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BACKGROUND: Prognostic stratification of breast cancers remains a challenge to improve clinical decision making. We employ
machine learning on breast cancer transcriptomics from multiple studies to link the expression of specific genes to histological
grade and classify tumours into a more or less aggressive prognostic type.
MATERIALS AND METHODS: Microarray data of 5031 untreated breast tumours spanning 33 published datasets and
corresponding clinical data were integrated. A machine learning model based on gradient boosted trees was trained on histological
grade-1 and grade-3 samples. The resulting predictive model (Cancer Grade Model, CGM) was applied on samples of grade-2 and
unknown-grade (3029) for prognostic risk classification.
RESULTS: A 70-gene signature for assessing clinical risk was identified and was shown to be 90% accurate when tested on known
histological-grade samples. The predictive framework was validated through survival analysis and showed robust prognostic
performance. CGM was cross-referenced with existing genomic tests and demonstrated the competitive predictive power of
tumour risk.
CONCLUSIONS: CGM is able to classify tumours into better-defined prognostic categories without employing information on
tumour size, stage, or subgroups. The model offers means to improve prognosis and support the clinical decision and precision
treatments, thereby potentially contributing to preventing underdiagnosis of high-risk tumours and minimising over-treatment of
low-risk disease.
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BACKGROUND
Despite progress in early detection and personalised targeted
therapy, breast cancer remains a major cause of fatality and
quality of life reduction worldwide [1]. As breast cancer
encompasses a heterogeneous group of diseases, precision
diagnosis and treatment mandates accurate tumour stratification
into clinically distinct subgroups [2]. Classifying tumours based on
intrinsic features like histological grade or subtype can predict
disease behaviour more accurately than time-dependent prog-
nostic factors such as tumour size and stage [1, 3, 4], and thereby
provide better insight into prognosis and suitable treatment
strategies [5, 6].
A significant advance has been achieved in determining

treatment on the basis of subtypes of breast cancer, which are
immunohistochemically classified based on the expression of
oestrogen receptor (ER), progesterone receptor (PR) and human
epidermal growth factor receptor 2 (HER2) [7, 8]. ER-positive
cancers can benefit from hormone therapies such as tamoxifen or
aromatase inhibitors, while the monoclonal antibody trastuzumab
is typically used as an adjuvant therapy for HER2 breast cancer in
combination with chemotherapy. Patients with triple-negative

breast cancer (TNBC), whose tumours lack ER, PR and HER2
expression, do not benefit from the current development of
targeted therapies, with treatment options mostly relying on
primary surgery, radiotherapy and chemotherapy cocktail [9]. Four
further molecular subtypes (luminal A, luminal B, HER2-enriched
and basal-like) are identified by PAM50 classification [10] based on
the expression of 50-gene signatures, with most basal-like
carcinomas, which are usually triple negative, having aggressive
phenotype and high relapse rates. Despite significant progress in
understanding disease subtypes, the challenge of matching
patient clinical characteristics and tissue molecular patterns to
prognosis or to a therapeutic strategy remains pertinent [11, 12].
Predictive models of molecular profiling are urgently needed to
prevent the underdiagnosis of high-risk tumours and to minimise
the over-treatment of low-risk disease, which may help reduce the
need for aggressive systemic therapies [13, 14].
Histological grade is a well-described prognostic factor, reflect-

ing tumour morphological characteristics and clinical behaviour of
the disease [4, 5]. For instance, in a process of systematic
treatment selection, prompt consideration of neoadjuvant or
adjuvant chemotherapy is needed for grade-3 tumours, while
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patients with grade 1 could benefit from long-term follow-up [15].
However, for 30–60% of breast tumours diagnosed as grade 2,
treatment may be difficult to assign, as they represent an
intermediary and highly variable state in morphology, underlying
biology and risk of distant metastasis recurrence [4]. Therefore,
patients diagnosed with these tumours are at risk of under-
treatment or over-treatment [14]. It has been suggested that only
grades 1 and 3 be used towards treatment choice [16] and that
grade 2 are not informative [3] without additional metrics [15].
Therefore, accurate stratification of grade-2 tissues poses sig-
nificant challenges.
The key to resolving these challenges is the development of

integrative, systems-level analyses that can capture the multiple
facets of disease while also guiding the search for specific
molecular cascades that discriminate between disease pheno-
types [17]. Analysis of high-throughput gene expression [18]
profiles in cancer tissues through computational methods with
predictive capabilities [19, 20], such as machine learning models, is
critical [13, 21]. Here, we report a bioinformatics strategy where
transcriptomic profiles across multiple datasets were integrated
and a machine learning model was generated to classify tumours
into relevant histological grades. The resulting Cancer Grade
Model (CGM) was then used to dissect the molecular subtypes
present in grade-2 and unknown-grade cancers and re-classify
them into grade-1-like (low-risk) or grade-3-like (high-risk)
categories. By interpreting the classification model, key genes
were extracted to predict metastasis, risk of relapse and overall
survival (OS), regardless of traditional histologically defined
receptor status. These markers might also provide potential
therapeutic targets for the disease currently lacking treatment
options. We report the application of gradient boosted trees on a
large dataset of samples integrated from multiple breast cancer
studies; however, it is important to note that this strategy can be
applied to other types of high-throughput data or cancer types in
the future.

MATERIALS AND METHODS
Computational framework
Figure 1 shows the overall computational framework, which includes data
pre-processing and integration, development of the CGM machine
learning model and cross-validation, as well as key steps of model
interpretation through feature prioritisation, prognostic data analysis and
pathway enrichment.

Dataset, pre-processing and integration
Gene expression data from 33 breast cancer datasets corresponding to
platforms GPL570 [Genome U133 Plus 2.0] and GPL96 [Genome U133A]
were obtained from Gene Expression Omnibus (Table 1) [22]. Samples with
prior treatment were excluded (data selection workflow in Supplementary
Figure S1). A total of 5031 tumour samples and 70 normal samples were
collected along with their clinical characteristics, including ER, PR, and
HER2 status, distant metastasis-free survival (DMFS), relapse-free survival
(RFS), OS and PAM50 subtype [10] (Supplementary Table S1).
Data integration comprised normalising raw intensity data in Affymetrix

CEL data files through Robust Multichip Average [23] and removing batch
effects with COMBAT [24] using R 3.3 and related libraries. Probes were
mapped to genes, and in cases of multiple probes mapping to one gene,
the average value was taken. The data processing pipeline is illustrated in
Fig. 1a. For the implementation of the machine learning model and cross-
validation, samples corresponding to grade 1 and grade 3 (henceforth
termed development-dataset, 2002 samples) were used to build the
classification model, which was later applied on grade-2 and unknown-
grade samples (termed prediction-dataset, 3029 samples) to stratify them
into low- and high-risk categories.

Machine learning model development
The model was formulated as binary classification on the development-
dataset, where gene expression values represented input variables and
cancer grade 1 vs. grade 3 were output variables. An overview of the

machine learning pipeline is shown in Fig. 1b. Model performance metrics
were calculated through 10-fold cross-validation repeated ten times to
prevent bias on the splitting dataset. The development-dataset was split
into 80% training set, 10% validation set for hyperparameter tuning and
developing the classifier, and 10% test set for evaluating performance
metrics. Detecting outliers in train and validation datasets was performed
with the K-nearest neighbour algorithm [25] of PyOD [26] library was used
by measuring the distance of an observation to kth nearest neighbour as
the outlying score. The relevant samples were removed from the training
set. In cases of imbalanced data, over-sampling through Synthetic
Minority Over-sampling Technique (SMOTE) [27] was used on the
imbalanced dataset [13]. The machine learning model was built on
XGBoost [28] (eXtreme Gradient Boosting), a machine learning method
that combines weak learners (decision trees) to achieve stronger class
discrimination.
Grid search was performed on training set samples within each cross-

validation fold to find the best set of hyperparameters. The best-
performing model was selected (termed CGM, with hyperparameters of
maximum tree depth= 5, subsample ratio= 0.6, minimum child weight=
1, and gamma= 0.5 in XGBoost [28]) and applied to classify the prediction-
dataset samples into high or low risk. For selecting genes that were most
important in classification, the Gain metric [29] was used to calculate the
average across all cross-validation sets. The smallest set of genes was
identified, which reflected the highest Gain value and kept the model
performance at the same level as and when all genes were employed. In
addition, the SHAP [30] (SHapley Additive exPlanations) method was used
to obtain features globally important for classification. Python 3.7.3, Scikit-
learn 0.21.2 and XGBoost 0.90 were used to implement the models.
Principal component analysis (PCA) [31] was applied to visualise the
grouping of samples based on the expression of selected genes.

Analysis and interpretation of machine learning prediction
results
Clinical parameters (time and event of DMFS, RFS and OS) were used to
evaluate differences between high- and low-risk groups in the develop-
ment and prediction-dataset. Survival analysis was undertaken using
Kaplan–Meier (KM) methodology [32]. For multivariable analysis, Cox’s
proportional hazard model by CoxPHFitter [33] was used. Stratification
was cross-referenced with PAM50 [10] and genomic tests for risk
of metastasis and relapse (OncotypeDx [34], EndoPredict [35] and
Gene expression Grade Index (GGI) developed in genefu [36]
package in Bioconductor). Pathway enrichment was performed by
mapping the selected biomarkers on Reactome [37] with p values
calculated on a hypergeometric model [38] and a cut-off of 0.05.
An overview is illustrated in Fig. 1c.

RESULTS
Model training and risk prediction of grade-2 and unknown-
grade samples
Processed gene expression datasets used in this study were
derived through the integration of 5031 samples (429 grade 1,
1409 grade 2, 1573 grade 3 and 1620 unknown grade) and 12,806
genes (Fig. 1a) spanning 33 breast cancer studies (Table 1). The
dataset was divided into a development-dataset comprising the
grade-1 and grade-3 samples (total of 2002) with which the
machine learning model CGM was trained and tested, and a
prediction-dataset of grade-2 and unknown-grade samples (total
of 3029) for prediction and classification of these samples into low
risk (1130) or high risk (1899). Clinical parameters and survival
properties of the development and prediction datasets were used
to validate the model. A machine learning model based on
gradient boosted trees was built on grade-1 and grade-3 samples
of the development-dataset (Fig. 1b), with a performance metric
of 89% accuracy (Fig. 2a). Use of the Gain metric yielded a
prioritisation list of gene features in terms of importance in the
classification of grade-1 vs. grade-3 tumours. The 70 top genes
with the highest Gain value (Supplementary Table S2) that kept
model accuracy at the same level as all genes (Supplementary
Figure S2) were selected and used for classification with model
performance maintaining high accuracy of 90% (Fig. 2a).
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For samples across all histological grades (including samples of
unknown grade), PCA based on the expression of the 70 selected
genes (Fig. 2b) illustrated that grade-3 samples separated well from
milder phenotypes in grade 1, whereas grade-2 tumours reflected
a widely diverging histological manifestation [3, 4]. Analysis of
prognostic factors confirmed that grade-1 samples had substan-
tially better survival outcome compared to grade 3, with grade 2 in
mid-way (Supplementary Figure S3a). Clinical subtype information
of the samples is shown in Fig. 2c. Most samples in high-grade
disease (grade 3) were ER−, PR− and HER2+, while ER+, PR+ and
HER2− groups were linked to low-grade samples (grade 1) mostly

(Fig. 2c). There were also more grade-3 samples in the HER2-
enriched and basal-like groups according to PAM50 molecular
subtypes, compared with the less aggressive luminal A and luminal
B samples. Importantly, in terms of both immunohistological status
and PAM50 subtype, a large proportion of samples were grade 2 or
unknown grade, which highlights the clinical challenge of assign-
ing the right treatment for this group of patients and identifying
means to dissect this diverse cancer cohort into more informative
risk groups.
After building the XGBoost classifier on grade-1 and grade-3

samples, the CGM predictive framework was used to assign risk to
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samples in the prediction-dataset (grade-2/unknown-grade group,
3029 samples), thereby re-classifying these samples into high-risk
(grade-3-like samples, 1899) or low-risk (grade-1-like samples,
1130). KM analysis for these groups (Fig. 2d) illustrated that RFS,
DMFS and OS are significantly better in the low-risk group than in
the high-risk group (log-rank P 1.03E− 06, 4.34E− 09 and 7.74E−
08, respectively). For instance, within 5 years, 5% of low-risk
patients were reported to develop metastasis compared to >20%
in the high-risk group (Fig. 2d–1). In terms of immunohistochem-
ical subtypes (Fig. 2e), of samples classified as low risk in the
prediction-dataset, 47% were ER+, 51% samples were PR+ and
40% HER2−, thereby representing cases where cytotoxic regimens
can be avoided. According to the PAM50 subtype, of samples
classified as high risk, 22% were luminal A, 76% luminal B, 98%
HER2-enriched and 98% basal-like, linking them to cases benefit-
ing from further systemic treatment.
Multivariable analysis was performed based on several clinical

variables (hormone receptors, stage, age, etc.). The analysis showed
the association between CGM, tumour stage and ER status with
RFS (Supplementary Figure S4a). Therefore, we examined the joint
distribution of stage, ER status and CGM. ER− status was generally
associated with a high-risk group (grade-3 and CGM high-risk

group, see Fig. 2c, e); however, ER-positive status was associated
with a heterogeneous mixture of high- and low-risk groups, which
CGM can stratify into better prognostic groups with log-rank P test
= 1.95E− 10 (see Supplementary Figure S4c-1). Similarly, for stage
2 and stage 3, which represent intermediate risk, CGM can define
prognostically relevant subgroups (log-rank P test= 1.36E− 03,
and 1.36E− 03) (see Supplementary Figure S4c-2, 3).

Evaluation of prognostically relevant biomarker genes
The machine learning model involved feature prioritisation
through the use of the Gain value (Supplementary Table S2) and
the 70 top-scoring genes were further evaluated through
hierarchical clustering (Fig. 3a). Expression profile clusters showed
association to sample risk labels, which are indicated by the
grouping of samples (colour-coded columns according to
predicted risk). A similar heatmap of gene expression that also
included normal samples is shown in Supplementary Figure S5,
which shows that low-risk tumours have not undergone
significant gene expression changes when compared to normal
breast tissues. Further prioritisation of genes was employed based
on SHAP values [30] to determine the contribution of each gene
feature in the predictions generated by the CGM framework

Table 1. List of GEO datasets employed in this study.

GEO ID Platform Sample type # sample # grade 1 # grade 2 # grade 3 # NA

GSE11121 GPL96 Primary tumour 200 29 136 35 0

GSE18864 GPL570 Tumour biopsy 84 10 16 58 0

GSE20711 GPL570 Primary tumour 88 13 5 70 0

GSE23593 GPL570 Primary tumour 50 2 23 25 0

GSE27120 GPL570 Primary tumour 28 3 11 14 0

GSE32646 GPL570 Tumour biopsy 115 16 78 21 0

GSE36771 GPL570 Unknown 107 11 42 54 0

GSE42568 GPL570 Primary tumour 104 11 40 53 0

GSE50948 GPL570 Primary tumour 154 0 68 86 0

GSE5460 GPL570 Primary tumour 129 27 32 70 0

GSE11001 GPL570 Primary tumour 30 4 13 13 0

GSE87007 GPL570 Primary tumour 31 5 3 23 0

GSE88770 GPL570 Primary tumour 117 13 96 7 1

GSE7390 GPL96 Primary tumour 198 30 83 83 2

GSE78958 GPL570 Primary tumour 424 88 156 178 2

GSE45255 GPL96 Primary tumour 139 17 52 67 3

GSE61304 GPL570 Tumour adjacent epithelium 62 5 16 37 4

GSE63471 GPL570 Tumour biopsy 142 5 52 81 4

GSE21653 GPL570 Primary tumour 266 45 89 125 7

GSE26639 GPL570 Tumour biopsy 226 15 83 121 7

GSE17907 GPL570 Primary tumour 55 3 10 34 8

GSE10810 GPL570 Primary tumour 32 2 10 10 10

GSE25066 GPL96 Primary tumour biopsy 508 32 180 259 37

GSE47109 GPL570 Primary tumour 246 43 115 49 39

GSE95700 GPL570 Primary tumour 57 0 0 0 57

GSE5327 GPL96 Primary tumour 58 0 0 0 58

GSE48390 GPL570 Primary tumour 81 0 0 0 81

GSE58984 GPL570 Unknown 94 0 0 0 94

GSE103091 GPL570 Primary tumour 104 0 0 0 104

GSE45827 GPL570 Primary tumour 130 0 0 0 130

GSE65194 GPL570 Primary tumour 130 0 0 0 130

GSE1456 GPL96 Primary Ttumour 159 0 0 0 159

GSE102484 GPL570 Primary tumour 683 0 0 0 683
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(Fig. 3b). It is noted that (i) genes higher in the list reflect larger
overall contribution to the prediction model, (ii) the colour of each
data point indicates the expression value of the gene feature in
the corresponding sample and (iii) the horizontal position of data
points reflect the impact in prediction (i.e. high negative SHAP
values show a stronger contribution to the prediction of low risk,
whereas high positive values reflect the prediction of high risk).
The same analysis employing hierarchical clustering and SHAP
values for the development-dataset (grade-1 and grade-3
tumours) is shown in Supplementary Figure S3b, c.
Interpreting the prioritisation list in Fig. 3b can indicate cases of

genes overexpressed in the high-risk group or overexpressed in

low-risk samples that may be associated with molecules with
important cancer-related activity. Mean expression values in the
high- and low-risk groups for all 70 selected markers are shown in
Supplementary Table S3. As an example, BIRC5 (overexpressed in
high-risk samples) and LINC00472 (overexpressed in low-risk) are
also shown to have significant prognostic value based on RFS
calculated across our dataset and KM plotter (Fig. 3c, d). This
observation is consistent with known roles for these genes, where
high expression of LINC00472 [39] is known to activate
p53 signalling pathway that inhibits cancer development [40],
while BIRC5 encoding Survivin is involved in carcinogenesis by
influencing cell division and proliferation and inhibiting apoptosis
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[41]. For other genes, AURKA, PTTG1, CDC20, SLC7A5, E2F8, TPX2,
and TUBA4A, high expression in the high-risk group was linked to
tumour growth and metastasis. On the other hand, increasing
levels of NME5 and CACNA1D expression could suppress malignant
behaviour. Some of these biomarkers, including E2F8 [42], TPX2
[43] and CACNA1D [44], have been independently confirmed as
tumourigenic or tumour-suppressive in breast cancer, and can
thus point towards novel targets for treatment. Employing the
Connectivity Map (CMap) [45] to search for potential drugs tested
against the 70 marker genes indicated cases where some of these
genes were explored as targets in clinical trials (details in
Supplementary Table S4), demonstrating the potential of our
findings.
Further validation of the 70 biomarkers indicated a significant

association with survival outcome (survival calculation details in
Supplementary Tables S5 and S6). Pathway enrichment analysis
using the Reactome database indicated cell cycle regulation, gene
expression and DNA replication as the most affected pathways for
the high-risk group (Supplementary Figure S6a,c). Perturbation in
any of these pathways was not observed in the low-risk group,
indicating slow tumour growth and low metastatic potentials
(Supplementary Figure S6b).

Genomic tests for clinical assessment of breast cancer
Results of CGM on re-classifying grade-2 and unknown-grade
tumours were compared to currently available genomic tests,
namely OncotypeDX [34], EndoPredict [35], and GGI [4]. These
tests associate gene activity level to cancer aggressiveness and are
recommended in national and international guidelines for
proposing adjuvant systemic therapy [6]. Venn diagram (Fig. 4a)
showing overlapping biomarkers identified by CGM and the other
reported genes by the three methods [4, 34, 35] (full gene list in
Supplementary Table S7).
Pairwise comparison of CGM with each of the three methods

(Fig. 4b and Supplementary Table S8) showed 91% similarity of
sample classification with OncotypeDX (without considering
samples predicted in medium-risk group by OncotypeDX),
followed by EndoPredict and GGI with 76% and 74% similarity,
respectively. It is noted that as GGI does not work on unknown-
grade samples, those samples were eliminated for comparison
with GGI. We assessed survival through KM plots for DMFS and
RFS on the prediction-dataset with all four methods and showed
that CGM was more discriminative in prognosis and better in
classifying samples into the high- or low-risk groups, as indicated
by the relevant P values (Fig. 4c and Supplementary Figure S7). We
also performed the multivariable analysis of the prognostic
methods (GGI, OncotypeDX and EndoPredict) based on time to
relapse using fitting Cox’s proportional hazard model in Supple-
mentary Figure S4b, which shows the strongest association of
CGM with RFS (hazard ratio (HR)= 1.71, 95% confidence interval
(CI)= 1.2–2.43; P < 0.005).

DISCUSSION
Breast cancer is a heterogeneous disease with significant variance
in genetic predisposition and phenotypic characteristics. Despite
progress, assigning a more accurate prognosis requires optimisa-
tion and significant challenges remain in attaching appropriate
treatment to relevant patient subgroups. It is widely accepted that
tumour classification based on intrinsic features such as histolo-
gical grade can predict prognostic features or treatment options
more accurately than time-dependent factors [1, 3]. A case in
point is the prescription of chemotherapy in grade-3 tumours, but
not in those of grade 1. However, for grade-2 phenotypes that
represent a heterogeneous cancer class, prognosis and treatment
remain particularly challenging with either over-treatment or
missed diagnoses being common. To help address these
limitations, here we report CGM a machine learning platform

based on gradient boosted trees to classify grade-2 and unknown-
grade tumours into high and low risk, after training the model on
genomic data of high- and low-grade cancers and generating a
70-gene signature. Our methodology includes the use of feature
importance metrics such as Gain and SHAP values, which offer
means of attributing biological significance to specific genes and
are particularly important in counter-balancing the black-box
nature of machine learning models.
Based on the 70 genes selected as markers, the CGM prediction

model can successfully separate grade-2 and unknown-grade
samples into high- or low-risk groups, regardless of the conven-
tional surface receptor immunohistochemistry-based subtypes or
the PAM50 molecular-based subgrouping. Basal-like and HER2-
enriched subtypes are high-risk tumours, and, in the absence of
treatment, these patients have a poor prognosis [46]. In the clinic,
the treatment strategy for HER2-enriched breast cancers is mainly
by targeted therapy with trastuzumab in combination with
chemotherapy, while basal-like/TNBC are treated with radio-
therapy and chemotherapy until the recent development of
olaparib for BRCA-mutated TNBC, and anti-PD-L1 immunotherapy
in combination with chemotherapy for advanced disease [47, 48].
In our predictive model, 98% of HER2-enriched and 98% of basal-
like grade 2/unknown-grade tumours are classified as high-risk
and would require chemotherapy, in line with current disease
control settings for these two tumour types. However, prediction
via our CGM model would benefit patients in groups classified as
less aggressive.
We evaluated the prognostic power of the CGM model and

found that among patients with grade-2/unknown-grade cancer,
about half of those with ER/PR tumour expression and 22% of
patients with luminal A breast cancer have high-risk disease. The
CGM model can determine the potential prognosis of patients
based on their genetic signature and can indicate whether a
patient with grade 2 or unknown grade has a high-risk disease
and thus may require immediate treatment intervention or
whether they have a low-risk disease and may benefit from less
aggressive treatment strategies [49]. In clinical practice, our model
is unlikely to be applied to very aggressive subtypes such as HER2-
overexpressed and TNBC, but to subtypes that have a more
“intermediate” prognosis such as luminal B. Treatment of luminal
B cancers is typically based on an in-depth list of criteria, including
size, lymph node involvement, grade, Ki67 status and a low
personal risk of relapse determined by other gene expression
signature models such as OncotypeDX [50]. It is possible that our
CGM model may be used to determine the potential prognosis of
these patients, and thus inform treatment strategy independent of
clinical characteristics.
Our model also revealed genes that may contribute towards

cancer progression. Some of these are known to be associated
with breast cancer, while others are less well understood and
would benefit from further functional characterisation. Literature
search and pathway analysis using Reactome [51] identified key
functions and pathways associated with our biomarkers. These
mostly associated with the cell cycle, DNA replication, transcrip-
tion, and signal transduction. Furthermore, while the high-risk
gene set involved multiple genes connecting the above pathways,
the low-risk gene set had no pathways with more than one gene
affected (Supplementary Figure S6). This indicates that those
samples feature low cancer proliferation rates, lack of escape
mechanisms and lower metastatic potential, and could hence be
classified as low-risk cancers that might not require systemic and
cytotoxic therapies.
Although unsurprisingly the most fundamental traits identified

for a high-risk group were predominantly related to the
dysregulation of cell cycle checkpoints and transcription regulator
molecules [52, 53], individual genes could also provide insights for
novel treatment development. Downregulation of BIRC5 (survivin),
which is the top-ranked biomarker revealed by CGM, was reported
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as an inhibitor of tumour cell migration and invasion through the
PI3K/Akt signalling pathway [54]. Survivin remains a promising
target for drug discovery and breast cancer therapeutics, ranging
from selective suppressants that disrupt survivin function [55] to
antisense oligonucleotides that degrade survivin messenger RNA
[56]. Survivin peptide-mediated immunotherapy has also been
tested in clinical trials [57]. An interaction between AURKA (Aurora
Kinase A) and MAPK pathway has been proposed for a new
treatment strategy using a combination of AURKA and MEK1/2
inhibitors in breast cancer [58, 59]. PTTG1 contributes to different
cancer-promoting pathways that can increase cell growth through
a nuclear exclusion of p27 [60]. CDC20 is overexpressed in TNBC
and could be used as a treatment target [61], while the expression
of SLC7A5 part of the large neutral amino acid transporter small
subunit 1 heterodimer has been reported to correlate with luminal
cancers [62], and anti-SLC7A5 targeted therapies have been
developed for endocrine therapy-resistant tumours [63]. On the
other hand, low expression of LINC00472, thought to act as a
tumour suppressor, has been reported to suppress nuclear factor-
κB signalling [39], which contributes to tumour progression and
metastasis [64]. NME5 plays a key role in DNA proofreading and
repair [65] and would be predicted to be associated with low-risk
cancers.
We further compared CGM with well-known diagnostic

methods in the literature [6] to validate the predictive power of
our model. OncotypeDX and EndoPredict predict distant recur-
rence of early-stage breast cancer (stage 1 and 2) based on a set of
21 and 11 genes, respectively (Supplementary Table S7). Onco-
typeDX [34] calculates a recurrence score between 0 and 100 to
reflect the likelihood of breast cancer recurrence within 10 years
and to classify patients into groups of low (<26), medium (26–30)
and high (>30) score, where higher scores indicate a greater
likelihood of recurrence. EndoPredict [35] analyses tumour gene
activation to provide a risk score for ER/PR+, HER2− samples as
either low risk or high risk, and recurring as distant metastasis
within 10 years. Finally, GGI [4] employs 97 differentially expressed
genes between histologic grade-1 and grade-3 tumours, which are
selected through the analysis of 189 breast cancer microarray
datasets to classify grade-2 tumours into two groups (grade 1 or
grade 3) to suggest relevant treatment.
Unlike CGM, OncotypeDX classifies patients into three groups

(low risk, medium risk or high risk), which leads to the assignment
of samples into a non-informative medium-risk group category,
while the difference between low- and medium-risk groups is not
significant (Fig. 4c). Unlike CGM, GGI requires the grade of the
tumours to be known a priori, which may not always be available
and relies on parameters calculated for the given dataset (its scale
and offset), thus making it dependent on the dataset used.
Furthermore, GGI ignores the importance of genes in cancer by
assigning equal weight to all of them and relying on their sum.
This can lead to a lack of interpretability and may prevent
understanding of the individual contribution of each gene in
aggressive tumours. EndoPredict does not employ a medium
group; however, it tends to place more patients into the high-risk
group (about 7 times more than low risk, Fig. 4b). There are about
twice more patients in the low-risk groups in the two other
methods (668 by OncotypeDX and 835 by GGI) compared to
EndoPredict (395), suggesting that EndoPredict tends to a larger
number of high-risk predictions (395 low risk and 2634 high risk),
thereby leading to over-treatment.
In overview, moderately differentiated tumours represented by

those diagnosed as grade 2 are particularly difficult to treat,
leading to over- or under-treatment in this patient group. Genomic
information can identify novel predictive biomarkers and signalling
pathways indicative of disease progression or phenotype. In this
study, we present a computational pipeline using gradient boosted
trees to analyse large and complex datasets, integrated from
multiple breast cancer studies, to discover patient subtypes and

derive an understanding of prognosis. Even though we exemplify
our platform on gene expression data for histological grade
prediction, our strategy is generic and can be applied to other
types of high-throughput data and clinical labels.
Our model can assign high- and low-risk groups, without using

clinical data such as tumour size, stage or breast cancer subgroup
information, offering a potential means to avoiding under-
diagnosis of high-risk tumours and minimise over-treatment of
low-risk diseases, thus helping to reduce unnecessary toxic
treatments. In addition, our findings of key genes differentiating
patient phenotypes may point to important regulators of
aggressive disease phenotype and lead to a better understanding
of underlying malignant disease mechanisms across subgroups.
These could ultimately point to novel therapeutic targets
applicable to specific disease types. Even though CGM is
implemented and evaluated on breast cancer, capitalising on
the rich and well-studied datasets for this cancer, we stress that
our methodology can be used in other types of cancer where
subtypes are less well understood, and the application of well-
established machine learning methods would add valuable
prognostic insights.
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