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The global spread of the SARS coronavirus 2 (SARS-CoV-2), its manifestation in human

hosts as a contagious disease, and its variants have induced a pandemic resulting in

the deaths of over 6,000,000 people. Extensive efforts have been devoted to drug

research to cure and refrain the spread of COVID-19, but only one drug has received

FDA approval yet. Traditional drug discovery is inefficient, costly, and unable to react to

pandemic threats. Drug repurposing represents an effective strategy for drug discovery

and reduces the time and cost compared to de novo drug discovery. In this study,

a generic drug repurposing framework (SperoPredictor) has been developed which

systematically integrates the various types of drugs and disease data and takes the

advantage of machine learning (Random Forest, Tree Ensemble, and Gradient Boosted

Trees) to repurpose potential drug candidates against any disease of interest. Drug and

disease data for FDA-approved drugs (n= 2,865), containing four drug features and three

disease features, were collected from chemical and biological databases and integrated

with the form of drug-disease association tables. The resulting dataset was split into

70% for training, 15% for testing, and the remaining 15% for validation. The testing

and validation accuracies of the models were 99.3% for Random Forest and 99.03%

for Tree Ensemble. In practice, SperoPredictor identified 25 potential drug candidates

against 6 human host-target proteomes identified from a systematic review of journals.

Literature-based validation indicated 12 of 25 predicted drugs (48%) have been already

used for COVID-19 followed by molecular docking and re-docking which indicated 4

of 13 drugs (30%) as potential candidates against COVID-19 to be pre-clinically and

clinically validated. Finally, SperoPredictor results illustrated the ability of the platform to

be rapidly deployed to repurpose the drugs as a rapid response to emergent situations

(like COVID-19 and other pandemics).

Keywords: drug repurposing, COVID-19, machine learning, databases, data analytics, host proteomes, molecular
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GRAPHICAL ABSTRACT | Illustration of SperoPredictor repurposing framework. It starts with data collection followed by machine learning models training, model

deployment, literature, and molecular docking-based validation.

INTRODUCTION

Coronavirus (CoV) normally targets the respiratory tract of
humans (mammals), resulting in mild-to-severe respiratory tract
infections (1). In the last two decades, severe acute respiratory
syndrome (SARS-CoV) and Middle East respiratory syndrome
coronavirus (MERS-CoV) referred to as pathogenic human
coronaviruses, have caused global epidemics with high mortality
andmorbidity rates (2) with a burden on the worldwide economy
(3). In December 2019, Wuhan (China) experienced the third
coronavirus pandemic, called novel coronavirus (SARS-CoV-2
or 2019-nCoV) disease 2019 (4). Over 79,000 confirmed cases
with more than 2,600 deaths from COVID-19 or SARS-CoV-2
outbreak worldwide were reported as of 24 February 2020 along
with contact transmission due to human-to-human interaction
(5). Moreover, according to the World Health Organization
(WHO), as of 15 February 2022, there have been a total number
of 414.3M confirmed cases of COVID-19 with 5.846M deaths
worldwide, while the United States, India, and Brazil remain
the worst-hit countries (6), with worldwide economic costs of
more than $16 trillion. In this connection, studies have been
conducted for COVID-19 health and exploratory data analysis
for classification, comparative analysis (7), and prediction using
machine learning, such as done in (8) specifically targeting the
Mexican and Brazilian patients. The results from the study
consider data from patients under the age of 0–120 years
demonstrating the application of big data technologies along with
machine learning. Similarly, the relation between the spread rates
of COVID-19 in high-risks countries is also studied in (9) where
Pearson correlation was considered to first study the relationship
between the countries under study followed by the use of PCA to
categorize the countries based on the spread rates of COVID-19.

Moreover, a vast number of efforts from various national and
international research groups around the world have been made
to obtain effective drugs for COVID-19. To date, the FDA has
approved only one antiviral (oral) drug for the treatment of
COVID-19, and it is regarded as a major step forward in the
fight against COVID-19 (10). Owing to the lack of effective oral
drugs for COVID-19, there is an urgent need to develop effective
treatments for 2019-nCoV or SARS-CoV-2.

Additionally, witnessing the pandemics over the last two
decades and the emergence of new diseases, the total money
diverted to pharmaceutical and biomedical research has
significantly increased, increasing the annual number of novel
treatments approved by the US Food and Drug Administration
(FDA) slightly (11). As estimated in a study, pharmaceutical
companies invested $802 million in 2013 which increased to $2.6
billion in 2015 owing to the development of novel drugmolecules
approved by the FDA (12). Thus, the development of novel drug
molecules until the approval of the FDA requires approximately
$2–$3 billion investment and a time of approximately 12–
15 years, with < 10% chance of success. This renders drug
development a risky process that suffers from high attrition rates,
substantial costs, and a slow pace (13). An effective alternative
to de novo drug development is drug repurposing, the process
of determining new indications of the already approved (FDA),
failed/abandoned, or investigational drugs for use in other
diseases (14). Drug repurposing reduces the time and money
spent on de novo drug development and clinical trials (15–17)
because the safety and efficacy data of the drugs to be repurposed
are already known. In addition, sufficient investment of time
and money is still required for drug repurposing when opting
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for experimental approaches (18). The problem has been solved
with the advent of computational approaches which have come
along with enormous computing power to digest vast amounts
of heterogeneous data for the testing of the systematic drug
repurposing hypothesis (12, 13, 15–17). Moreover, targeting a
single viral protein often results in high drug resistance owing
to the rapid evolution of the virus genome (1). Conventional
methods based on the three-dimensional structure of proteins
and ligands are limited by the unavailability of protein structures
that are normally encountered for most viral and human targets.
Apart from that disease diagnosis studies are performed, such
as done in (19). In the said study, significant features were
ranked using a random tree, decision tree, support vector
machine (SVM), and chi-squared decision tree models. The
study results show the significance of the RT models which
ultimately outperform the other models.

Moreover, in silico methods that predict drug–target
interactions (DTI) or associations, use machine learning to
train, test, and validate the machine-learning-based prediction
models. DTIs are the pairs of drugs and their targets interacting
with each other. Moreover, these trained prediction models are
subsequently deployed to discover novel DTIs. The data on
which feature-based machine-learning models are trained can
be obtained from publicly available online databases or in-house
laboratories. The well-known databases for DTIs and target–
target interactions are DrugBank (20), KEGG (21), and STITCH
(22–24). When discussing the representation of drugs and target
data, people have presented them in many different forms; for
example, drugs are represented by their chemical structures (25),
drug expression profiles (26) side effects (27), and Anatomical
Therapeutic Chemical (ATC) codes (28), while targets have been
represented using their gene ontology information (28), genome
sequence (21), protein–protein interaction (29), and disease
associations (30). Moreover, many successful feature-based
computational methods have been developed over the past
decade. Feature-based methods are standard methods that
require feature vectors of a fixed length as input (31). According
to the literature, an earlier feature-based method (32) was used
for target representation; this method performs binary vector
representation of the drugs, indicating the presence or absence
of functional groups in the chemical structure of the drugs with
amino acid composition. Simply put, if a drug is represented by
d, then the feature vector of the drug would be [d1, d2, d3,..., dd].
Similarly, for target t, it would be [t1, t2, t3,..., tt]. The drug and
target feature vectors are subsequently concatenated to form a
drug–target pair (d,t). In addition, many feature-based methods
have been presented based on random forest (RF) (29, 30),
rotation forest (33), and extremely randomized trees (34) that are
formed by the ensemble of decision trees. In the given studies,
many of the important features are not considered. Specifically,
inmost studies, only two or three features are focused on, missing
the other important information. While in our work, unlike
other studies, SperoPredictor R© uses multiple drugs (four drugs)
and disease (three diseases) features unified in binary strings
covering diverse aspects of drugs and diseases data. The use
of various features in our study make the classification models
more generalized and accurate on unseen data. Additionally,
other feature-based methods include relevance vector machines

(35), KNN (fuzzy) (36), and deep learning (37–39). Additionally,
most of the studies are focusing on single ML model trained
and then deployed, while in our study we have trained multiple
machine-learning models which are later stacked together to
synergize the prediction confidence. Once the predictions are
taken from the deployed machine-learning models, the need for
further validation of the drugs is highly needed which most of the
studies are lacking. Here, a bifold molecular docking validation is
performed for the predicted drugs with host COVID-19 proteins.
Moreover, there is dire need of well-trained models that are fast,
accurate, and ready to be deployed as rapid response, such as
SperoPredictor. Further it can also be deployed to predict the
drugs for a given disease as input to the deployed model and can
find the new indication for drugs given as input.

In this study, we present an integrated machine learning
and molecular docking-based drug repurposing framework that
systematically uncovers undiscovered DTIs. This approach is
based on the notion that (i) given known and unknown
sets of DTI data enriched with various aspects of drug and
disease features (Figure 1A), (ii) machine-learningmodels can be
trained (Figure 1B). The trained models (iii) can be deployed to
determine new DTI pairs for a given set of proteins functionally
associated with diseases causing viral infection, such as COVID-
19 (Figure 1C). We employed this approach along with (iv)
the confirmation of the indications from the literature survey
and (v) by performing molecular docking to further ensure
the interactions (binding affinity) between predicted drug–
target pairs as shown in Figure 1C. Following this approach,
25 potential drug candidates were predicted for COVID-19.
Literature-based validation confirmed that 12 out of 25 (48%)
drug compounds were already used in COVID-19. For the
remaining 13 compounds, molecular docking was performed.
Based on the docking results and prediction scores, four potential
drugs were suggested to be pre-clinically and clinically validated
for COVID-19.

MATERIALS AND METHODS

In this step, we followed the five steps shown in Figure 1 to
identify the repurposed drugs for COVID-19 (drug repurposing).

Dataset Preparation
The dataset contains four drug features (drug chemical
structures, side effects, target sequences, and drug-targeted
genes) and three disease features (disease gene sequences, disease
specificity indices, and disease observable traits).

Chemical Structures
Chemical structures (40) in SMILES form have been used
in many studies. Simplified molecular-input line-entry system
(SMILES) is the form of a line notation for describing the
structures of chemical species and SMILES was obtained from
DrugBank (41), PubChem (42), and ChEMBL (43) during
2021–2022 using application programming interface (API) in
KNIME as shown in Supplementary Figure 1. To make the data
machine-learning ready, one-hot encoding (44, 45) was done
to convert SMILES data into a 1,430-dimensional vector called
the Drug-S Vector. The vectors were subsequently collected
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as the bit vector using the KNIME node called “Create
Collection Column.”

Drug–Target Sequences and Genes
Each drug targets one or more proteins (18, 46) and receptors
on proteins are the most prominent targets for drugs. In
this study, the drug–target sequences were extracted from

Uniprot and DrugBank during the academic year 2021–2022
(47). Initially, DrugBank IDs were mapped to Uniprot IDs
followed by using API in KNIME to retrieve sequence data
from Uniprot. The “Sequence Properties” node in KNIME
is used to extract the properties, such as the number
of positively and negatively charged residues, mol-weight,
hydrophobicity, and aliphatic index. Finally, one-hot-encoding

FIGURE 1 | An integrated machine learning and molecular docking-based ensemble approach for drug repurposing. (A) It shows that the drug and disease data

collected from the public databases are first arranged and then transformed into a feature matrix, (B) followed by training and testing of the predictive models (RF and

TE). (C) After training and testing, the data for the COVID-19 host targets are prepared from the literature review and fed to the predictive model for getting the

potential repurposed drugs. Potential hits are then validated by using literature mining and collecting the evidence in the form of papers, patents, and database

evidence. For the remaining predictions, molecular docking is performed to find the binding affinity of the drugs. Finally, the drugs with the highest binding affinity are

prioritized as the potential repurposed candidates ready for the preclinical and clinical tests.
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(48) was applied to extracted features and drug genes to
transform features into the bit representation of the 2,294-
dimensional vector.

Drug Side Effects
As a common hypothesis, drugs with similar side-effect
profiles share similar therapeutic effects through a shared
mechanism of action (49). The drug side-effect data of 1,430
FDA-approved drugs were downloaded from the SIDER
database (27). SIDER provides mapping to PubChem which
was used to map side effects to drug structures, protein
sequences, and gene data, as shown in Figure 2. To make
side-effect data machine-learning-ready, one-hot encoding
was used in the KNIME analytics platform as shown in
Supplementary Figure 2 resulting in a binary vector string of
5,868-dimension called Drug-Se.

Disease Gene Sequences and DSI
In recent years, there has been a tremendous increase in the
knowledge accumulation of gene–disease associations. It is
important to facilitate clinical practice using this knowledge
(50). In our study, gene-disease associations (GDA) were
collected from DisGeNET (51–53) that contains more than
400,000 GDA across all databases (54). Moreover, the Uniprot
IDs were used along with gene symbols from DisGeNET
to extract gene sequences from the Ensemble database
(55, 56) using API in KNIME (Supplementary Figure 1).
Drug sequences were converted using one-hot encoding
into a binary string vector. Additionally, for the disease
specificity index (DSI) (51), the vectors generated are
referred to as Dis-Ge for one-hot-encoded gene sequences
of 1,321 length. Whereas, the DSI values are left named
as DSI.

FIGURE 2 | Process of data collection and data mapping. It shows the creation of a dataset and merging of different data sources using cross-database identifiers.

The dataset contains the data for the drugs and the data for the diseases. The data download was started with DrugBank data with external links. Then the data was

mapped to PubChem and Uniprot. It was followed by the mapping of the SIDER data using the PubChem IDs and the mapping continues through ChEMBL and all

the four drug features are presented in a tabular form with identifiers from mentioned databases. The same process follows for the disease data, and finally, the

disease data is also represented in the tabular form. The developed dataset contains the drug and disease-related data enriched with various features.
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TABLE 1 | Drug and disease features in the dataset created.

Dataset Drug features Disease features Dataset features

Drug

structures

Drug–

target

sequences

Drug

related

genes

Drug side

effects

Disease

gene

sequences

DSI Disease observable traits +ve -ve

1,430 2,294 2,893 5,868 1,321 1,321 5,212 368,483 360,000

The table mentions the total number of each feature in the dataset. It contains four drug features and three disease features. The details of the different features and their mapping

process are discussed in detail in Section Dataset Preparation.

Disease Observable Traits
Disease observable traits have been utilized for drug discovery
and development (57–59). Drugs discovered based on
phenotyping screens have surpassed the drug screened and
developed through a molecular drug–target-based approach
(60, 61). In this study, 10,881 human diseases with 8,662
phenotypes were retrieved from the Monarch database (62).
The phenotypes were encoded using a one-hot encoder which
produced vectors (Dis-Tr) of 5,212 lengths as shown in Table 1.

Positive and Negative Samples
After collecting the known drug- and disease-related features
data (DTIs), we assumed them to be positive samples, and
the unknown interactions achieved through the randomized
shuffling of the positive samples were assumed to be negative
samples (63) followed by upsampling of the negative samples
to create a balanced dataset. The rationale behind this is that
conventional methods of unknown interactions between targeted
drugs as negative examples may result in bias because unknown
interactions between targeted drugs may contain undetected
interactions between the targeted drugs. This was overcome by
finding the duplication between the positive and negative samples
and it was ensured that no pair from positive samples matches
exactly to negative samples.

Model Prediction Techniques
For bioinformatics research, machine learning plays a significant
role in the filtering and comprehension of patterns in a given
dataset (63). Our proposed study presents machine-learning
models trained on various aspects of the drugs and disease
data. The statistics for the datasets used in this study are
provided in Table 1. The overall purpose of the workflow was
to predict DTIs for COVID-19. The process can be divided
into five steps. First, the models were trained using the training
data, and second, the trained models were tested and cross-
validated using the testing and cross-validation data, respectively.
In this study, different machine-learning models were tested and
evaluated. The ML models (algorithms) used in this work are
Random Forest (RF), Tree Ensemble (TE), and Gradient Boosted
Trees (GB).

Random Forest
It contains multiple individual decision trees that function
as divisions. Every individual decision tree is bounded by
predictions guided by the class, layer, and the soundest prediction
results in the model. RF performs efficiently with large types of

data elements from one decision tree, and its accuracy can be
maintained even if the data contain missing values. In addition,
the fair training time complexity expressed as O(n∗log(n)∗d∗k)
and excellent space complexity of the RFmodels given asO(depth
of tree ∗k) makes it a good choice in such applications. In
the given time and space complexity notations, “n” shows the
number of training examples, “d” shows the data dimensions,
and “k” shows the number of models. In our work, we used
the KNIME node “Random Forest Learner” with the parameters
shown in Supplementary Table 1. The model (RF) in this study
functions in two ways. First, it was trained, tested, and validated;
then, the results from the model were used individually and
combined or averaged with other models. Finally, predictions
for the COVID-19 DTI data were obtained after training
and testing.

Tree Ensemble
Similarly, we used the KNIME node “Tree Ensemble Learner”
to develop the TE model. It contains an ensemble of decision
trees. Typically, each tree in ensemble learning is developed
using different sets of rows or columns. Whereas, rows are
called records and columns are called attributes. The key idea
behind ensemble learning is that a group of weak learners
combine to form a strong learner. Moreover, like RF, the time
complexity of the TE algorithm is fair, and it is represented by
O(n∗log(n)∗d) and the space complexity of the TE is excellent.
Similarly, in the given time and space complexity notations, “n”
shows the number of training examples and “d” shows the data
dimensions. In, this work, we used the “Tree Ensemble Learner”
with the parameters listed in Supplementary Table 1. Like RF, TE
learning algorithms also function in two ways. Additionally, the
data prepared for COVID-19 were used to predict the DTIs to
repurpose potential drugs for COVID-19.

Gradient Boosted Trees
Aiming at classification, it learns gradient boosted trees. It uses
regression trees in a shallow form. Along with RF and TE, we
used the “Gradient Boosted Trees Learner” node in KNIME
for model development. The time and space complexity of the
GB trees is also like the other two. Following the other two,
GB was trained, tested, and validated, and the results from the
model were combined and averaged with other models. After
training and testing, predictions for the COVID-19 DTI data
were obtained. The parameters used for the GB trees are also
given in Supplementary Table 1.
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Training and Testing Procedure
The prepared dataset was split into three portions: training,
testing, and validation using the train-test split method. For each
of the classifiers (Section Model Prediction Techniques), 70% of
the data were used as training data that were randomly drawn
and contained both positive and negative samples. The remaining
30% of the data were used for performance testing (15%) and
validation (15%).

While selecting the best models, we used a part of the
training data and tuned the hyperparameters. This procedure
was followed by the testing of the trained models with 15% of
the data split for the testing purpose. The process was repeated
to fine-tune the hyperparameters. Once the testing accuracy was
sufficiently high, the validation data were used to perform the 10-
fold cross-validation of the models. During this initial procedure,
we eliminated GB because it did not perform appropriately,
compared to RF and TE. Therefore, we developed and trained the
models; the list of parameters is given in Supplementary Table 1.
The models were subsequently run on the validation datasets
to observe the predictive performance using the evaluation
parameters (Section Model Evaluation Techniques) that testifies
to the effectiveness of the training performed. At the end of
the training, the best-performing models as per the Mathew
correlation coefficient (MCC) and other important parameters
were selected. Finally, the models were either used in the
combination (averaging the output of the models) or only the RF.

Model Evaluation Techniques
The different parameters used to evaluate the machine-learning
model are discussed below.

Accuracy
This is the ability of a classifier to differentiate between positive
and negative samples correctly. To determine the accuracy, true
positive and true negative should be known across all cases. The
accuracy can be measured using Equation (i).

Accuracy =
TP + TN

TP + TN + FP + FN
(i)

Here, TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.

Precision and Recall
Precision refers to the correct ratio of positive reactions, whereas
recall shows the ratio of positive samples that have been predicted
correctly. Precision can be calculated as per Equation (ii), and
recall can be calculated according to Equation (iii).

Precision =
TP

TP + FP
(ii)

Recall =
TP

TP + FN
(iii)

F1 Score
This measures the balance between precision (p) and recall in the
system. Equation (iv) was used to calculate the precision.

F1 Score =
2∗[ Precision∗Recall ]
[ Precision+ Recall ]

(iv)

Mathew Correlation Coefficient
The value of MCC ranges from −1 to 1. In this range, −1 is a
zero-credible binary-learning method, whereas 1 is a completely
confident binary-learning method. The calculation formula for
MCC is given by Equation (v).

mcc =
TP∗TN − FP∗FN

√
((TP + FN)∗ (TN + FP) ∗ (TP + FP) ∗(TN + FN))

(v)

Prediction Validation Techniques
After the training, testing, and validation, the models were
deployed. The data for COVID-19 host targets were collected
from the literature. The information sources of the collected
host targets for COVID-19 are given in Table 3 along with other
information. The data were pre-processed, and the predictions
were obtained from the deployed ML models. The predictions
(new DTI) were validated in the following two ways.

Literature-Based Validation of the New DTI

Predictions
After the new DTI predictions were obtained for the COVID-
19 targets, we performed a manual literature search. We used
combination models (RF and TE) and individuals, and for both
types of models, literature-based evaluation was performed (64,
65). As a result, we labeled the new predicted DTIs valid when
at least one publication or database evidence showed the use of
the predicted drug in COVID-19. This can be further divided
into two categories: first, the evidence from the publications
that could mention either the computational approach or a
combination of the computational approach along with wet-lab
experiments, and second, the database evidence. The databases,
such as DrugBank, mention drugs along with their indications
and are updated periodically.

Molecular Docking
After initial validation based on the literature, molecular docking
was performed using AutoDock Vina for the unconfirmed DTIs.
Moreover, for docking experiments, the co-crystallized structures
of the host COVID-19 targets were downloaded from the Protein
Data Bank (RCPDB) along with their PDB IDs. PyMol (66, 67)
visualization software was used to visualize the target protein
and extract the binding sites after deleting the water molecules
and removing the backbone ribbon structure of the protein.
Additionally, all the ligand molecules were also removed. The
prepared protein structures were later used as inputs to Auto
Dock Vina (67) for molecular docking, where hydrogen atoms
and Gasteiger charges were added to the structures.

For the ligands, 3D structures were downloaded from
PubChem (68) in structured data format (SDF). The structures
were first converted into Protein Databank (PDB) format in
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FIGURE 3 | Performance statistics of the algorithms used in the study. Additionally, it shows the training and 10-fold cross-validation results of the Random Forest

(RF), Tree Ensemble (TE), and Gradient Boosted (GB) classifiers. (A) Shows the accuracy results of the classifiers and RF seems to perform best followed by the Tree

Ensembl predictor, (B) in case of F1 scores, RF again performs better than the rest whereas the GB performance is worst, (C) whereas MCC values are also best for

the RF but (D) Precision results are best for the TE during training and validation followed by the RF and GB, finally (E,F) for the Sensitivity and specificity, respectively,

RF performs best and GB is constantly worst.

PyMol, followed by structure preparation in AutoDock Vina.
The prepared ligand structures were named PDBQT format.
Before performing docking, binding pockets were created using
the known binding sites in the crystal structure, and docking
was run for 10,000 iterations. The results for each ligand–
target docking were collected separately and analyzed for binding
affinity values. Finally, ligands with higher binding affinity values
were prioritized, and then the re-docking procedure was carried
out in AutoDock Vina with 10,000 iterations. Based on the
docking and re-docking results, comparison potential COVID-19
drugs were suggested for preclinical and clinical validation.

RESULTS AND DISCUSSION

Here, we discuss the results obtained from our proposed
machine-learning-based prediction models (SperoPredictor R©)
for DTI implementation on the generated drug–disease (DTI)
dataset, followed by novel DTI prediction for COVID-
19, their literature-based validation, and molecular docking-
based validation.

SperoPredictor Training, Testing, and
Validation
In our work, we handled the DTI prediction for COVID-19
as a binary classification problem. The developed BioSpero’s

SperoPredictor R© accepts the drug–disease data in a one-hot-
encoded format and performs binary predictions between drugs
and targets as active (valid or interacting) or inactive (invalid or
non-interacting) for a given set of protein targets. The predictions
were further validated using literature-based evidence and
molecular docking, as shown in Figure 1. Moreover, to train the
models, we generated a multiple feature-based dataset for DTIs
from multiple databases. The data collection for 1,430 drugs and
2,265 protein targets (Table 1) was partially performed through
an application programming interface (API) in the KNIME
analytics platform, and subsequently processed and transformed
using KNIME nodes. API automatically extracts the data from
databases using a set of identifiers and the data-mapping process
is shown in Figure 2. To validate the models, we split the dataset
into training (70%), testing (15%), and validation (15%) datasets.
Moreover, 10-fold cross-validation was performed on the tested
models, and the performance statistics are shown in Figure 3.
The results are further summarized in Supplementary Table 2,
illustrating the accuracy, MCC, F1 score, precision, sensitivity,
and specificity, whereas the corresponding results are shown in
Figure 3. The given parameters were calculated during testing
and cross-validation.

The accuracies of the RF model during testing and validation
were 0.9931 and 0.9924, respectively. Similarly, the TE accuracies
remained at 0.9904 and 0.9894, respectively, during the testing
and validation of the model. In addition, the precision-recall
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values are also presented for the proposed models. It is important
to mention that precision is also referred to as positive predictive
value (PPV) and recall (sensitivity) is referred to as the true
positive rate (TPR) (63); specificity, also called true negative
rate (TNR), is also mentioned in Supplementary Table 2. Higher
values for precision, recall, and specificity indicate the greater
predictive performance of the trained models.

Comparison With the Existing Methods
In this section, we provide a comparison between SperoPredictor
and three recent state-of-the-art methods. The first method
proposed efficient machine-learning methods with a case study
on COVID-19 (63). In these studies, SVM, RF, XGBOOST,
and DBN were used. DTIs were predicted using RF and SVM
for COVID-19. They predicted drugs for ACE2 with 100%
confidence. Another method is based on the deep learning
structure model (CNN) to gain the sequences (Amino acid) in
1D representation. According to the results, the use of CNN
for data representation improved the performance, compared
with traditional methods, and the performance among all models
is quite visible. The other method offers a novel approach to
developing negative DTI. In this study, many lasso models
were used to combine multiple sets of features to examine
the prediction power and DITs (69). Lasso DN’s suggested
comparing the performance to Lasso, support vector machine
(SVM), standard logistic regression (SLG), and DNN models.
Additionally, another study proposed DTI prediction using Lasso
with RF. FP2 and PsePSSM fingerprints were used for feature
extraction, followed by the removal of redundant information
(70). Our method performs better than all the other methods,
achieving the best results in testing and cross-validation, as
shown in Table 2. As shown in Figure 3 and Table 2, the highest
accuracy achieved in our work is 0.9931 (99.31%) in the case of
RF and 0.9904 (99.04%) in the case of the TE algorithm which
is approximately 5% higher than the first (63), 6% higher than
the second (69), and 7% higher than the third (70). Similarly,
when the results are compared for other parameters, such as
MCC, our proposed models exhibit better performance at 0.9863
for RF and 0.9809 for TE as compared to other studies done in
(63, 69, 70). Another recent study done in (71) uses SVM and RF
models to repurpose the drugs for COVID-19. The accuracies of
the classifiers as shown in Table 2 are 0.90 and 0.82, respectively,
outperformed by RF and TE models presented in our study.

Application in COVID-19
De novo drug development takes 12–15 years with a $2–
3 billion investment. Drug repurposing has emerged as an
effective alternative solution to respond in case of epidemics
and pandemics. In this regard, repurposing potential antiviral
drugs for COVID-19 is the only solution to counter the sudden
emergence of pandemics. Moreover, the recurrence of COVID-
19 is significantly affected by the response of the human immune
system. To date, there has been extensive research conducted
involving different methods (such as the data-driven method)
on COVID-19. These methods use different resources for data
collection and analysis, such as DrugBank, TTD, STITCH, and
ZINC. Additionally, antiviral drugs targeting COVID-19 can

TABLE 2 | Model performance comparison between related and our work.

Study The

methods

Accuracy MCC

Efficient machine-learning model (63) RF 0.947 0.945

SVM 0.93 0.917

Lasso-DNN method (69) SVM 0.81 -

ANN 0.9277 -

Lasso with random forest (70) RF 0.9809 -

Repurposed drugs for COVID-19 using AI

and ML (71)

RF 0.82 -

SVM 0.90 -

Our proposed work RF 0.9931 0.9863

TE 0.9904 0.9809

The models from the related were listed along with their performance parameters. The

accuracy and MCC of the Random Forest and Tree ensemble classifiers were matched

with the state-of-the-art methods from the literature.

be placed in one of two categories. First, antiviral drugs target
the host targets of the virus to impede the aggregation of the
virus, and second, drugs boost the immune response over a wide
spectrum (72).

Moreover, a study using the deep learning model (73)
conducted pre-training on the interactions, and MT-DTI
identified the EGFR receptor successfully as the drug–target that
has been associated with 30 candidates out of 1,094 from the
DrugBank. This study did not require 3D structural information
to predict the interactions between drugs and targets. However,
there is no evidence to support the positive action of drugs
in COVID-19 (74). The drug Atazanavir exhibited reasonable
efficacy and binding affinity toward COVID-19-target proteins.
In addition, the FDA approved Remdesivir for use in patients
aged 12 years and above (75). Another study performed drug
repurposing for COVID-19 using a literature-based approach
(76). They used a scientific approach called the literature-based
discovery (LBD) and compared it with three other similar
models. They concluded that semantic models are most suitable
for drug repurposing.

A recent study (77) suggests the application of AI to accelerate
the drug repurposing process (78). This further demonstrates the
importance of different AI approaches and discusses the different
drugs that are currently under clinical trials in various phases.
Similarly, another study discusses how AI models are used in
precision medicine and how AI models can accelerate drug
repurposing in COVID-19. Furthermore, AI along with network-
based approaches, can be a powerful and innovative alternative
to drug repurposing. According to these reviews, AI-based tools
can be used to reposition drugs for other human-related diseases,
focusing on COVID-19.

Here, we focused on predictingDTIs using SperoPredictor, the
proposed machine learning and molecular docking repurposing
framework that was trained on drug–disease-enriched data (the
corresponding statistics are shown in Table 1). The data were
collected from multiple sources and mapped to a single table
using the cross-database identifiers and the mapping process is
shown in Figure 2. In our study, to predict the repositioning
drugs for COVID-19, we deployed our trained models with high
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TABLE 3 | Key host-target proteins in COVID-19.

Uniprot Entry name Protein name PDB ID References

1 O15393 TMPS2_HUMAN Transmembrane

protease serine 2

7MEQ (79, 80)

2 P09958 FURIN_HUMAN Furin 5MIM (81)

3 Q9BYF1 ACE2_HUMAN Angiotensin-converting

enzyme 2

7V8V (82)

4 Q2M2I8 AAK1_HUMAN AP2-associated protein

kinase 1

5L4Q (83)

5 O14976 GAK_HUMAN Cyclin-G-associated

kinase

4O38 (83)

6 P07711 CATL1_HUMAN Procathepsin L 1CS8 (84)

The Uniprot identifiers for each target are mentioned along with their entry names and

protein names. PDB IDs are also provided which are later used in molecular docking also.

Additionally, references for each protein target are given.

TABLE 4 | Drugs predicted for COVID-19 with their prediction probability and

reference links.

DrugBank

ID

Drug name Targets Prediction

Confidence

References

1 DB01054 Nitrendipine AAK1 0.909 (85)

2 DB12610 Ebselen FURIN

AAK1

0.916 (86, 87)

3 DB04954 Tecadenoson AAK1 0.912 (88)

4 DB12831 Gabexate ACE2

CTSL

0.912 (89)

5 DB12945 Dihydralazine TMPRSS2

CTSL

ACE2

0.946 (90)

6 DB13014 Hypericin AAK1 0.901 (91)

7 DB13025 Tiapride FURIN

AAK1

0.917 (92)

8 DB13132 Artemisinin CTSL

ACE2

0.964 (93, 94)

9 DB13141 Ambroxol

acefyllinate

TMPRSS2

CTSL

ACE2

0.94 (95, 96)

10 DB13620 Potassium

gluconate

AAK1 0.911 (97, 98)

11 DB13875 Harmaline GAK

FURIN

ACE2

0.943 (99, 100)

12 DB13876 Brofaromine TMPRSS2

CTSL

ACE2

0.948 (101)

The mentioned drugs are the results of the drugs from the Random Forest model and

model combination (Random Forest + Tree Ensembl). The first two drugs are the result of

the combination models. Moreover, the table contains the drugs and their DrugBank IDs

which are validated from the literature for their use in COVID-19. It supports and adds to

the credibility of our developed ML models. Additionally, the COVID-19 targets in the form

of Uniprot IDs along with prediction confidence and literature-based evidence.

accuracy and specificity of 99.3–99.94% (RF) and 99.0–99.98%
(TE), respectively.

To get the predictions for potential repurposed drugs
for COVID-19, a literature survey was conducted, and the
key host-target proteins of COVID-19 were collected. The

target proteins are shown in Table 3. After collecting the
targets, the data, including the observable traits, Ensembl
gene ID, and DSI index, for these targets were prepared, as
shown in Supplementary Table 5. The observable traits were
collected from the Monarch database, whereas gene IDs and
DSI indices were collected from the Ensemble database. The
data were subsequently fed into the workflow for processing
and gene sequence extraction, and the workflow is shown
in Supplementary Figure 3. Following the processing and
transformation of the COVID-19 target data, they were provided
as input to the deployed RF and TE model for the predictions, as
shown in Supplementary Figure 4. The models were used in two
configurations: first, the combination of both models was used,
and as a result, two drugs were predicted; second, the RF model
was used, and a total of 25 drugs were predicted.

Our strategy for validating the prediction was based on
literature-supported evidence andmolecular docking. Two drugs
predicted from combination models (RF and TE) were validated
from the literature, and evidence suggested their repurposed use
in COVID-19. Whereas 12 out of 25 drugs predicted using RF
were found in the literature, suggesting their use in COVID-
19. This means 48% of the predicted drugs were known to
have anti-COVID-19 activity. All predicted drugs, along with
evidence found in the literature, are specified in Table 4 with
prediction confidence and literature evidence. Whereas, all 25
predicted drugs, along with the information, are specified in
Supplementary Table 3.

Molecular Docking and Re-docking for
Binding Affinity Prediction of Compounds
Against SARS-CoV-2 Host Targets
AutoDock Vina was used to perform molecular docking between
the predicted ligands (for SARS-CoV-2) and SARS-CoV-2
host protein targets. All the selected host COVID-19 targets
are listed in Table 3. The binding sites and PDB IDs of the
selected proteins are shown in Supplementary Table 4. Ligand
structures were downloaded in 3D SDF format from PubChem
and converted to the PDB format using PyMol software. The
preparation of 13 ligands (not confirmed in the literature) and
six targets was conducted in the AutoDock Vina environment.
Each ligand molecule was docked against all the six selected
host COVID-19 protein targets. The binding affinity results
are shown in Figure 4. As a result of molecular docking, the
lowest binding affinity score was found as −5.4 (kcal/mol),
and the highest score was −10 (kcal/mol). The top-scoring
drugs for Adaptor Protein 2-Associated Kinase 1 (AAK1) with
binding affinities ranging from −9.0 to −10.0 kcal/mol were
Balaglitzone (1G = −9.9 kcal/mol), Cortivazol (1G = −9.9
kcal/mol), Ganaxolone (1G = −9.1 kcal/mol), and Velusetrag
(1G = −9.1 kcal/mol) (Supplementary Table 6). Similarly,
for Cyclin-G-Associated Kinase (GAK), the highest-scoring
drugs were Balaglitzone (1G = −9.6 kcal/mol), Velusetrag
(1G = −10.0 kcal/mol), 16-alpha Bromoepiandrosterone (1G
= −9.0 kcal/mol), and Rolofylline (1G = −9.1 kcal/mol)
(Supplementary Table 6). For the Angiotensin-Converting
Enzyme 2 (ACE2), Cortivazol (1G = −10.0 kcal/mol)
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FIGURE 4 | Binding affinity or docking scores of the predicted repurposed drugs against six COVID-19 host proteins. The candidate predicted drugs are mentioned

along the y-axis whereas the host COVID-19 protein targets are mentioned along the x-axis. The Docking score bar is showing the maximum to the minimum value,

where the dark red color presents the maximum score of −10 and the white fed color shows −5.4. The highest binding affinities of 9.0 to −10.0 kcal/mol were

achieved for Velusetrag-GAK, Cortivazol-ACE2, Balaglitazone-AAK, and Cortivazol-ACE2 complexes.

performed the best and for Furin, Cortivazol (1G = −9.4
kcal/mol), Balaglitzone (1G = −9.1 kcal/mol), and 16-alpha
Bromoepiandrosterone (1G = −8.7 kcal/mol) demonstrated
the best results (Supplementary Table 6). Additionally, for the
Transmembrane Protease Serine 2 (TMPRSS2) and Procathepsin
L, the docking score of all the drugs was found to be below
−8.0 kcal/mol, as shown in Figure 4. To further validate the
top hit (six) drugs, re-docking was performed and results were
found consistent as shown in Supplementary Table 6. Finally,
the top hit predicted drugs interacting with high-binding affinity
to at least two host targets based on the molecular docking
score were analyzed and suggested as an effective treatment
to be pre-clinically and clinically validated for COVID-19
(Table 5).

Moreover, the molecular interaction of the top four hit
molecules (four drugs) interacting with at least two host COVID-
19 targets based on the molecular docking scores are shown

in Figure 5. This indicates the binding interaction along with
the different host protein targets, their residues, and interaction
scores highlighted in Figure 5. Based on the docking scores,
small-molecule drugs (Table 6), such as Balaglitazone, are
suggested for preclinical validation against Adaptor Protein 2-
Associated Kinase 1 (AAK1) (Figure 5A), Cyclin-G-Associated
Kinase (GAK) (Figure 5C), and Furin (Figure 5H). Similarly,
the other top-ranked candidate drug Cortivazol is recommended
against host COVID-19 targets, such as Adaptor Protein 2-
Associated Kinase 1 (AAK1), Furin, and Angiotensin-Converting
Enzyme 2 (ACE2), followed by Velusetrag, recommended for
Cyclin-G-Associated Kinase (GAK) (Figure 5D), and Adaptor
Protein 2-Associated Kinase 1 (AAK1) (Figure 5I); 16 alpha
Bromoepiandrosterone is suggested for Furin (Figure 5G) as well
as for Cyclin-G-Associated Kinase (GAK).

Furthermore, looking at the severity and state of emergency
COVID-19 has caused, there is a dire need for effective
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TABLE 5 | Finally suggested four drug candidates for COVID-19 with their target information.

Drug bank ID Drug name COVID-19 targets Free energy of

binding

(Kcal/mol)

Free energy

of binding (Kcal/mol)

Re-docking

Prediction

score

1 DB13003 Cortivazol Adaptor protein 2

associated kinase 1 (AAK1)

−9.9 −10.0 0.94

Angiotensin-converting

enzyme 2 (ACE2)

−10 −10.0

Furin −9.4 −9.4

2 DB12702 Velusetrag Adaptor protein 2

associated kinase 1 (AAK1)

−9.1 −8.6 0.944

Cyclin-G-associated kinase

(GAK)

−10 −10

3 DB05107 16-alpha

Bromoepiandrosterone

Cyclin-G-associated kinase

(GAK)

−9.0 −9.0 0.902

Furin −8.7 −8.7

4 DB12781 Balaglitazone Adaptor protein 2

associated kinase 1 (AAK1)

−9.9 −10.1 0.946

Cyclin-G-associated kinase

(GAK)

−9.6 −9.7

Furin −9.1 −9.1

Docking and pre-docking scores in kcal/mol are given which confirm the docking results as valid. Additionally, the prediction results of the drugs from SperoPredictor are also shown here.

treatments. One way to respond to the urgent need is to use
Biotechnology platforms to swiftly repurpose the potential drug
candidates. The emergence and re-emergence of pandemics
emphasize the need of building accurate and robust drug
repurposing platforms like SperoPredictor to make the process
of drug discovery smooth and faster. Moreover, the proposed
work offers many benefits, such as it contains ML models trained
on drug–disease data enriched with multiple features. Drug data
were enriched with four features, however, disease data were
enriched with three features. Rigorously trained MLmodels were
tested, cross-validated, and can be applied to any disease, such as
was deployed for COVID-19 to repurpose the drugs with high
accuracy. Despite the highly accurate and confident prediction
results limitations, such as lack of data (1,430 Drugs) and
preclinical validationmodels, are acknowledged and will be taken
as a potential future direction that will enhance the effectiveness
of the SperoPredictor. Since the trainedmachine-learningmodels
yield high testing and validation accuracies (RF = 99.3 % and
TE = 99.04 %) and the predictions were confirmed from the
literature (12/25–48%), these drugs cannot be directly used in
clinical trials. Currently, this study excludes the preclinical and
clinical validation of the prioritized drugs. Most importantly,
the limitation of the available data for drugs and disease is by
far the major limitation of this study followed by the lack of
negative data samples (which were later upsampled) which could
lead to machine-learning models resulting in a high false-positive
rate. Additionally, the validation of the remaining (not confirmed

from literature) DTI was performed using the molecular docking
approach. A lot of research work has been done and molecular
docking approaches are used for the prioritization of the anti-
COVID-19 drug compounds, still these approaches are not
perfect. To overcome the uncertainty and improve the confidence
in the results, we used the docking in two steps: first docking
of the remaining drugs (13) followed by the prioritization based
on the docking scores as shown in Supplementary Table 6

(6/13 were prioritized). Second, re-docking for the shortlisting
of prioritized drugs was done and the results are shown in
Supplementary Table 6. Finally, the four drugs were prioritized
based on the number of COVID-19 targets and docking results.
Each drug should have more than one target as shown in Table 6.

CONCLUSION

The past and present efforts are focused on accelerating the
drug development process through an alternative approach called
drug repurposing. In this study, we present SperoPredictor,
a machine learning and molecular docking-based repurposing
framework with a use case in DTI prediction for COVID-
19. The RF (99.3%) and TE (99.03%) can classify the DTIs
with high accuracy. SperoPredictor, is a generalized framework
that can be deployed as a rapid response. Additionally, most
previous methods have focused on the features of proteins
and sequences, involving the physical and chemical properties
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FIGURE 5 | Results of the molecular docking of the potential predicted drugs. Further, it shows the molecular interaction, residues, and scores. (A,B) It shows the

interaction of Adaptor Protein 2-Associated Kinase 1 (AAK1) with Balaglitazone, Cortivazol, and Velusetrag, respectively. The docking score of the small molecules is

−9.9 for the first two and −19.1 for Velusetrag which suggests strong binding affinity during the interaction. Additionally, in (C,D) interaction of Cyclin-G-associated

kinase with Balaglitazone and Velusetrag is shown, respectively, with docking scores of −9.6 and −10.0. Whereas (E), shows the molecular interaction between

Angiotensin-converting enzyme 2 (ACE2) and Cortivazol with a docking score of −10 followed by (F–H) Cortivazol, 16 alpha-Bromoepiandrosterone, and

Balaglitazone results with Furin. The docking score for Furin-Cortivazol complex is −9.4, for Furin-16 alpha-Bromoepiandrosterone, the docking score is −8.7, and for

Furin-Balaglitazone, the docking score is −9.1. (I) Cortivazol binding affinity with Adaptor Protein 2-Associated Kinase 1 (AAK1).
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TABLE 6 | Prioritized drugs with their original indication and host COVID-19 targets for which these drugs should be preclinically validated.

Drug name DrugBank ID Original indication Repurposed for Host COVID-19 targets

1 Cortivazol DB13003 Cluster headache-

investigational (NCT00804895)

COVID-19 Adaptor protein 2 associated kinase 1 (AAK1)

Angiotensin-converting enzyme 2 (ACE2)

Furin

2 Velusetrag DB12702 Gastroparesis and

Alzheimer’s-investigational

COVID-19 Adaptor protein 2 associated kinase 1 (AAK1)

Cyclin-G-associated kinase (GAK)

3 16-alpha

Bromoepiandrosterone

DB05107 Non-productive inflammation COVID-19 Cyclin-G-associated kinase (GAK)

Furin

4 Balaglitazone DB12781 Diabetes mellitus, type 2–investigational COVID-19 Adaptor protein 2 associated kinase 1 (AAK1)

Cyclin-G-associated kinase (GAK)

Furin

of drugs. The current proposed data integration method that
accommodates the various aspects of drugs and diseases makes
the predictions more confident. Similarly, a simple data pre-
processing method saves running and processing time and
space complexity. Moreover, using SperoPredictor models, we
predicted 25 drugs (repurposed) for the SARS-CoV-19 host
targets. According to the literature, 12 (48%) of the predicted
drugs (25 drugs) have already been tested for SARS-CoV-19.
Among the remaining 13 drugs based on molecular docking, re-
docking and prediction confidence results of four drugs showing
strong binding affinity are suggested for use in COVID-19. These
drugs are Balaglitazone, Cortivazol, Velusetrag, and 16-alpha
Bromoepiandrosterone. However, the majority of the predictions
are validated by various literature sources and two-tier molecular
docking validation is also performed. Thus, all the recommended
drugs must be validated in various COVID-19 assays and
clinical trials before being used in patients. We acknowledge the
limitations in this study which will be taken as potential future
directions and work along with possible drug combinations.
This study is limited to the computational approach and
excludes the in vitro validation. Additional limitations of this
study include a limited number of drugs (1,430 drugs) and
corresponding drug–target (2,294 targets) data along with the
lack of negative data samples. Whereas, a higher number of drugs
could contain and result in more potential anti-COVID-19 drugs
and balanced data samples could result in better classification.
Finally, the analysis of the novel DTI prediction for COVID-
19 indicated that our approach could infer a list of novel DTIs
that are practically applicable for drug repurposing. Moreover,
the proposed approach can be used to repurpose the drug for
any disease of interest following the same approach and this
method can be applied in other ways to find the alternative uses
for the existing drugs. However, in the future, the efficiency of
this approach can be further enhanced by adding more data to
train the models and using some state-of-the-art deep learning
methods. In conclusion, predictive results of the SperoPredictor
supported by literature evidence (12/25–48%) and good docking
results between repurposed drugs (ligands) and SARS-CoV-19
host targets prove that our proposed models successfully identify

potential repurposed candidates for COVID-19 treatment with
high accuracy and confidence.
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