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Prolonged periods of cognitive workload will cause mental fatigue, but objective,
quantitative, and sensitive measurements that reflect long-term, stress-induced mental
fatigue have yet to be elucidated. This study aims to apply a potential marker of Rényi
entropy to investigate the mental fatigue changes in a long-term, high-level stress
condition and compare three different instruments for assessment of mental fatigue:
EEG, the oddball task, and self-scoring. We recruited nine individuals who participated in
a 5-day intellectually challenging competition. The participants were assessed for mental
fatigue each day of the competition using prefrontal cortex electroencephalogram (EEG).
Reaction time in an oddball task and self-rated scoring were used comparatively to
evaluate the performance of the EEG. Repeated measures ANOVA was utilized to
analyze the differences among score, reaction time, and wavelet Rényi entropy. The
results demonstrated that both wavelet Rényi entropy extracted from EEG and self-rated
scoring revealed significant increases in mental fatigue during the 5 days of competition
(P < 0.001). The reaction time of the oddball task did not show significant changes
during the five-day competition (P = 0.066). Moreover, the wavelet Rényi entropy
analysis of EEG showed greater sensitivity than the self-rated scoring and reaction time
of the oddball task for measuring mental fatigue changes. In conclusion, this study
shows that mental fatigue accumulates during long-term, high-level stress situations.
The study also indicates that EEG wavelet Rényi entropy is an efficient metric to reflect
the change of mental fatigue under a long-term stress condition and that EEG is a better
method to assess long-term mental fatigue.

Keywords: long-term, high-level stress, mental fatigue, EEG, Rényi wavelet entropy, competition

INTRODUCTION

Mental fatigue refers to the feeling experienced after or during prolonged periods of cognitive
activity and has been associated with a temporary inability to maintain optimal cognitive
performance (Borghini et al., 2014). Increased mental effort can induce mental fatigue. In short-
term, it can impair vigilance, reaction time, and physical performance, reducing work capacity.
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This is particularly true in real-world situations, where some jobs
require sustained concentration, such as police officer, medical
worker, and pilot. These occupations often endure long work
hours with high stress, increasing the risk of accidents that
lead to injury and substantial economic loss (Ricci et al., 2007;
Fekedulegn et al., 2018; Jensen, 2018; Dohrmann et al., 2019; De
Jong et al., 2020). Moreover, people in a state of constant fatigue
over a long period have a higher risk of morbidity (De Vries et al.,
2015). Therefore, it is crucial to measure mental fatigue in people
whose work requires high levels of mental effort to prevent health
problems and subsequent economic loss.

As mental fatigue receives increasing attention, researchers
have come up with many methods to quantify the severity of the
mental fatigue state. Self-rating scales are a widely used method,
such as the Stanford sleepiness scale (Duan et al., 2018), and the
Karolinska sleepiness scale (Liu J. et al., 2010). Additionally, many
scales were designed to fit specific situations, such as the Fatigue
Severity Scale (Loy et al., 2018) and the Swedish Occupational
Fatigue Inventory (Hendrawan et al., 2018). Other frequently
used instruments are cognitive tasks (e.g., the psychomotor
vigilance task, and the oddball task) which were used to evaluate
changes in fatigue-related cognitive components (Dinges et al.,
1997; Ciria et al., 2017; Phillips et al., 2017; Dimitrakopoulos et al.,
2018; Lin et al., 2018; Qi et al., 2019). Physiological measures
that relate to mental fatigue, such as eye blink rate, heart rate
variability, or brain activity through electroencephalogram (EEG)
and dynamic functional connectivity (Kar et al., 2010; Borghini
et al., 2013; Keshmiri et al., 2019; Foong et al., 2020; Qi et al., 2020)
are also frequently investigated in researche— especially in brain
activity research, as they can provide a direct measure of brain
status transformation during the mental fatigue process.

Because of the difficulty of obtaining real-world recordings,
research on mental fatigue has been chiefly done using self-
rating questionnaires or scales. Although self-report scales
are convenient and widely used, the results are influenced by
subjective bias (Boksem and Tops, 2008); however, objective
quantitative methods like the cognitive tasks mentioned
above are less suitable for real-time detection while doing
other task. The advantages of monitoring physiological
features are that participants will not be distracted by the
measurement procedures, researchers can observe the mental
fatigue generating process, and there is no learning effect.

In recent years, accumulated research shows that EEG band
alterations are highly correlated with mental fatigue, suggesting
that EEG has excellent potential for measuring mental fatigue
(Han et al., 2019; Qi et al., 2019; Sikander and Anwar,
2019; Jing et al., 2020). However, these studies were focused
on vehicle driving, and conduct in experimental conditions
(Dimitrakopoulos et al., 2018). Less is known about EEG
signal changes during mental fatigue generated by long-term
high-level stress conditions, even though it is common in
certain occupations.

In this study, we aim to apply a potential marker of Rényi
entropy to investigate the change of mental fatigue during a
long-term stress condition by measuring EEG over the prefrontal
cortex (PFC). We measured mental fatigue each day for 5 days
during a real-life intellectually challenging competition and

performed a wavelet Rényi entropy analysis (Rosso et al., 2006) of
the EEG to estimate the fatigue changes. Moreover, we evaluated
the performance of the EEG analyses by comparing with different
measurement methods: self-rating scale and reaction time during
a visual and audio oddball task. We hypothesized that the mental
fatigue would accumulate throughout the 5 days continuous
stress condition, and that the analysis of PFC EEG wavelet Rényi
entropy would be able to distinguish the mental fatigue status.

MATERIALS AND METHODS

Participants
Inclusion criteria included: good general health, free of
neurological diseases and psychiatric disorders, and no history
of hearing and visual impairment. Nine volunteers (9 males, age
19–22, mean = 20.2, and SD = 0.79) who attended the National
Undergraduate Electronics Design Contest were recruited from
the University of Shanghai for Science and Technology (USST).
All participants provided written informed consent to the
experimental procedures before the experiment. The study was
approved by the ethics committee of the institute of science and
technology for brain-inspired intelligence (AF/SC-04/20200911).
During the experiment, participants were not allowed to consume
any form of alcohol, caffeine, or nicotine products.

Study Design and Procedures
Study Design
Participants took part in a 5-day electronics design competition,
during which three subjective and objective measurement tools
were used to measure their mental fatigue.

The National Undergraduate Electronic Design Contest is
a biennial contest where the undergraduates who contend
must complete a project within 5 days. Getting an excellent
ranking in the competition is beneficial to job searching and
master’s applications (Guo and Zhang, 2010). The importance
of performing well results in a high level of competition, in
which students will be under significant pressure, resulting in the
accumulation of mental fatigue.

To investigate changes in the participants’ mental fatigue
during the competition, we performed multiple daily
measurements. To capture the changes over time, we divided
the assessments into two phases (see Figure 1). The first phase
was assessed from day 1 – 3, and the second phase was assessed
from day 4-A – 5 (day 4-A was the first assessment in day four).
Participants were given adaptation training the day before the
start of the experiment on day 0. Further, they were assessed at
a fixed time each day in numbered order, thus eliminating the
variation due to different assessment times. All participants were
assessed once a day during the period from 8 a.m. to 12 p.m. On
the 4th day, the competition entered the final stage, and since
all participants had given up sleep, two additional assessment
rounds were given to all participants. Assessment day 4-B (day
4-B was the second assessment in day four) starting at 5 p.m., and
assessment day 5 started the next day at 1 a.m. Assessment Day 5
was completed under sleep deprivation as this was a competition
condition. For the first three days of the competition, participants
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FIGURE 1 | Experimental procedures. (A) The experiment included two phases, i.e., phase 1 with each assessment session for the first three consecutive
competition days, and phase 2 with three assessment sessions with a 24-h period of sleep deprivation during the last two competition days. (B) The assessment
included four sessions, which were 1 min self-rating, 5 min resting-state EEG, 4 min audio stimulation oddball task, and 4 min visual simulation oddball task; there
were short breaks between each session. EEG = electroencephalography.

were prohibited from sleeping except for their bedtime. On the
phase two of the competition, sleep was prohibited entirely.

Procedure
Participants were instructed to familiarize themselves with the
oddball task a day before the experiment began to reduce
the experimental bias caused by the learning process. A room
10 m away from the competition site was set up with adequate
sound and light insulation to conduct experiments. Both the
LED light and loudspeaker were 1 meter away from the
participant. The experiment was conducted at the University of
Shanghai for Science and Technology, and the entire experiment
was video recorded.

The experimental procedures for each assessment are
illustrated in Figure 1B: first of all, participants filled out the
Stanford Sleepiness Scale and reported their sleep duration before

the assessment. Then we helped them wear the device and dim
the lights in the room. Following was the EEG recording –
5 min resting-state prefrontal cortex (PFC) EEG with closed eyes.
Participants were asked to sit in a chair, keep quiet, keep their
mood calm, and keep a blank mind. Finally, the oddball task
included 4 min of audio and visual stimulation. Participants were
asked to be as still as they can except to press the button.

Physiological Recording
Our team developed a study device that can acquire EEG
signals during the performance of the oddball task. The device
adopted a high-performance 24-bit analog-to-digital converter
ADS1299 chip (chip ADS1299, Texas Instruments, Dallas, TX,
United States). It can simultaneously record 8-channel EEG,
generate visual and audio stimulation, and capture button input.
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The data was uploaded in real-time to the computer through
Bluetooth wireless communication and backed up on an SD card.

EEG data were collected from four locations (AFp7, Fp1h,
Fp2h, and AFp8 according to the 10–5 system [Jurcak et al.,
2007]) chosen to cover the prefrontal brain region, and EEG
signal amplified 12 times. The reference electrode was placed at
the mastoid bone. Our reason for monitoring the EEG signal in
the PFC region was two-fold. First, the EEG signal characteristics
in the PFC region are different between awake and fatigued states,
and these characteristics are suitable for assessing changes in
fatigue state (Liu J.P. et al., 2010; Li et al., 2012, 2016; Zou et al.,
2020). Second, in practice, the advantage of measuring the non-
hair-bearing scalp area in PFC is that the experiment is easy to
prepare and is less invasive. If the experiment adopts the standard
electrode montage, potential participants may be more likely to
refuse to participate in the experiment.

This study analyzed EEG frequency domain characteristics to
explore mental fatigue changes (Kong et al., 2017; Van Cutsem
et al., 2017). The sampling rate in this experiment was 250 Hz,
and the resolution of the EEG signal was two microvolts. The
impedance level was ensured to be below 5 k� before processing.

Fatigue Assessment
Stanford Sleepiness Scale
The Stanford Sleepiness Scale (SSS) (Hoddes et al., 1972) is a
frequently used mental fatigue self-report scale (Duan et al.,
2018). The scale has a single item with a scale range from one
(“Feeling active and vital; alert; wide awake.”) to seven (“Almost
in reverie; sleep onset soon; lost struggle to remain awake.”).

Oddball Task
The oddball task was utilized to reflect participants’ mental
fatigue by allowing us to investigate the decrease in vigilance
when mental fatigue was present (Clayton et al., 2015). In an
oddball task, stimuli are presented in a continuous stream,
and participants must detect the presence of an oddball
stimulus. In this study, there were two kinds of stimuli.
One stimulus with a high probability (80%) called standard
stimuli, and another with a small probability (20%) is called
deviant stimuli. Studies have shown that people’s attention-
related responses are different when doing visual and auditory
stimuli oddball tasks (Kiat, 2018). Reaction times measured by
these two oddball tasks may differ when individuals develop
mental fatigue, so two methods were chosen for this study.
Participants were asked to respond to the deviant stimuli by
using one finger of their dominant hand to press a button
as fast as possible. The reaction was determined as the time
difference between the onset of the stimuli and the onset of the
button pressing.

Two sensory stimuli (visual and auditory) were applied in
this study. Two sounds, 1 kHz (standard stimulus) and 2 kHz
(deviant stimulus) were played randomly in the audio stimulation
paradigm. The interval between sounds was 1000 ms, and the
duration was 50 ms. In the visual stimulation paradigm, the
background of the standard oddball sequence was gray. The
target stimulus was a red light, and the non-target stimulus was
a green light. The signal duration was 50 ms, with an interval of

1000 ms. We use participants’ mean reaction time (RT) in each
task as metrics.

Signal Processing
Wavelet transform can be used to extract information from EEG
data, such as trends, discontinuities, and repeated patterns (Yildiz
et al., 2009). The entropy is used to quantify the amount of
uncertainty or randomness in the pattern (Zhang et al., 2014).
Entropy based on Shannon’s entropy theory belongs to a short-
range or extensive concept (Jiao et al., 2012; Wang et al., 2015).
However, biomedical systems are often characterized by long-
range interactions or long-term memories. Rényi entropy is a
generalized form of entropy, which has advantages in analyzing
long-range features (Liang et al., 2015). Rényi entropy differs
from Spectral entropy in that the sum is weighted toward
frequencies in the lower frequency band. In higher frequency
band (20–45 Hz), there are no differences (Guarascio and
Puthusserypady, 2017); therefore, we used the wavelet Rényi
entropy to explore the mental fatigue characteristics in 5 min
resting-state frontal EEG signals.

As shown in Figure 2, the data processing procedure contains
six steps. The following parts of this section describe each of the
processing steps.

Preprocessing
The recorded raw EEG signal was first filtered using a 3–
30 Hz bandpass filter. The data were normalized through
z-score normalization to remove variation introduced between
assessments. The pre-processed EEG signals were calculated in
8-s windows with a 50% overlap between successive windows
(Kar et al., 2010).

Discrete Wavelet Transform
We used discrete wavelet transform (DWT) to analyze the
EEG signal. DWT analyses signals in different frequency bands
with varying resolutions by decomposing them into coarse
approximations and detailed information.

In the discrete domain, any finite energy time signal can be
decomposed and expressed in scaled and shifted versions of a
mother wavelet ψ (x) and a corresponding scaling function φ (x).
The scaled and shifted version of the mother wavelet is defined by:

ψj,k (x) = 2
j
2 ψ(2jx− k) (1)

The EEG signal f (x) can be described as the following equation:

f (x) =
1
√

M

∑
k

Wφ

[
j0, k

]
φj0,k [n]

+
1
√

M

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k [n] (2)

Wφ and Wψ are the approximation coefficient and detail
coefficient, respectively.

In this study, we used the Daubechies wavelet of order four
(db4) because of its efficiency. The number of decomposition
levels was set to four. The detail component from level one to
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FIGURE 2 | EEG processing flow diagram.

level four is approximately corresponding to the β, α, θ, and δ

band of the EEG signal.
The wavelet coefficient of the corresponding mother wavelet

becomes higher when the signal has noise. The threshold Tj can
be computed as:

Tj = mean
(
wj
)
+ 2× std(wj) (3)

wj is the wavelet coefficient at the jth level of decomposition,
mean (.) and std (.) are the functions of computing mean and
standard deviation. In-band filtering can reduce the absolute
value of coefficient above the threshold by half (Euginia, 2005).

Entropy
To calculate Wavelet Entropy, wavelet energy Ej of a signal is
determined at each scale j as follows:

Ej =

Lj∑
k=1

[wj(k)]2 (4)

Where, Lj are the total number of coefficients at the jth
level. Moreover, the relative wavelet energy at jth level can be
calculated as:

Pj =
Ej∑
j Ej

(5)

∑
j Ej is the total energy over all levels.
The wavelet Rényi entropy is defined as

RE =
1

1− q
log

∑
j

pq
j

 (6)

Where, q is the entopic index, it is a real number. The parameter
q confers generality to this information measure. In this study, we
have used q= 2 to calculate the 2nd order Rényi entropy.

Statistical Analysis
Data analysis was performed using SPSS 21 (IBM Corp, Armonk,
NY, United States). The differences between SSS score, oddball
reaction time, and EEG wavelet Rényi entropy were analyzed
using repeated measures analysis of variance (ANOVA). Time-
of-day was included as a factor to determine whether the
participants’ mental fatigue cognition and mental fatigue status
changed with the continued competition. Based on the results
of Mauchly’s test of sphericity, Greenhouse-Geisser was applied
to all repeated measures ANOVA effects. Post-hoc comparisons
(Least Significant Difference, LSD) were used to compare every
two tests, a significance level of P < 0.05 was used for all
statistical analyses.

The correlation coefficient between EEG wavelet Rényi
entropy, oddball RT, SSS score, and pre-assessment sleep time was
calculated using Person correlation.

RESULTS

Comparisons Among Four Channels
All the variables presented displayed normal distribution
(Shapiro-Wilk test), and the variances were homogeneous
(Levene’s test). Using two-way (4 channels × 6 timepoints)
repeated measures ANOVA to analysis four EEG channels in
six timepoints; two-way (2 stimuli × 6 timepoints) repeated
measures ANOVA analysis was used to analyze the changes
of visual and audio oddball task in six timepoints. One-way
repeated measures ANOVA analysis was utilized to analyze the
difference of self-rating scores among six timepoints. We found
that there is a significant difference between assessments day 1 to
5 (F2.496,72.392 = 21.491, P < 0.001). There were no significant
differences between the four prefrontal EEG electrode positions
(F7.489,72.392 = 0.263, P = 0.971). Therefore, the EEG signal at
Fp1h has been used to illustrate the following results, the values
of the other three channels can be found in the Supplementary.

Comparisons Among Six Timepoints
Figure 3A shows one participant’s 10 s filtered EEG data from
Day 1 and 5. From Figure 3B, we can observe that the value
of average power spectral density on Day 5 in the 13–18 Hz
band is lower than that of Day 1. Through the Rényi entropy
of EEG over six assessment sessions, we found no significant
differences (F1.19,33.31 = 0.66, P = 0.448, repeated measures
ANOVA) among first 3 days. As shown in Figure 3C, the change
between days 1 – 3 is not apparent; however, day 4-A has a
significant increase compared with days 1, 2, and 3 (p = 0.008,
p = 0.044, and p < 0.0001). We found significant differences
among the last three assessments through one-way repeated
measures ANOVA (F2,64 = 22.818, P < 0.001). Relative to day
4-A and 4-B, day 5 demonstrated a significant gain, as Figure 3C
shows. Assessments in days 4-A, 4-B, and 5 of the second phase
were significantly different from days 1, 2, and 3 of the first phase;
this is illustrated in Figure 3C, days 1 – 5, where mean values
are gradually increasing. Table 1 shows the descriptive statistics
of Rényi entropy, oddball reaction time, SSS score, and sleep
duration across six assessments.

There was a significant difference between the six self-rating
scores (P= 0.018), with day 5 having significantly increased levels
of mental fatigue relative to the other assessments. The mean
value of participants’ self-rated fatigue was increased through the
assessments, and the highest score was slightly higher than four,

Frontiers in Human Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 733426

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-733426 November 3, 2021 Time: 11:38 # 6

Zhang et al. Objective Assessments of Mental Fatigue

FIGURE 3 | The analyzed results of PFC EEG. (A) 10 s filtered EEG data from Day 1 and 5. (B) The average power spectral density (PSD) of Day 1 (blue) and Day 5
(orange), the shade indicates the standard deviation of the PSD. The PSD value on Day 5 in the 13–18 Hz band is lower than that of Day 1. (C) The Rényi entropy of
EEG over six assessment sessions. The Rényi entropy significantly increased over six sessions (p < 0.05, ANOVA), and it was significantly higher in the last session
than in the first day. Day 4-A was the first assessment in day four, day 4-B was the second assessment in day four.

as shown in Figure 4B. However, some individuals score barely
changed during the whole experiment.

There was no significant difference between performances of
the oddball task, though a trend toward significance can be seen
(P = 0.066). From the post-hoc comparisons, we can observe
that the score from day 5 is significantly different from days
2, 3, and 4-A. Figure 4A shows the average reaction times of
the participants for the six oddball tasks. We can observe a
gradual increase in reaction time from day 2 to 5. The decrease
in measured reaction time from the first to the second time
could be caused by the participants’ lack of proficiency in the
assessment.

Sleep duration before the assessment decreased as the
competition progressed. Correlation analysis showed that the
SSS score and Rényi were negatively correlated with sleep time
(rho = −0.486, P < 0.001, rho = −0.442, and P < 0.001). The
audio and visual oddball reaction time did not correlate with sleep
time (rho=−0.015, p= 0.913, rho= −0.228, and P = 0.100).

DISCUSSION

This study focused on objectively measuring mental fatigue
changes during a long-term high-level stress competition using
EEG-based marker, wavelet Rényi entropy and verified our claim
by analyzing participants’ PFC EEG, self-reported scales, and
the oddball task’s reaction time measured during a five-day real-
world intellectually challenging competition.

The evidence supports our hypothesis that mental fatigue
conditions become more severe as the competition progresses.

The last assessment of mental fatigue is significantly different
from the previous five assessments for all three measurement
instruments. Also, the wavelet Rényi entropy of PFC EEG is a
more sensitive indicator of mental fatigue than self-reporting and
reaction time during the oddball task. These results suggest that
mental fatigue will accumulate during long-term high-level stress
conditions, and PFC activity analyses can identify it.

The trend of the mental fatigue curve is gradually increasing,
which means the mental fatigue conditions became more severe

TABLE 1 | Descriptive statistics of Rényi entropy, oddball reaction time, SSS
score, and sleep duration across six assessments.

Day 1 Day 2 Day 3 Day 4-A Day 4-B Day 5

Fp1h Rényi entropy

Mean 0.657 0.684 0.661 0.737 0.761 0.841

SD 0.190 0.186 0.184 0.142 0.129 0.124

Reaction time of visual (second)

Mean 0.338 0.334 0.360 0.351 0.366 0.404

SD 0.035 0.034 0.074 0.068 0.101 0.122

Reaction time of audio (second)

Mean 0.328 0.320 0.331 0.353 0.374 0.398

SD 0.034 0.032 0.052 0.076 0.121 0.128

SSS score

Mean 2.333 1.778 2.444 2.556 3.222 4.222

SD 0.707 0.667 0.882 0.882 1.302 1.716

Sleep duration (minute)

Mean 375.5 419.4 243. 232.2 15.5 2.2

SD 64.3 34.1 139.3 69.4 39.7 6.6
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FIGURE 4 | The reaction time for the oddball task and self-rated fatigue for the SSS over six assessment sessions. Error bars indicate the standard deviation.
(A) The reaction time for the audio stimulation (blue) and visual stimulation (orange) increased as the competition progressed, and the bars indicate the standard
deviation. (B) The self-rated fatigue increased as the competition progressed, and Day 5 is significantly different from the first three assessments. Day 4-A was the
first assessment in day four, day 4-B was the second assessment in day four.

FIGURE 5 | Sleep time changes during the competition. (A) The total sleep time before each assessment. Error bars represent standard deviation. Day 4-A was the
first assessment in day four, day 4-B was the second assessment in day four. (B) The EEG Rényi entropy and sleep time correlation analysis.

as the competition progressed. This increasing rate was different
in two phases. In the first phase, the index fluctuated, and it
did not show a significant difference between each assessment.
This phenomenon may be related to the sleep recovery effect
on mental fatigue (Belenky et al., 2003; Mantua et al., 2019).
Moreover, the participant’s desire to win the competition, and
subsequently the prize, is a short-term reward, and a study found
that short-term reward make the body spend more energy to
achieve it. In that case, working overtime will not lead to mental
fatigue (Boksem and Tops, 2008). From Figure 5, we also can
see that even the sleep duration had reduced, the fatigue state
did not change much. However, even though sleep duration only
decreased slightly when examining the second phase, the mental
fatigue increased significantly.

When the contest entered the final day and the second phase
of our assessment, we found that compared to phase one, the
increase became larger for each measurement, especially for EEG
wavelet Rényi entropy analysis. Such a tendency is a characteristic
of fatigue accumulation (Borghini et al., 2014; Dohrmann et al.,
2019). The alternation in EEG has been used to assess mental
fatigue in the short term (Li et al., 2017), so this kind of change
could be extended as a threshold value for long-term mental
fatigue monitoring.

The three instruments used in this study showed consistency
in the trend of changes in mental fatigue measurement. However,
the SSS self-report was not sensitive enough to reflect the actual

mental fatigue conditions. In our case, two participants’ self-
ratings were inconformity with their reality. From the average SSS
score shown in Figure 4B, we can see even on the last assessment,
some participants under pressure from the competition and
sleep-deprived still rated themselves feeling “a little foggy; not
at peak; let down.” These results support that participants
with severe mental fatigue have weak cognitive performance
(Mantua et al., 2020), and the description of SSS items can be
misinterpreted by participants (Horne, 2010).

The results showed no significant difference in reaction time
for both the visual and audio oddball tasks in a repeated
measures ANOVA. However, the results did approach the brink
of significance (P= 0.066), and on post-hoc analyses, we observed
that the assessment on day 5 is significantly different from days 2,
3, and 4-B. These results suggest that the oddball task reaction
time is not sensitive to the mental fatigue assessment. This
result is in accordance with the results of SYLVIA (Loh et al.,
2004), where the reaction time during a cognitive task is used
to evaluate fatigue needs to reach a certain duration, such as
10 min for the best result of PVT and 27 min for the oddball task
used by Luis (Ciria et al., 2017) or fatigue detection. Since the
assessments were administered during a real competition, we had
to keep time for data collection from the participants as short as
possible and compressed the response time of the cognitive task
into two 4-min assessments, following the approach of Mathias
(Basner et al., 2011). The results show that using the reaction
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time of the oddball task as a metric only showed significance
in extreme conditions like sleep deprivation, the wavelet Rényi
entropy analysis of PFC EEG demonstrated the same trend of
values changes with better discrimination.

In light of these findings, our results may point to that
results from SSS scores are susceptible to subjective bias, and
the RT of the 4 min oddball task was not sensitive enough to
long periods of mental fatigue. The poor performance of the
oddball task in this study could be due to the small sample size;
additionally, the lack of diversity makes it difficult to generalize
our findings to a larger population. It is also worth noting that
the short-term oddball task is not ideal for measuring mental
fatigue in real-world scenarios. In this experiment, the PFC
activity was more objective and effective in assessing accumulated
mental fatigue.

Previous studies have used EEG to quantify stress states
and have found EEG-related markers that can objectively and
effectively assess stress (Peng et al., 2012; Minguillon et al., 2016;
Keshmiri, 2021). The present study extended their thoughts to
the case of mental fatigue under stress conditions. Moreover,
this study supports that EEG wavelet Rényi entropy can be
a quantitative marker that reflects different levels of mental
fatigue under high-level stress conditions. Hence, EEG wavelet
Rényi entropy would be expected to apply in future studies to
measure mental fatigue.

The sample size is relatively small, which may have limited our
ability to detect certain relationships in larger populations, such
as the EEG wavelet Rényi entropy assessment results and reaction
time change in the oddball task. Future studies need to extend
the sample size to examine and confirm the EEG wavelet Rényi
entropy and oddball assessment results. Furthermore, stress can
affect the brain’s state (Hermans et al., 2011; Keshmiri, 2020)
and how the stress eventually leads to mental fatigue need
further investigation.

CONCLUSION

This study investigated mental fatigue changes during a
5-day intellectually challenging competition and found that
mental fatigue accumulates during long-term high-level stress
situations. We further demonstrated that the PFC EEG wavelet
Rényi entropy is a more sensitive instrument than self-
reporting and oddball reaction times to measure mental fatigue
accumulation. These results may help improve research on long-
term mental fatigue.
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