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The yeast ‘‘remodels the structure of chromatin’’ (RSC) complex is a multi-subunit ‘‘switching deficient/sucrose non-
fermenting’’ type ATP-dependent nucleosome remodeler, with human counterparts that are well-established tumor
suppressors. Using temperature-inducible degron fusions of all the essential RSC subunits, we set out to map RSC
requirement as a function of the mitotic cell cycle. We found that RSC executes essential functions during G1, G2, and
mitosis. Remarkably, we observed a doubling of chromosome complements when degron alleles of the RSC subunit
SFH1, the yeast hSNF5 tumor suppressor ortholog, and RSC3 were combined. The requirement for simultaneous
deregulation of SFH1 and RSC3 to induce these ploidy shifts was eliminated by knockout of the S-phase cyclin CLB5 and
by transient depletion of replication origin licensing factor Cdc6p. Further, combination of the degron alleles of SFH1
and RSC3, with deletion alleles of each of the nine Cdc28/Cdk1-associated cyclins, revealed a strong and specific
genetic interaction between the S-phase cyclin genes CLB5 and RSC3, indicating a role for Rsc3p in proper S-phase
regulation. Taken together, our results implicate RSC in regulation of the G1/S-phase transition and establish a hitherto
unanticipated role for RSC-mediated chromatin remodeling in ploidy maintenance.
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Introduction

Maintenance of ploidy is crucial for sexual reproduction in
eukaryotes because the ploidy changes that take place during
gametogenesis require two identical chromosome comple-
ments. Polyploid plant, insect, amphibian, and mammalian
species have been documented, and various forms of somatic
polyploidy have been described, including mammalian
hepatocytes, megakaryocytes, and trophoblasts, insect oocyte
nurse cells, and plant endosperm [1–3]. At the cellular level,
polyploidy usually represents a highly differentiated state,
with increased cell size and elevated metabolic activity. To
become polyploid, cells enter a process called endocycling.
This usually commences by aborting the mitotic cycle
anywhere between G2 (endoreduplication) and cytokinesis
(endomitosis), followed by replication [2–4]. Depending on
the timing of mitotic exit, cells have multiple chromosome
sets contained within a single nucleus or they become multi-
nucleate.

Factors known to drive the switch between mitotic cycling
and endocycling include S-phase cyclin-Cdk complexes and
their regulators [3,5], as well as the replication origin
licensing factors Cdc6, Cdt1, and geminin [6–9]. Such
specialized cell-cycle transitions can involve switching be-
tween expression of protein isoforms, as reported for cyclin
D variants in mammalian trophoblasts [10], or they can be
restricted to a variation in oscillation of gene expression, as
observed for cyclin E in Drosophila nurse nuclei [3]. Finally,
mutations in multiple components of the yeast spindle pole
body (Msp1p, Msp2p, Mob1p, Cdc31p, Ndc1p, and Kar1p), the
fungal centrosome, have been reported to result in numerical
chromosome doubling events in yeast [11–15].

In order to remodel chromosomes, eukaryotes have evolved

multi-subunit protein complexes that can alter chromatin
structure covalently, by modifying nucleosomes [16,17], or
mechanically, via ATP-dependent chromatin remodeling
(SNF2-type ATPases) [18,19]. Within the latter class, the
SWI2/SNF2 enzymes are represented in yeast by the Sth1p
and Swi2p/Snf2p ATPases that reside in the related multi-
subunit complexes ‘‘remodels the structure of chromatin’’
(RSC) [20] and mating type ‘‘switching deficient/sucrose non-
fermenting’’ (SWI/SNF) [21,22], respectively. RSC and SWI/
SNF complexes are structurally related, sharing three
subunits and harboring five paralogs [23,24]. Despite their
extensive structural homology, dysfunction of various essen-
tial RSC components cannot be compensated for by over-
expression of SWI/SNF paralogs, arguing that protein motifs
that mediate complex assembly and function differ [20,25].
Furthermore, genetic evidence indicates that SWI/SNF and
RSC differ fundamentally with respect to interaction with
chromatin since histone and SPT6 mutations that suppress
snf2D mutants actually enhance conditional sth1S806L,T881M

mutant phenotypes [26].
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To date, genetic and molecular analyses have implicated
RSC in a variety of biological processes including chromo-
some cohesion and transmission, DNA repair, and transcrip-
tional regulation [27–35]. In addition, RSC interacts with a
PKC pathway that impinges on cell polarity through Bim1p, a
microtubule-associating protein that ensures spindle pole
body asymmetry through Kar9p [36,37].

To address fundamental questions with respect to RSC
function, we analyzed generic degron alleles of essential RSC
subunits. Here, we report that RSC executes essential
functions in G1, G2, and mitosis. Strikingly, integral ploidy
shifts occurred when degron alleles of the yeast hSNF5 tumor
suppressor ortholog SFH1 [38,39] and the cell cycle–regulated
RSC3 subunits were combined. Combination of the sfh1td and
rsc3td alleles with cyclin deletion alleles revealed a strong
genetic interaction between the S-phase cyclin gene, CLB5,
and RSC3, indicating a role for Rsc3p in proper S-phase
regulation. Furthermore, impairing rereplication control
mediated by Clb5p and the replication origin-licensing factor
Cdc6p eliminated the requirement for concomitant dereg-
ulation of SFH1 and of RSC3 to induce ploidy doubling
events. Our data implicate RSC in regulation of the G1/S-
phase transition and establish an unanticipated role for RSC-
mediated chromatin remodeling in ploidy maintenance.

Results

Generation of Conditional Alleles of All Essential RSC
Complex–Specific Subunits

In order to investigate the role of RSC in cellular
physiology, we utilized an inducible protein degradation
system based on fusion of an N-terminal heat-inducible
ubiquitin ligase-target peptide (‘‘degron’’) [40] to the open
reading frames (ORFs) of all essential RSC-specific subunits.
This included replacement of the endogenous promoters by
the PCup1 promoter, resulting in Cu2þ driven transcription of
the rsctd alleles. The system also included integration of the
PGal1–10 promoter at the UBR1 locus, which encodes the N-
end rule E3 ligase Ubr1p, that recognizes the N-terminal

arginine residue of the degron fusions [41]. This permits
suppression of degron fusion degradation by growing cells in
glucose media, which represses the PGal1–10 promoter, and
allows priming of degron-fusion degradation by pre-growing
cells in galactose media at 25 8C. Thus, this system permits
heat shock–induced, polyubiquitin-mediated degradation of
existing cellular protein fusions [41].
Cells expressing degron alleles of the essential RSC

subunits (rsc3td, rsc4td, rsc6td, rsc8td, rsc9td, rsc58td, sfh1td, and
sth1td) as sole source of that subunit grew at rates comparable
to wild-type strains when cultured in glucose at 25 8C,
indicating that the degron fusions were functional (unpub-
lished data). Upon induction of ubiquitin ligase Ubr1p
expression at 25 8C by galactose, rsc3td strains (but none of
the other RSC degron strains) arrested growth, and colony
formation was strongly diminished (Figure 1A and 1C). This
indicates that Rsc3p is exquisitely sensitive amongst RSC
subunits to the presence of the N-terminal degron.
Following incubation of rsctd strains in galactose at 37 8C,

growth arrest ensued for all subunits within 3–4 h (Figure 1B).
Western blot analysis indicated that degron fusions were
depleted to nondetectable levels within 2 h (Figure S1 and

Figure 1. Conditional Depletion of RSC Subunits Terminally Arrests Cells

at Multiple Stages of the Cell Cycle

(A) Characterization of yeast strains bearing degron alleles of RSC
subunits. Strains were cultured in galactose media at 25 8C (left panel,
top lanes) or 37 8C (left panel, bottom lanes) to deplete degron fusions of
RSC subunits for 3, 6, and 9 h (only 9 h shown), and a 10-fold serial
dilution was spotted onto rich medium and incubated for 3 d at 25 8C
(left panel; see Materials and Methods). In parallel, aliquots were taken
following depletion and analyzed for DNA content by flow cytometry
(right panel). For a more complete set of strains, see Figure S2.
(B) Growth curves under nonpermissive conditions of several strains used
in (A) &, Wild type; nþ , sth1td; n *, sfh1td;u, rsc3td; 8, rsc4td; n , rsc6td; m ,
rsc9td;m , rsc58td; u, rsc8td.
(C) Cells were shifted from YEP-glucose medium supplemented with 0.1
mM CuSO4 at 25 8C to YEP-galactose supplemented with 0.1 mM CuSO4

at 25 8C, and 10-fold dilutions were spotted after 0 or 16 h onto glucose
containing plates with 0.1 mM CuSO4 and incubated at 25 8C. All strains
displayed in this figure contain the Pgal::UBR1 allele.
doi:10.1371/journal.pgen.0030092.g001
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Author Summary

Some molecules responsible for altering the 3-D organization of
chromosomes work as complexes of more than ten different
proteins, and many are conserved in fungi, plants, and animals.
Two such complexes are called ‘‘remodels the structure of
chromatin’’ (RSC) in yeast and ‘‘switching deficient/sucrose non-
fermenting’’ (SWI/SNF) in man. SWI/SNF is known to inhibit the
advent of multiple types of human cancers. Since cancer is a disease
whereby cells unduly divide, we sought to define when in the yeast
cell division cycle RSC executes essential functions. Using a generic
method to induce inactivation of essential proteins in otherwise
healthy yeast cells, we found that the RSC complex is important
before chromosome replication as well as before chromosome
segregation. Interestingly, combining two of the mutations we had
generated caused doubling of the entire chromosome complement
of yeast. As it is known that such multiplication of the cellular
chromosome complements results in an increased malleability of
the genetic patrimony, which itself is known to underlie some of the
aggressive traits of human cancers, our discovery suggests new
models as to why SWI/SNF is such a potent tumor suppressor, and
this may in turn provide valuable new inroads for cancer treatment.



unpublished data) and Sth1pTAP level also decreased (Figure
S1), indicating impaired complex integrity. Flow cytometry
analysis of cellular DNA content revealed G2/M cell-cycle
arrests in rsc4td, rsc6td, rsc9td, and sfh1td strains (Figures 1A and
S2). sth1td strains gave variable results, usually yielding almost
exclusively G2/M cells, though occasionally significant levels
of G1-blocked cells were observed. In contrast, both G1- and
G2/M-arrested cells were invariably observed in rsc8td, rsc58td,
and rsc3td strains. Importantly, every combination of RSC
degrons that was tested induced both G1 and G2/M arrests
(Figures 1A and S2).

Irreversible lethal effects, observed as a decrease in colony-
forming units (CFUs) upon seeding-out onto 2% glucose
plates and incubation at 25 8C, were more pronounced and
occurred earlier in the 37 8C time course in rsc8td and rsc58td

strains, as well as in strains harboring multiple RSC degron
fusions (Figure 1A). In the extreme case of the rsc6td, rsc8td,
sth1td triple degron strain, less than 1% CFUs remained after
3 h of heat shock (Figure 1A), while equivalent fractions of
pre- (Figure 1C) and post-replicative (Figure 2C) cells were
observed.

Altogether, these data suggest that the cell-cycle phase of
arrest correlates with the kinetics of RSC complex inactiva-
tion, with G2/M cells being more sensitive to RSC inactivation

than G1 cells since G2/M cells accumulate when RSC function
is least impaired, as assayed by cell survival.

RSC Is Essential in the G1 Phase of the Cell Cycle
As no essential role has previously been described for RSC

during G1, we wished to determine whether the G1 arrest we
observed upon RSC depletion (Figures 1A and S2) resulted
from functional failure in the course of the preceding cell
cycle or whether this reflected a genuine essential function
for RSC during G1. To this end, the triple rsc6td, rsc8td, sth1td

degron combination, which conveyed .99% lethality within
3 h of heat shock (Figure 1A), was employed to deplete RSC
from synchronously cycling cells (Figure 2). Cells were grown
overnight in galactose at 25 8C and were then blocked in G1
by exposure to a-pheromone (�5 h; boost at �2.5 h). Release
into the cell cycle was achieved by removal of pheromone (0
h). Aliquots of synchronized cells were taken at 30-min
intervals and incubated for 3-h periods at 37 8C so as to
deplete RSC from cells traversing consecutive stages of the
cell cycle synchronously. After 3 h at 37 8C, cellular DNA
content was determined and cells were seeded-out onto
permissive plates to determine viability levels by colony
formation (Figure 2). RSC inactivation in synchronized cells
proved lethal for .95% of the cells in every case (Figure 2),
and RSC inactivation resulted in homogeneous G1 and G2/M
arrests, depending on the time when heat shock was applied
(Figure 2).
We conclude that RSC executes essential functions in G1 in

addition to its essential roles in G2/M. As we did not observe
cells arrested in the process of DNA replication (correspond-
ing to the 0.5 h to 3.5 h time point), our experiments suggest
that RSC activity is not required per se for chromosome
replication. However, we cannot exclude the possibility that a
small portion of the genome failed to be replicated upon RSC
depletion (Figure 2, 0.5 h to 3.5 h time point).

sfh1td and rsc3td Together Induce Single Rounds of Ploidy
Doublings
The above analyses indicated that RSC performs crucial

functions during mitosis, G1, and G2, and they implicate RSC
in proper cell-cycle progression. This perception was further
strengthened in the process of generating yeast strains
harboring combinations of degron alleles of essential RSC
subunits. Whereas most diploid strains heterozygous for two
or three degron alleles produced .80% viable spores, diploid
strains heterozygous for sfh1td and rsc3td and homozygous for
Pgal::UBR1 yielded less than 10% viable spores (Table S1). This
dominant meiotic-lethal phenotype was not due to aberrant
ploidy of the parental strains, as both haploid rsc3td and sfh1td

strains displayed the expected haploid DNA contents (Figure
1A). Furthermore, the sfh1td and rsc3td strains were able to
individually mate with other haploid rsctd strains to produce
diploids that produced .80% viable spores with the expected
segregation frequencies of heterozygous markers (Table S1).
We tested the involvement of the Pgal::UBR1 allele by

mating a UBR1, sfh1td strain to a UBR1, rsc3td strain. These
diploids were fertile (64% viable progeny); however, none of
the surviving progeny harbored both the rsc3td and the sfh1td

degron alleles (Table 1). This demonstrates that the dominant
meiotic-lethal phenotype displayed by double heterozygous
rsc3td/RSC3, sfh1td/SFH1, Pgal::UBR1/Pgal::UBR1 diploids was due
to repression of UBR1 expression. This suggests that RSC and

Figure 2. RSC Is Essential during G1

The MatA, Pgal::UBR1, sth1td, rsc6td, rsc8td strain (YN286) was synchronized
in G1 by incubation in a-pheromone (10 lg/ml final) as indicated in the
time line (top panel). Incubations at permissive and nonpermissive
temperatures are represented by green and red lines, respectively. The a-
pheromone was washed out after 5 h and aliquots of cells were shifted
from the master culture to 37 8C for 3-h periods as indicated (top panel).
CFUs were visualized by seeding 5-fold serial dilutions onto YEP-glucose
þCuSO4 plates followed by incubation at 25 8C for 3 d. DNA content was
determined by FACS analysis. FACS samples were also taken after 5 h at
37 8C and gave identical profiles as the 3-h samples, indicating that
terminal cell-cycle arrests had been reached after 3 h at 37 8C
(unpublished data). The ‘‘pre’’ and ‘‘post’’ samples show viability in
the 25 8C master culture before and after the experiment, respectively.
doi:10.1371/journal.pgen.0030092.g002
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Ubr1p, or physiological Ubr1p substrates [42], are part of
genetic pathways that are redundant to some extent or that
form one large pathway in meiosis.

Interestingly, the dominant meiotic-lethal phenotype of
diploids homozygous for Pgal::UBR1 and heterozygous for
rsc3td and sfh1td could be rescued by inclusion of a single copy
of rsc9td, but not by inclusion of sth1td, rsc6td, rsc8td, or rsc58td

alleles (unpublished data). Remarkably, we observed that
every single descendant spore of the triple heterozygous
diploids that bore both the sfh1td and the rsc3td alleles gave rise
to large, mono-nucleated cells that had a diploid DNA
content, regardless of the presence of the rsc9td allele (.50
tetrads analyzed). The DNA profile of one sfh1td, rsc3td

nonparental di-type tetrad is shown in Figure 3A. Both
progeny that inherited the rsc3td and the sfh1td alleles have 2C
þ4C DNA contents, while the two other spores display the 1C
þ 2C DNA content expected for haploid yeast. The
endodiploid sfh1td, rsc3td strains responded to mating pher-
omone (unpublished data) and could mate to produce
tetraploid strains (4C/8C, Figure 3B). The ploidy shift took
place after meiotic segregation of the chromosomes because
inheritance of all the heterozygous chromosomal loci obeyed
the Mendelian 2:2 frequency.

In order to test whether endodiploid strains could be
generated independently of passage through meiosis, we
performed endogenous locus replacement experiments in
haploid cells. When UBR1, rsc3td strains were transformed
with vectors to convert the wild-type SFH1 allele to sfh1td,
10% of the resulting colonies were haploid, 80% were
diploid, and 10% also harbored tetraploid cells (n ¼ 48,
Figure 3C and Table 2). Thus, the endocycle induced by the
rsc3td and sfh1td alleles could also occur independently of
meiosis. Transformation of UBR1, sfh1td haploid strains with
the rsc3td locus conversion construct yielded fewer endodi-
ploid clones (4%; n ¼ 48, Table 2). This suggests that the
presence of rsc3td primed cells to undergo a ploidy shift, a fact
that may well relate to the sensitivity of rsc3td strains (but no
other rsctd-containing strains) to overexpression of the E3
ligase Ubr1p at 25 8C (Figure 1C).

To assess the role of UBR1 in rsc3tdþ sfh1td mediated ploidy
shifts, the above endogenous locus replacement experiment
was also performed in Pgal::UBR1 cells grown in glucose.
Inhibition of UBR1 significantly reduced the frequency of
observed ploidy shifts (Table 2), consistent with an ancillary
role for Ubr1p in this phenomenon.

We conclude that together, degron alleles of RSC3 and
SFH1 disrupt a facultative cell-cycle process that is crucial to
maintain ploidy levels in yeast. Furthermore, the fact that

ploidy shifts only took place once or twice strongly suggests
that a third biological parameter is involved, and that this
parameter was triggered in both the endogenous locus
conversion and the meiotic segregation experiments.

RSC Genetically Interacts with the Cyclin-Dependent
Kinase Cdc28p/Cdk1p
In budding yeast, cell-cycle progression is orchestrated by a

single cyclin-dependent kinase, Cdc28p/Cdk1p [43]. As we
found RSC to be crucial for passage through multiple stages
of the cell cycle, we wished to assess functional interactions
between RSC and Cdc28p/Cdk1p. To this end, we employed a
cdc28td degron allele [40]. Upon Ubr1p overexpression, the
cdc28td allele led to a severe decrease in CFUs. This phenotype
was exacerbated by inclusion of the sth1td allele (Figure 4),
arguing that hypomorphic alleles of RSC and Cdc28p/Cdk1p
genetically interact. This notion was further substantiated by
the observation that sth1td cells overexpressing Saccharomyces
cerevisiae WEE1 (SWE1), a tyrosine kinase that controls mitosis
entry by inhibition of Cdc28p/Cdk1p activity [43,44], were

Table 1: Synthetic Lethality between rsc3td and sfh1td

Frequency SFH1, RSC3 sfh1td, RSC3 SFH1, rsc3td sfh1td, rsc3td

Observed 37 30 31 0

Expected if not SL 38 38 38 38

Expected if SL 38 38 38 0

UBR1, sfh1td, and UBR1, rsc3td strains of opposing mating type were mated, and resulting
diploid strains were induced to sporulate. Spores from 38 asci were analyzed for colony
formation and segregation of sfh1td and rsc3td alleles, as well as several auxotrophic
markers. SL, synthetic lethal.
doi:10.1371/journal.pgen.0030092.t001

Figure 3. Post-Meiotic and Mitotic Ploidy Doubling of sfh1td, rsc3td Cells

(A) FACS analysis of the DNA content of the four spores of a single
representative tetrad derived from a SFH1/sfh1td, RSC3/rsc3td, RSC9/rsc9td,
Pgal::UBR1/Pgal::UBR1 diploid. The genotypes of the spores are SFH1, RSC3,
RSC9, Pgal::UBR1 (blue), SFH1, RSC3, rsc9td, Pgal::UBR1 (red), sfh1td, rsc3td,
RSC9, Pgal::UBR1 (green), sfh1td, rsc3td, rsc9td, Pgal::UBR1 (black). Inset: Light
scatter plots indicating cell sizes.
(B) Tetraploid strain (blue) derived from mating of two endodiploids
(black). For comparison, a haploid was included (red).
(C) FACS analysis of clones generated by transformation of a rsc3td strain
with a sfh1td allele. Haploid clones are indicated in red, endodiploids in
gray, and tetraploids in blue.
doi:10.1371/journal.pgen.0030092.g003
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also exquisitely sensitive to overexpression of Ubr1p at 25 8C
(Figure 4). Together, these synthetic lethal effects demon-
strate that the RSC catalytic ATPase subunit Sth1p genetically
interacts with the cyclin-dependent kinase pathway.

Specific Genetic Interaction between the rsc3td Allele and
the CLB5 S-Phase Cyclin

Our results suggest that a specific cell-cycle process is
impaired in cells that harbor both the sfh1td and rsc3td degron
alleles, and that this could relate to a specific cyclin-
dependent kinase pathway. In order to map this process, we
mated Pgal::UBR1, rsc3

td and Pgal::UBR1, sfh1
td strains to a panel

of deletion strains that lacked any one of the nine Cdk1p/
Cdc28p associated cyclins and assessed spore viability on
glucose plates. This analysis did not reveal significant genetic

interactions between sfh1td and any of the cyclin deletions
(Figure 5A). In the case of the rsc3td allele, however, a
significant loss of spore viability was observed upon combi-
nation with the clb5D allele. As a matter of fact, we did not
recover a single UBR1 clone that harbored both the clb5D and
the rsc3td alleles, indicating that the latter alleles form a lethal
combination, and that lethality was suppressed by repression
of Ubr1p levels (using the Pgal::UBR1 allele; Figure 5B). Other
UBR1, cyclin deletion, rsc3td double mutants were recovered
with the expected frequency, demonstrating a specific
interaction between clb5D and rsc3td. We conclude that the
rsc3td allele impairs a cell-cycle process that also relies on
Clb5p. As this cyclin is known to control late S-phase
progression [43,45,46], this suggests that an important S-
phase event is disrupted by the rsc3td allele.

The Rereplication Control Machinery Antagonizes rsc3td-
Mediated Ploidy Shifts
Endocycling of eukaryotic cells (e.g., mammalian hepato-

cytes and megakaryocytes) commonly relies on alternative
regulation of genes essential for replication control, such as
G1/S cyclins, Cdc6, geminin, and Cdt1 [3,6,7,9]. We therefore
assessed the role of the yeast origin licensing factor Cdc6p
[47,48] in ploidy shifts induced by rsc3td and sfh1td. As Cdc6p is
an essential protein, we attenuated its cellular levels using a
strain expressing CDC6 solely from a methionine repressible
promoter [49]. Cells were incubated in the presence of 2 mM
methionine for 45 min to repress CDC6 transcription, and
then they were made competent for transformation. These
cells were transformed with control constructs, or with
endogenous locus conversion constructs for the sfh1td or
rsc3td alleles. Clones were then selected at 25 8C on glucose

Figure 4. Synthetic Sickness Phenotype of sth1td, cdc28td, and sth1td, Pgal::SWE1 Double Mutants

Haploid yeast strains harboring Pgal::UBR1 and combinations of sth1td and cdc28td (cdk1td) or Pgal::SWE1 were analyzed for their ability to form colonies
after growth in galactose for the indicated times at the indicated temperatures, by seeding-out 10-fold serial dilutions of an equal number of cells onto
solid glucose medium containing 0.1 mM CuSO4. Note the dramatically increased severity of the lethal phenotypes of cdc28td and Pgal::SWE1 alleles
when they were combined with sth1td. The data shown are from one experiment and are representative of at least three independent experiments.
doi:10.1371/journal.pgen.0030092.g004

Table 2: Ploidy Alterations by Endogenous Locus Conversion

Strain Integrate UBR1 Pgal::UBR1

IC 2C 4C IC 2C 4C

WT sfh1td 100 0 0 100 0 0

rsc3td sfh1td 10 80 10 48 52 0

WT rsc3td 100 0 0 100 0 0

sfh1td rsc3td 96 4 0 100 0 0

Wild-type (WT), sfh1td, or rsc3td strains were transformed with endogenous locus
conversion constructs for sfh1td or rsc3td and selected for integration of the respective
alleles. Resulting transformants were analyzed for DNA content by flow cytometry (see
Figure 3) and results are shown as percentage of colonies analyzed (n¼ 48). Experiments
were performed using cells expressing endogenous levels of UBR1 (UBR1), or cells
repressing UBR1 expression (Pgal::UBR1) as indicated.
doi:10.1371/journal.pgen.0030092.t002
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plates lacking methionine so as to restore CDC6 transcription.
Control cells that had not been depleted of Cdc6p yielded
exclusively haploid clones upon conversion of the RSC3 or
SFH1 loci to the corresponding degron alleles (Figure 6). In
contrast, ploidy shifts were efficiently induced in cells
depleted of Cdc6p upon conversion of the RSC3 locus to
rsc3td, but not upon conversion of the SFH1 locus to sfh1td (n¼
60; 60% and 0%, respectively, Figure 6). Thus, temporary
depletion of Cdc6p appears to phenocopy the sfh1td allele but
not the rsc3td allele.

Next, we turned to the cyclin Clb5p. Besides a role in
spindle pole body maturation and duplication [50,51], Clb5p
plays a dual role in replication regulation as it is required for
proper timing of S-phase initiation, as well as to prevent re-
initiation of replication forks that have already fired [52].
Furthermore, deregulation of CLB5 levels has been associated
with the occurrence of endoreduplication [52]. Wild type and
clb5D strains were transformed with the same constructs as
above. In this experimental setup, and contrary to meiotic
segregation, UBR1, rsc3td, clb5D mutants could be recovered.
Analysis of the resultant rsc3td clones (n¼ 72) showed efficient
ploidy doubling in the clb5D background (74%; Figure 6) in
contrast to control constructs. Conversion of SFH1 to sfh1td in
the clb5D background could also produce endodiploid clones,
though at a much lower frequency (1%, Figure 6). Taken
together, this indicates that the cellular rereplication
inhibition pathway that depends on CLB5 and CDC6 [48,52]
antagonizes the effects of the degron alleles of RSC3 and
SFH1.

RSC and Transcriptional Activity of the CLB5 Locus
Previous observations indicate that RSC is recruited to the

CLB5 promoter [27], and CLB5 induction was observed in

microarray experiments using a rsc3 allele [53]. To further
assess the role for RSC in regulation of CLB5 expression, we
impaired S-phase progression by exposure to hydroxyurea
(HU), an inhibitor of deoxyribonucleotide synthesis. HU
treatment activates the S-phase checkpoint that signals
through Rad53p and phosphorylation of various targets,
including Swi6p, thus culminating in inhibition of S-phase
progression [54–56]. Following exposure to HU for 3 h we
monitored association of RSC with a number of loci by
Sth1pTAP chromatin immunoprecipitation (Figure 7A), and
we assessed expression of CLB5 and TPS3 (Figure 7B). HU
treatment resulted in up to 3-fold increased association of
Sth1p with the CLB5 promoter (Figure 7A), concomitant with
repression of CLB5 expression (Figure 7B), much as reported
for HTA1 (Figure 7A, [27]). The increased association of RSC
complexes with the CLB5 and HTA1 promoters upon HU
treatment was specific, as no such effects were observed at
TPS3, FUR4, CEN4, at an ORF-free chromosomal element on
Chromosome I (ORF-FREE) or in the CLB5 ORF (CLB5-ORF,
Figure 7A and 7B). Taken together, these results correlate
increased binding of RSC to the CLB5 promoter with
inactivation of this locus upon HU treatment (Figure 7A
and 7B) and further implicate RSC in transcriptional control
of CLB5 expression.

Discussion

The RSC ATP-dependent nucleosome remodeling complex
[20] encompasses 17 subunits, and the mutually exclusive
paralogs Rsc1p and Rsc2p define two RSC isoforms [57]. The
Rsc3p/Rsc30p heterodimer [20,53] preferentially associates
with the Rsc1p-bearing RSC isoform (Campsteijn et al.,
unpublished data). Here, we analyzed RSC requirement

Figure 5. Synthetic Lethality of UBR1, clb5D, rsc3td Spores

Haploid yeast strains harboring Pgal::UBR1 and either sfh1td (A) or rsc3td (B) were crossed to strains harboring deletion of any one of the nine S. cerevisiae
cyclin genes: CLN1, CLN2, CLN3, CLB1, CLB2, CLB3, CLB4, CLB5, or CLB6. For each cross, three independently obtained diploids were induced to sporulate
and between 16 and 53 tetrads were microdissected. Spore survival ranged from 76% to 96% and from 53% to 89% for the sfh1td and rsc3td harboring
diploids, respectively. Chi square values for the cosegregation frequencies of the cyclin deletion, the Pgal::UBR1, and the sfh1td or rsc3td alleles were
calculated for each cross. The probability of obtaining the number of observed spores is plotted for each indicated genotype. None of the segregating
loci under scrutiny are located on the same chromosome. The observed deviation from the expected number of UBR1, clb5D, rsc3td progeny reflected a
fully penetrant inability of such spores to form a colony.
doi:10.1371/journal.pgen.0030092.g005
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during the course of the cell cycle using conditional
degradation alleles (N-degrons) of all essential RSC-specific
subunits. We find that RSC controls cell-cycle progression at
multiple stages of the cell cycle and uncovered a strong
genetic interaction between RSC and cyclin-dependent
kinase 1 (Figure 4).

RSC Functions in G2/M
We temporally dissected the mitotic requirement for RSC

by depleting RSC subunits from cells harboring G2 or mitosis
checkpoint mutations (Figure S3). In keeping with a role for
RSC in G2 and mitotic prophase, RSC degron alleles
synergized with overexpression of the G2/M transition
regulator SWE1 [43,44], and the same RSC alleles were
partially epistatic to a degron allele of the spindle checkpoint
factor CDC20 [58] (Figure S3). On the other hand, a degron
allele of the mitotic exit network kinase CDC15 [59] weakly
suppressed the lethal effects of those same RSC subunit
degron alleles (Figure S3). Collectively, these results indicate
that RSC activity is central to achieving a proper mitosis and
that RSC appears to be somewhat more important before the
metaphase/anaphase transition than afterward (Figure S3).
While these results are consistent with published reports, it
remains to be seen whether the essential role of RSC in G2
and in mitosis relates to a role for RSC in gene expression
[27,28,35,53], in higher order chromatid structure [32–
34,60,61], or both.

RSC Functions in G1
Several lines of evidence provided here argue that RSC

functionally intersects with regulation of the G1/S-phase
transition. First, cells deprived of RSC arrest in G1 (Figures 1
and 2). Second, we and others [27] find that RSC associates
with several MluI cell cycle box-binding factor (MBF) targets
including the HTA1/HTB1 and CLB5 promoters (Figure 7,
unpublished data). Both HTA1/HTB1 and CLB5 are expressed
during the G1/S transition and association of RSC correlates
with transcriptional inactivity of these loci (Figure 7, [27]).
Third, we discovered that the rsc3td allele is synthetic lethal
with a deletion allele of the cyclin CLB5 when combined via
meiotic segregation (Figure 5). When these two alleles were
combined by endogenous locus conversion through DNA
transformation, surviving clones could be recovered, how-
ever, and the resulting clb5D, rsc3td strains underwent integral
ploidy increases (Figure 6). This was also the case when the
replication origin licensing factor Cdc6p was transiently
depleted (Figure 6). As these genes are crucial for G1/S-phase
transition, this very strongly suggests that RSC plays an
important role in ploidy maintenance when this stage of the
cell cycle is perturbed.
Consistent with this notion, RSC has been reported to

interact physically with Swi6p [62], a component of the
central heterodimeric G1/S transcription regulators MBF
(with Mbp1p) and SBF (with Swi4p), which are considered to
be the functional analogs of mammalian E2Fs [63]. Finally,

Figure 6. Implication of Replication Control in RSC-Induced Ploidy Shifts

(A) Pmet::CDC6, cdc6D cells (and wild-type cells, unpublished data) were cultured in the absence (0 min) or presence (45 min) of 2 mM methionine to
repress CDC6 expression, and cells were made competent for transformation. After transformation with the indicated constructs (left panel), cells were
seeded on plates lacking methionine to induce CDC6 expression. DNA content of resulting transformants is shown (n ¼ 60, cumulative of three
independent experiments). Haploid clones are depicted in red, endodiploids in blue, and number of endodiploids is shown as an inset.
(B) Wild-type and clb5D cells were transformed with the constructs as indicated (left panel). DNA content of resulting colonies is shown (n¼ 72). The
color scheme is the same as in (A). These data represent the cumulative results of three independent experiments.
doi:10.1371/journal.pgen.0030092.g006
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rsc1 cells were shown to display a large cell phenotype that is
indicative of impaired cell-cycle entry as has been observed in
cln3, bck2, swi4, and swi6 strains [64].

RSC Has a Facultative Role in Ploidy Maintenance
The endocycle phenotype we observe in sfh1td, rsc3td double

mutants underscores the important role of RSC in proper
cell-cycle progression. The endocycles occur under condi-
tions when the degron fusions were least affected since the
levels of the degron-activating ubiquitin ligase Ubr1p were
repressed by glucose and since the yeast were kept at 25 8C to
keep the DHFRts degron fragment folded (Figure 3A) [40,41].
The ploidy shifts must therefore arise from rather subtle
functional deregulation of RSC. It is known that a fraction of
Sfh1p is phosphorylated during G1 and this is thought to
induce Sfh1p dissociation from RSC [65]. In keeping with this
observation, we find that Sfh1ptd does not stably associate
with RSC and that it is readily depleted from the complex
upon Ubr1p overexpression (Figure S4). Furthermore, we
found that Rsc3p is actively degraded in late S-phase
(Campsteijn et al., unpublished data). The fusion of an N-
degron to Rsc3p could thus artificially induce Rsc3ptd

degradation in an untimely fashion, in line with the exquisite
sensitivity of rsc3td cells to increased levels of Ubr1p, even at
25 8C (Figure 1A and 1C). We therefore propose that timely
regulation of Sfh1p during G1-phase and of Rsc3p during S-
phase are imperative to maintain ploidy constant in germi-
nating spores, as well as in cells that have undergone the
lithium-mediated DNA transformation procedure. Although
it remains unclear at what stage sfh1td, rsc3td cells abort the
mitotic cycle and re-enter S-phase, the mono-nucleate nature
of our endodiploid strains indicates that the endodiploidiza-
tion event precedes completion of nuclear division.

We found that conversion of RSC3 to rsc3td in a strain

(S288c) deleted for Mbp1p resulted in very slow growing
mbp1D, rsc3td double mutant clones that underwent cycles of
endoreduplication at a steady rate, yielding a heterogeneous
population of cells with increasing ploidy state (Figure S5).
Together with the functional link between RSC and CLB5, our
data therefore indicate that RSC interacts with the MBF/SBF
controlled transcriptional G1/S cell-cycle progression pro-
gram. As MBF is thought to function by restricting expression
of numerous genes involved in control of DNA replication to
G1 (including CLB5) [66], it is possible that simultaneous
interference with transcriptional regulation by RSC and MBF
compromises necessary oscillations in expression pattern of
multiple MBF target genes, resulting in reduced cell-cycle
phase identity, and, under specific environmental conditions,
in ploidy shifts.
Our experiments suggest that both CLB5 deletion (Figure 6)

and CLB5 derepression (Figure 7) could aid in the induction
of ploidy shifts. These opposing observations can be
reconciled by the requirement for simultaneous deregulation
of multiple MBF-target genes to observe ploidy doublings, as
well as by the fact that Clb5p is required for both activation
and inactivation of pre-replication complexes [48,52,67–69].
As such, diminished or untimely oscillation in expression
level rather than over- or underexpression would result in
ploidy shifts, a phenomenon that has been reported for the S-
phase cyclin E in Drosophila nurse nuclei [3]. This hypothesis is
consistent with the observation that hyperstabilization of
CLB5 mRNA suffices to induce ploidy shifts [52].
Finally, we note that CDC6 expression, which normally

peaks during late mitosis, has been reported to peak in a
MBF-dependent fashion at the G1/S transition only in cells
that have not undergone a recent mitosis [49,70]. As this
would be the case following spore germination or cell
transformation by the lithium procedure, this may therefore
account for the single round of ploidy shifts observed here
and for the observed lack of RSC-association with the CDC6
promoter in cycling cells (unpublished data).

Role of the Pgal::UBR1 Allele in Ploidy Shifts
It is known that Ubr1p participates in cohesin degradation

in mitosis [42]. However, our results indicate that the effects of
the Pgal::UBR1 allele in our experiments were largely mediated
through Ubr1p’s role in polyubiquitylation of the N-terminal
degron fusions we studied. For instance, repressing Ubr1p
levels suppressed rather than enhanced the occurrence of
ploidy shifts in rsc3td, sfh1td strains (Table 2). Furthermore,
repressing Ubr1p expression through Pgal::UBR1 suppressed
rather than enhanced the synthetic lethal interaction between
rsc3td and clb5D (Figure 5B). However, since the dominant
meiotic-lethal phenotype displayed by double heterozygous
rsc3td/RSC3, sfh1td/SFH1, Pgal::UBR1/Pgal::UBR1 diploids was due
to repression of UBR1 expression (Table 1), our results do
suggest that RSC and Ubr1p are part of genetic pathways that
are redundant to some extent or that form one large pathway
in meiosis.

Conclusion
Our experiments indicate that the rsc3td and sfh1td degron

alleles interfere in synergistic ways with cell-cycle progression
resulting in environmentally conditioned ploidy shifts. These
results formally implicate RSC in ploidy maintenance. The
RSC complex has previously been implicated in multiple

Figure 7. Transcriptional Regulation of CLB5 by RSC

(A) RSC association with the CLB5 and HTA1/HTB1 promoters is increased
upon HU treatment. Strains were exposed for 3 h to HU (150 mM) at 30
8C. Cross-linked chromatin was immunoprecipitated using IgG beads (see
Materials and Methods), and recovery of indicated fragments was
assessed by quantitative PCR. Recovery is shown as fold over the average
of RSC occupancy at the FUR4 promoter (which does not bind RSC, [27])
and at an ORF-free region on Chromosome I (positioned between
YAR053W and YAR060C, [27]). Typically, recovery ranged between 0.1%–
0.3% of input for the CLB5 promoter. The DNA profiles of cells upon
harvesting are shown as an inset. Values are the average of three
independent experiments using an STH1TAP allele and standard devia-
tions are indicated.
(B) RSC functions as a repressor of CLB5 expression. Expression levels of
the RSC targets CLB5 and TPS3 were assessed using quantitative PCR in
HU-treated cells and untreated cells. Data are normalized to total RNA
concentrations, as well as to the expression levels of these genes in
untreated cells and represent the average of three independent
experiments.
doi:10.1371/journal.pgen.0030092.g007
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molecular processes, including regulation of chromatid
cohesion [32], DNA damage response [29–31], nucleocyto-
plasmic transport [28,71], and transcription control
[27,28,35,53,72]. Furthermore, and underscoring the com-
plexity of RSC function, viable RSC subunit deletion strains
have been identified that display long (npl6D, htl1D, and ldb7D)
or short (rsc2D) telomeres, hinting toward ambivalent roles
for RSC in maintenance of telomere length [73,74], a process
that occurs in late S-phase [75]. In light of the pleiotropic
physiological functions of RSC, further dissecting RSC-
mediated ploidy control will require a detailed understanding
of the roles and modes of regulation of individual RSC
subunits, as well as understanding the functional interplay of
the various processes that rely on RSC.

The functions we ascribe here to RSC, namely ploidy
maintenance and control of G1/S-phase transition, appear
conserved for human RSC-like complexes [76–81]. Interest-
ingly, it has been shown that mutant forms of the human
ortholog of SFH1, the tumor suppressor INI1/hSNF5
[38,39,82,83], can induce the appearance of tetraploid cells
[76,81]. Thus, an ancient RSC-dependent ploidy doubling
inhibition mechanism may have been recruited in the course
of animal evolution to avert incipient cancer.

Materials and Methods

Yeast strains, plasmids, and culturing. With the exception of the
S288c mbp1D strain (Figure S5) and the S288c cyclin deletion strains
(Figure 5), all the yeast used here were descendants of W303 strains.
Degrons were introduced in diploid yeast (YN106) by ends-in
homologous recombination of plasmids at the endogenous loci
(Table S2). Plasmid details are available on request. Verification of
the integration events was based on PCR analysis and western blot
detection of the modified gene products. For sporulation, diploids
were grown overnight on YEP-10% glucose agar plates and
sporulated on 1% KAc, 40 lg/ml adenine agar plates. Degron strain
were grown overnight in 5 ml of the appropriate SD-glucose amino
acid dropout medium, supplemented with 40 lg/ml adenine, 0.1 mM
CuSO4 at 25 8C. The cells were then seeded into a second overnight
culture in YEP supplemented with 2% galactose. For depletion, cells
were diluted to 2.105 cells/ml into YEP 2% galactose, with or without
0.1 mM CuSO4, and incubated at 25 8C or 37 8C. At the indicated
times, 5 ll of cells and 5- or 10-fold serial dilutions were spotted onto
YEP plates supplemented with 2% glucose, 40 lg/ml adenine, and 0.1
mM CuSO4. The plates were incubated at 25 8C and pictures were
taken after 2–4 d. For DNA damage experiments (Figure 7), cells were
cultured in nonselective media at 30 8C to an optical density of 0.6,
followed by exposure to 150 mM HU (Sigma-Aldrich, http://www.
sigmaaldrich.com) for 3 h.

Flow cytometry analysis. Cells were grown in nonselective medium
overnight, pelleted, and collected into 70% ethanol and kept at least
2 h at 20 8C. Subsequently, cells were suspended into 50 mM sodium
citrate, sonicated briefly, treated for 2 h with 0.2 mg/ml RNase A at 37
8C, and DNA was stained with 1 lM Sytox dye (Molecular Probes,
http://www.probes.invitrogen.com). DNA content was quantified at
FL1 on a Becton-Dickinson (http://www.bd.com) Calibur fluorescence
activated cell sorter.

Chromatin immunoprecipitation, RNA extraction, and quantita-
tive PCR. Chromatin was prepared as described [84] with several
modifications. Cells (20–40 ml) were treated with 1% formaldehyde
for 15–20 min at room temperature under constant rotation. Glycine
was added to a final concentration of 330 mM and incubation
continued for an additional 5–10 min. Cells were gently washed three
times with cold TBS. The remaining cell pellet was resuspended in
lysis buffer (FA-lysis buffer complemented with 1% Triton X-100 and
1 mM DTT) and lysis was performed using glass beads (2-h vortexing
on a vortexgenie 2, Scientific Industries , http: / /www.
scientificindustries.com). The obtained lysate was sonicated on ice
(four times, 20-s pulses, with 40-s intervals) and clarified by
centrifugation. For immunoprecipitation, typically, 400-ll chromatin
solution was incubated overnight with 15 ll IgG Sepharose 6 Fast Flow
bead suspension (Stratagene, http://www.stratagene.com) prewashed

in lysis buffer þ 0.1% BSA. Precipitates were washed (5 min) twice
with lysis buffer, twice with lysis buffer at 500 mM NaCl, once with 10
mM Tris (pH 8.0), 0.25 M LiCl, 1 mM EDTA, 0.5% DOC, and 0.5%
NP40, and once with TE (10 mM Tris [pH 8.0], 1 mM EDTA).
Immunoprecipitated material was eluted for 10 min at 65 8C in 400 ll
25 mM Tris (pH 7.5), 10 mM EDTA, and 0.5% SDS. Decrosslinking was
done for 4–5 h at 65 8C, and DNA was purified by phenol extraction
followed by ethanol precipitation in the presence of 20 lg glycogen.

RNA was extracted with hot acid-phenol: chloroform and cDNA
synthesis was carried out using 2 lg of total RNA.

Quantitative PCR was performed in a Bio-Rad (http://www.bio-rad.
com) MyiQ Single Color Real-Time PCR Detection System using a 23
iQ SYBR Green Supermix. For ChIP, 1/50 of the immunoprecipitated
material was used and abundance of immunoprecipitated fragments
was compared to 1% input. For cDNA, 1/25 of total cDNA was used
and values were normalized as indicated.

Supporting Information

Figure S1. Depletion of Rsc8ptd Compromises RSC Integrity

A rsc8td, STH1TAP strain (YN438) was grown overnight in YP-Gal
medium containing 0.1 mM CuSO4 at 25 8C and was subsequently
shifted to YP-Gal medium at 37 8C to induce degradation of Rsc8ptd.
Aliquots were harvested at the indicated time points and equal
amounts of whole cell extracts were analyzed by western blot. Rsc8ptd

was visualized using anti-HA mouse antibody and Sth1pTAP using
peroxidase-conjugated anti-peroxidase rabbit antibody (Sigma-Al-
drich).

Found at doi:10.1371/journal.pgen.0030092.sg001 (786 KB PDF).

Figure S2. Simultaneous Depletion of Multiple RSC Degrons
Invariably Yields G1 and G2/M Arrests

Indicated strains were incubated under nonpermissive conditions for
4 h after which DNA content was determined by FACS analysis. To
assess colony-forming potential, strainswere incubated for 2, 6, 9, or 12
h under nonpermissive conditions, after which 5-fold serial dilutions
of the cultures were spotted on YP-glucose plates containing 0.1 mM
CuSO4, followed by incubation at 25 8C and photography (inset).

Found at doi:10.1371/journal.pgen.0030092.sg002 (355 KB PDF).

Figure S3. RSC Requirement after Replication

(A–C) Strains harboring the indicated rsctd alleles and/or the condi-
tional cell division cycle alleles for CDC15, CDC20, or SWE1 were
cultured as described (Materials and Methods), followed by shift to 37
8C in galactose medium lacking CuSO4. Aliquots of these cultures
were seeded under permissive conditions at the indicated time
points.
(D–F) Indicated strains were incubated for 9 h under nonpermissive
conditions, after which cellular DNA content was assessed by FACS
analysis.

Found at doi:10.1371/journal.pgen.0030092.sg003 (3.7 MB PDF).

Figure S4. Sfh1ptd Association with RSC Depends on Ubr1p Levels

RSC was purified using an STH1TAP allele from wild-type (YN400) or
sfh1td (YN453) strains following overnight culturing at 25 8C in the
presence of CuSO4 in glucose (Glu) or galactose (Gal) media to
repress or overexpress Ubr1p, respectively. Equal amounts of RSC
were loaded in each lane. The position of Sfh1ptd (empty arrowhead)
is indicated. All strains used in this figure contain the Pgal::UBR1
allele. Note that loss of Sfh1td did not perceptibly affect complex
integrity.

Found at doi:10.1371/journal.pgen.0030092.sg004 (532 KB PDF).

Figure S5. Implication of Mbp1p in RSC-Mediated Ploidy Shifts

S288c mbp1D cells were transformed with the rsc3td endogenous locus
conversion construct. The DNA content of cells from one clone is
shown. Note the presence of 4C and 8C cells, indicative of continuous
endopolyploidization.

Found at doi:10.1371/journal.pgen.0030092.sg005 (69 KB PDF).

Table S1. Fertility of Diploids Generated by Mating of Various rsctd

Strains

Diploids generated by mating the indicated haploids were considered
fertile (þ) when over 80% of spores were able to form haploid
colonies. Less than 10% of spores from a sfh1td, rsc3td diploid were
able to form colonies (�). Not all combinations were generated, as
indicated by NT (not tested).
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Found at doi:10.1371/journal.pgen.0030092.st001 (30 KB DOC).

Table S2. Yeast Strains Employed by Campsteijn et al.

Notes: (i) All the yeast strains we generated are descendants of the
W303-derived YN2 and YN18 strains and all harbor ADE2 and the
trp1–1, ura3–1, his3–11;15, and leu2–3;112 alleles; (ii) All the degron
alleles were first introduced into the YN106 diploid strain and
haploid strains were obtained by sporulation; (iii) Lysine auxotrophy
was not systematically verified. When a strain is Lys� it harbors the
Dlys2::rKWD50N allele [85].

Found at doi:10.1371/journal.pgen.0030092.st002 (96 KB DOC).
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