the oxygen consumption 
rate of prostate cancer cells (5), while metformin has been 
reported to interfere with the mitochondrial respiration of 
many cancer cells models (11-13,17-19), often triggering 
mitochondrial superoxide production (17-19). The authors 
reported that paraquat decreased mitochondrial respiration 
in NKX3.1-depleted cells but not in control cells, and that 
mitochondrial respiration was rescued by metformin (5). If 
confirmed, these interesting results could shed a new light 
on the role of NKX3.1 and refine the use of metformin 
for treating prostate cancer. For future studies, the use of 
models where oxidative stress would be generated selectively 
in cancer cells instead of the massive ROS overload induced 
by paraquat, is warranted. For example, highly invasive 
and metastatic models have been developed in which 
selected cells simultaneously gained aggressiveness and a 
high production of mitochondrial superoxide compared 
to parental cells (27-30). So far, these models have been 
developed for melanoma, breast, lung and pancreatic 
cancer, and it could be interesting to use a same strategy 
to study prostate cancer. Such models would not only 
help to confirm the results obtained by Papachristodoulou  
et al. in a more relevant pathophysiological context, but they 

could also provide key information to firmly establish that 
metformin can be used to inhibit metastatic progression, 
the main actual clinical reason of prostate cancer-associated 
death. 
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