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Abstract
A 21-year old male presented with ataxia and dysarthria that had appeared over a period of

months. Exome sequencing identified a de novomissense variant in ATP1A3, the gene

encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant

is causative. ATP1A3mutations can cause rapid-onset dystonia-parkinsonism (RDP) with a

similar age and speed of onset, as well as severe diseases of infancy. The patient’s

ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the

expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-

ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in

RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however

he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic reso-

nance imaging (MRI) revealed progressive cerebellar atrophy, explaining the ataxia. The

absence of dystonia in the presence of other RDP symptoms corroborates other evidence

that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the

possibility that a second de novo variant, in ubiquilin 4 (UBQLN4), a ubiquitin pathway com-

ponent, contributed to the cerebellar neurodegenerative phenotype and differentiated the

disease from other manifestations of ATP1A3mutations. We also show that a homozygous

variant inGPRIN1 (G protein-regulated inducer of neurite outgrowth 1) deletes a motif with

multiple copies and is unlikely to be causative.

Introduction
A patient with unexpected adult onset of ataxia and rapid deterioration had exome sequencing
performed by the NIH Undiagnosed Diseases Program [1], which uncovered candidate gene

PLOSONE | DOI:10.1371/journal.pone.0151429 March 18, 2016 1 / 12

OPEN ACCESS

Citation: Sweadner KJ, Toro C, Whitlow CT, Snively
BM, Cook JF, Ozelius LJ, et al. (2016) ATP1A3
Mutation in Adult Rapid-Onset Ataxia. PLoS ONE 11
(3): e0151429. doi:10.1371/journal.pone.0151429

Editor: Mark S. LeDoux, University of Tennessee
Health Science Center, UNITED STATES

Received: December 9, 2015

Accepted: February 28, 2016

Published: March 18, 2016

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CC0 public
domain dedication.

Data Availability Statement: The deposition of
exome data generated in the NIH Undiagnosed
Diseases Program are pending at dbGaP, and this
dataset will be annotated with the gene name
ATP1A3 and this publication. All other relevant data
are within the paper and its Supporting Information
files.

Funding: The Undiagnosed Diseases Program is
funded by the Common Fund of the National
Institutes of Health. This study was supported by
National Institutes of Health (NIH) grant 5R01
NS058949 to AB, and by the National Institutes of
Health (NIH) Undiagnosed Diseases Program

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0151429&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/


mutations. A de novomutation was found in ATP1A3, which encodes the α3 subunit isoform of
the Na,K-ATPase catalytic subunit. Of the three isoforms of the catalytic (α) subunit expressed in
the CNS, α3 is found only in neurons [2]. Na,K-ATPase transports Na+ out of the cell and K+

into the cell. This isoform is so important to brain function that dominantly-inherited mutations
can produce cognitive impairment, developmental delay, psychiatric disorders, seizures, and sev-
eral specific syndromes that differ in severity, age of onset, and triggers [3–7]. Mutations in
ATP1A3 produce rapid-onset dystonia-parkinsonism (RDP) [8]; alternating hemiplegia of child-
hood (AHC) [9], and severe infantile epilepsy [10,11]. Ataxia has appeared with ATP1A3muta-
tions in a syndrome with cerebellar ataxia, areflexia, pes cavus, optic nerve atrophy, and
sensorimotor deafness (CAPOS) [12], and in pediatric cases where febrile episodes resulted in
relapsing ataxia combined variably with symptoms shared with RDP and/or AHC [13–16],
including one patient with an ataxia episode as an adult [15]. In RDP, disease onset often follows
a stressful trigger and usually develops over a period of hours to weeks or months. Neuropathol-
ogy has been described in aged RDP patients [17], however none of the ATP1A3-related diseases
have been considered neurodegenerative. We expressed the patient’s novel de novo ATP1A3
mutation and tested its function to investigate its potential pathogenicity.

A second de novo variant was in UBQLN4, which encodes ubiquilin 4, an adaptor protein
involved in ubiquitin-directed protein quality control. The UBQLN4 homologs UBQLN1 and
UBQLN2 have been implicated in the pathogenesis of neurodegenerative diseases, i.e. Parkin-
son’s, Alzheimer’s, Huntington's, and amyotrophic lateral sclerosis/frontotemporal dementia
[18]. The patient’sUBQLN4 variant was compared to previously-identified causative mutations
in its homologs, and similarity supports the idea that it may have contributed to the atypical
ataxia of this individual as part of a response to misfolded protein. An inherited deletion in
GPRIN1, however, showed genetic and sequence characteristics of a tolerated variant.

Subjects and Methods

Clinical evaluation
The patient had clinical evaluations initially at NIH and later at Wake Forest School of Medi-
cine, where a battery of tests developed for RDP patients ([14,15] and S1 File) was adminis-
tered. At the NIH, the patient and his nuclear family were evaluated under the auspices of the
NIH Undiagnosed Diseases Program (UDP) and all were enrolled under NIH protocol
76-HG-0238, “Diagnosis and Treatment of Patients with Inborn Errors of Metabolism and
Other Genetic Disorders”, a study approved and monitored by the Intramural NHGRI Ethics
Review Board. At Wake Forest, the study was approved by the Wake Forest School of Medicine
Institutional Review Board. All participants were adult and capable of informed consent, and
written informed consent was obtained.

Genetic studies
High-density SNP mapping and exome sequencing were performed on the patient, his parents
(of Swiss origin), and sibling. Variants were filtered by a multi-step pipeline developed by the
Undiagnosed Diseases Program that utilizes haplotype mapping and pedigree structure, and
filters variants by multiple technical criteria and different inheritance models [19]. Variants of
interest were validated by Sanger sequencing.

Mutation structure and function
Na,K-ATPase α1 and α3 are 88% identical. Homologous residues were identified in the crystal
structures of ATP1A1 Na,K-ATPase in the K+-bound and Na+-bound conformations (PDB
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ID’s 2ZXE and 3WGU) [20,21] and analyzed with the Swiss PDV Viewer, SPDBV 4.1. The p.
Gly316Ser mutation was introduced into human ATP1A3 cDNA in an expression vector previ-
ously mutated to be resistant to the inhibitor ouabain [8]. It was expressed transiently in
HEK293 cells, which have endogenous ouabain-sensitive ATP1A1. An established cell survival
assay was employed to determine whether the introduced ATP1A3 Na,K-ATPase is active
enough to functionally replace the endogenous ATP1A1 Na,K-ATPase when it is inhibited [8].
Gel electrophoresis and staining with ATP1A3-specific antibodies were performed as described
[10].

Results

Phenotype
The patient had normal gestation, delivery and early development except for mild amblyopia.
His gross and fine motor developmental milestones were achieved on target, but speech was
delayed until 2 years of age. He exhibited a mild learning disability and dyslexia, but no devel-
opmental regression. At age 19 he had unexplained episodes of vertigo lasting days, which
resolved. Difficulties with balance and gait, slurred speech and drooling emerged at age 21 and
worsened during a summer spent away from home. A tremor of the hands (primarily action
tremor) was subsequently noticed as well. These symptoms progressed over the next 6 months
with profound dysarthria and ataxia that led to the use of a wheelchair. The patient’s mother
reported that the symptoms progressed most rapidly over the last 2 months of this period and
then stabilized.

When evaluated at the NIH at age 24, the patient had findings of a moderate to severe cere-
bellar syndrome with limb and gait ataxia and cerebellar dysarthria. His movements were slow,
speech was soft, and he ambulated with small steps. He had mildly elevated tone worse in the
lower extremities. Longitudinal MRI imaging demonstrated progressive cerebellar degenera-
tion (Fig 1A). No peripheral nervous system involvement was found by exam or electrodiag-
nostic studies; spinal fluid neurotransmitters and muscle biopsies were normal; and there was
no benefit from a trial of levodopa: 25 mg carbidopa/100 mg levodopa 3 times a day for ~ 2
months in 2011. Testing for the following disorders were negative: encephalitis, immune dis-
ease, metabolic or mitochondrial disease, lysosomal storage diseases, and spinocerebellar
ataxias.

The patient has taken a vitamin compound for the past 3 years, which the family reported
benefitted speech, gait, balance, and tremor. The total daily dose is B1, 100 mg; B2, 200 mg; B5,
200 mg; C, 500 mg; E, 400 IU; folinic acid 10 mg; selenium 50 μg; coenzyme Q-10 500 mg;
lipoic acid 500 mg; and biotin 10 mg.

Before identification of the gene, RDP had not been considered in the diagnosis because of
the patient’s profound ataxia. ATP1A3mutation and rapid development of severe symptoms
made an association more likely. Follow-up evaluation of the patient at age 26 at Wake Forest
School of Medicine revealed partial overlap of clinical features with RDP. Video is in the S1
Video. A patient history questionnaire and neurological exam that were developed for RDP
patients was administered. No substance use or chemical exposure was reported that might
have triggered or caused the symptoms. The principal similarities to RDP were dysarthria,
including difficulty with speech, swallowing, and drooling (common manifestations in RDP)
[3], prominent bradykinesia and masked face, a history of childhood learning difficulties, and
relatively rapid onset of symptoms as a young adult. The most notable differences from RDP
were that ataxia predominated instead of dystonia, and there was tremor of the hands. Neuro-
pathology and MRI of RDP patients shows detectable pathology in dentate nucleus and supe-
rior cerebellar peduncle, but not extensive atrophy [17]. In contrast, the patient at age 26
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showed severe cerebellar atrophy, contrasting with an image from an age- and sex-matched
RDP patient (Fig 1B). Motor test scores are listed in Table 1 compared to the mean scores of
RDP patients in our database. A high score for RDP severity was based on findings of definite
affected arm and bulbar muscles and that the patient uses a wheelchair.

Previously, findings of cognitive impairment and psychosis in RDP led to development of a
comprehensive battery of cognitive and psychiatric tests suitable for people with motor limita-
tions [25,26], which were administered to this patient. In the psychiatric battery (CIDI
DSM-IV and ICD-10; HAM-A and–D; Y-BOCS) the patient was within normal limits, while
taking clonazepam 0.5 mg daily for anxiety. A comprehensive battery of neuropsychological
tests showed overall skills at the low end of average, verbal and nonverbal skills evenly
matched, and memory within normal limits (verbal> nonverbal). However there was poor

Fig 1. Sequential and comparative MRI. (A) Axial T1-weighted images from successive MRI scans
acquired from 2008 (year of onset) to 2014 demonstrate the progressive development of cerebellar atrophy.
(B) Coronal (top row) and sagittal (bottom row) T1-weighted images fromMRI demonstrate relatively normal
cerebellar structure and volume of a representative RDP patient (left images) in contrast to marked cerebellar
atrophy of the patient in 2014 (right images).

doi:10.1371/journal.pone.0151429.g001
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discrimination on delayed recognition of abstract designs, and impaired psychomotor process-
ing speed, with performance limited by motor impairment. The data for psychiatric and cogni-
tive testing are Tables A and B in S1 File.

Genetics
Analysis of exome sequences of the patient and his family identified four candidate variants
(Table 2). Two candidates, ATP1A3 and UBQLN4, were heterozygous and de novo, and two
others were inherited. The potential of UBQLN4 and GPRIN1 as candidates is discussed below.
X-linked SRPK3 is a member of a family of kinases that regulate RNA processing. However, in
humans, mice, and pigs it is implicated in myogenesis and highly expressed in muscle but not
brain [27]. Other variants that did not score as possibly causative included four additional
homozygous variants inherited from the parents (RFX5, FAM194, OR1L6, COMMD10); two
additional hemizygous X-linked variants (SSX3, USP11); four compound heterozygous variants
(CYP2C18, KL, TTN, PLEC); and one inherited heterozygous variants (KARS).

Mutations in ATP1A3 produce neurologic disease [28]. The protein has 10 transmembrane
spans, and cycles through conformation changes that alternately bind Na+ or K+ in binding

Table 1. Neurological evaluation.

Test Score RDP average

UPDRS-III, motor subscore 30 31.9

BFMS dystonia rating 3 55.7

IADL activities of daily living 15 22.0

RDP neurologic examination:

dystonia 2 3.97

parkinsonism 3 3.72

RDP severity 4 3.22

The tests administered were:

Unified Parkinson’s Disease Rating Scale (UPDRS)[22]; Burke-Fahn-Marsden Dystonia Rating Scale

(BFMS)[23]; Instrumental Activities of Daily Living (IADL)[24]; RDP Neurologic Examination: dystonia and

parkinsonism scores = 1, no dystonia/parkinsonism, 2, possible, 3, probable, and 4, definite. RDP

severity = 1, limb dystonia only including writer’s cramp, 2, affected arm and bulbar muscles with normal

gait, 3, same as 2 with legs affected but walking unassisted, and 4, same as 2 with legs affected but

walking with walker or in a wheelchair.

doi:10.1371/journal.pone.0151429.t001

Table 2. Candidate variants detected by exome sequencing.

Chr RefSeq variant patient mother father brother ref

ATP1A3 19 NM_152296.3 [c.946G>A, p.Gly316Ser] A/G G/G G/G G/G G/
G

UBQLN4 1 NM_020131.3 [c.1444G>A, p.Glu482Lys] A/G G/G G/G G/G G/
G

GPRIN1 5 NM_052899.2 [c.690_714delinsA, p.Glu233_Lys240insA] +
[c.690_714delinsA, p.Glu233_Lys240insA]

homo-
del

het-del het-del homo-ref

SRPK3 X NM_014370.2 [c.1373C>A, p.Thr458Asn] hemiA A/C hemi C hemi C C/
C

status affected unaffected unaffected unaffected

Ref is the reference sequence, del is deletion. ATP1A3 = α3 catalytic subunit of Na,K-ATPase; UBQLN4 = ubiquilin-4. GPRIN1 = G-protein-regulated

inducer of neurite outgrowth 1; SRPK3 = serine arginine domain selective protein kinase 3. All variants were verified by Sanger sequencing.

doi:10.1371/journal.pone.0151429.t002
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pockets in the middle of the membrane. p.Gly316Ser mutation is novel, and is in the highly
conserved 4th transmembrane span. In a Na,K-ATPase crystal structure in the K+-bound con-
formation, p.Gly316Ser is directly apposed to a residue in the 5th transmembrane span that is
mutated in RDP (p.Phe780Leu) (Fig 2, top) [8]. The glycine is<3.7Å from the side chain of
the phenylalanine, whereas the side chain of serine is polar and would clash with the phenylala-
nine at<2.2Å. The mutations are close to the ion binding pocket. In the Na+-bound conforma-
tion, in contrast, the glycine and phenylalanine are 11 Å apart because of a sliding
rearrangement of the transmembrane spans (Fig 2, bottom). Contact of the mutated glycine
and phenylalanine residues is thus involved in conformation change during ion pump activity,
and is a credible basis for impairment of activity.

ATP1A3 mutation validation and phenotype
Cellular expression studies were performed to test whether the p.Gly316Ser ATP1A3mutation
impairs the activity of the enzyme. The test is a survival assay, in which only active enzyme can
keep the cells viable when their endogenous Na,K-ATPase is inhibited. The mutation was
introduced into a ouabain-resistant cDNA of human ATP1A3 and expressed in a ouabain-sen-
sitive human cell line, HEK 293. Addition of ouabain killed control cells that expressed no
ATP1A3 (Fig 3A). Expression of wild-type, ouabain-resistant ATP1A3 allowed cells to survive
and divide normally (Fig 3B). The cultures double every 24 hours, and evidence of cell crowd-
ing (asterisks) and dying cells (black arrows) was seen. Within a few more days, cultures with
WT ATP1A3 (like untransfected cultures) were too crowded to be viable (not shown). Cells
expressing the p.Gly316Ser mutation survived for 2–3 weeks in stasis but could not divide,
remained uncrowded, and were gradually lost (Fig 3C). At the edges of open spaces on the
plate, cells with WT ATP1A3 were well-flattened (white arrowheads), while those with

Fig 2. Stereo images of Gly316 and Phe780 in the K+ and Na+ conformations. The structures can be
viewed in stereo by focusing the eyes behind the plane of the top or bottom image pair and letting the eyes
drift separately until a central image fuses. On the top, the transmembrane domain of Na,K-ATPase is shown
from a crystal structure in the E2 (K+-bound) conformation. Gold spheres are K+ ions in the ion binding
pocket. The yellow space-fill residue is Gly316. Opposite it, the blue-green residue is Phe780, mutated to
leucine in RDP. On the bottom, red spheres are Na+ ions in the ion binding pocket of a crystal structure in the
E1 (Na+ bound) conformation. The rearrangement of transmembrane helices has separated Gly316 and
Phe780 significantly.

doi:10.1371/journal.pone.0151429.g002
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pGly316Ser were more rounded. Other p.Gly316Ser-transfected wells were trypsinized at 96 h
and replated in 0.5 μM ouabain, and these had no surviving cells after 3 d (not shown). Na,
K-ATPase α3 expression levels assessed by Western blot were close to those of the WT controls

Fig 3. Impairment of Na,K-ATPase function. (A-C) Ouabain is a specific Na,K-ATPase inhibitor. HEK293
cells are shown 5 d after they were transfected and 4 d after 0.5 μM ouabain was added. In A, mock-
transfected HEK cells had all died. In B, transfection was with unmutated ATP1A3. Cells survived and
divided, becoming crowded (asterisks), medium acidified overnight, and some death due to overcrowding
was apparent (arrows). Cells at the edge of open spaces were flattened (white arrowheads). In C, the p.
Gly316Ser mutation was transfected. Many cells survived, but were unable to divide, and the medium did not
acidify. Over the subsequent two weeks there was a slow attrition of cells and no detectable division of the
remaining living p.Gly316Ser cells. (D) Na,K-ATPase α3 western blot of equal amounts of total protein from
cell homogenates demonstrating that the mutant protein is expressed at levels comparable to controls. A
stable WT ATP1A3-transfected cell line was a positive control for optimal ATP1A3 expression. The visible
molecular weight marker (Amersham Rainbow) was 102 kDa, and α3 migrates at ~93 kDa (faster than its
molecular mass). HEK cells express only ATP1A1, which is not detected by the specific antibody (Santa Cruz
Biotechnology sc-16052). The other lanes show transient expression of WT ATP1A3, p.Gly316Ser, and p.
Glu815Lys, an inactive mutation found in AHC [28]. The expression results and the failure to support cell
growth are representative of three experiments.

doi:10.1371/journal.pone.0151429.g003
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(Fig 3D). The data indicate that there is impaired pump activity, with just enough residual
activity to maintain cell stasis, but not viability. Partial inhibition of activity, often with reduced
Na+ affinity, has been reported for RDP mutations [28]. In contrast, mutations producing
severe disease in infants (AHC or severe epilepsy) did not support cell survival at all in the
same assay [10]

Discussion

Mutation in ATP1A3
This is a new phenotype associated with a novel ATP1A3mutation. The overlap with RDP in
rapid onset and dysarthria and bradykinesia symptoms, the loss of Na,K-ATPase activity, and
the conformationally-sensitive proximity of the mutated amino acid to a known RDP mutation
(Fig 2) support a shared etiology. Here ataxia was adult rapid-onset, irreversible, and the pre-
dominant symptom. Ataxia frequently manifests in older children with AHC along with a vari-
ety of other symptoms [7,9,29], and it appears with other symptoms in children that first
manifest symptoms after the 18 month infantile diagnostic cutoff for AHC [13]. A recent case
with ATP1A3mutation presented with a remitting-relapsing course of acute ataxia triggered
by fever [15]. Patients with CAPOS syndrome also exhibit ataxia, and it appears acutely during
an illness with fever, and also has a remitting-relapsing course [12,30]. Importantly, hemi-
spheric and vermian cerebellar atrophy is severe in our patient, but in CAPOS and most other
ATP1A3 cases, cranial MRIs are usually normal [30,31], with rare reports of vermian atrophy
[15,32].

Although the neurodegenerative course here is novel, this is the third clinical case linking
mutation of ATP1A3 to neuron death. The neuropathological study of four brains from aged
RDP siblings with the p.Ile758Ser mutation demonstrated neuron losses in dentate nucleus,
globus pallidus, and other regions implicated in dystonia, with modest losses in cerebellar cor-
tex [17]. In an infant with catastrophic epilepsy and p.Gly358Val ATP1A3mutation that
severely inhibited the ATPase, cerebellar atrophy was among the neuropathological findings
[10]. Whether cell death is causative of symptom onset in ATP1A3 diseases or an occasional
consequence of sustained neurophysiological abnormality is yet to be determined. Here cere-
bellar atrophy paralleled clinical progression.

In ATP1A3mutations that have been investigated for function, in vitro kinetics and oocyte
studies have found only loss of function or reductions in kinetic parameters [28]. A gain of
function such as development of a leak current [33] is possible but has not yet been demon-
strated for ATP1A3, although somatic mutations in ATP1A1 found in aldosterone-secreting
adenomas induced significant leak currents [34]. Three mutations that cause severe AHC have
been found to have loss of function and dominant negative effects when coexpressed with nor-
mal ATP1A3 in oocytes [35]. Based on the critical role of the Na,K-ATPase, our patient’s p.
Gly316Ser ATP1A3mutation may be sufficient to cause his disorder.

A potential role for UBQLN4
UBQLN4 encodes an adaptor protein linking ubiquitinated proteins and the proteasome. It is
not yet associated with human disease, however the de novo variant of ubiquilin-4 might have
a role in the cerebellar atrophy of this patient. Ubiquitination is involved in two pathways for
the degradation of mutated membrane proteins. During biosynthesis in endoplasmic reticu-
lum, the unfolded protein response transports misfolded protein to the cytoplasm where its
ubiquitination leads to the proteasome [36], and if a protein is trafficked properly but unstable
or misfolded, its ubiquitination leads to autophagy and the lysosome [37]. The role of ubiqui-
lin-4 is not well-studied, but it was discovered as a result of its binding to ataxin-1, whose poly-
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glutamine expansion causes spinocerebellar atrophy type1 [38]. Ubiquilin-4 is reported to
recruit ubiquilin-1 to the proteasome [39]. The homolog UBQLN2 (ubiquilin-2) on the X
chromosome has several gender-independent dominant mutations in a collagen-like proline-
X-X repeat that cause ALS-FTD (amyotrophic lateral sclerosis-frontotemporal dementia)
[40]. Just upstream of the proline mutations, in a sequence conserved in ubiquilins, is a homo-
zygous UBQLN2missense variant, p.Thr467Ile, found in a female FTD patient [41]. Interest-
ingly, the ubiquilin-2 sequence 461-GLQTLATEAPGLIPS-475 aligns with ubiquilin-4
475-GLQTLQTEAPGLVPS-489, and therefore the UDP patient’s heterozygous variant and
the FTD-associated homozygous variant are adjacent in the aligned sequence. The functional
consequences of the UBQLN4 p.Glu482Lys variant are not known, but substitutions of nega-
tively charged glutamate with positively charged lysine would be expected to be more disrup-
tive than a threonine to isoleucine change, and the sequence is highly conserved. If the aligned
mutations both impair their respective proteins, it would be credible for the UBQLN4mutation
to reduce the capacity of neurons to dispose of ubiquitinated, misfolded Na,K-ATPase, pro-
vided that the ATP1A3 and UBQLN4 genes are expressed in the same neurons. In the Allen
Brain Atlas [42], the mouse cerebellum shows similar cellular RNA distributions of the two
gene products: molecular layer neurons and scattered granular layer neurons, Purkinje cells,
and neurons of the dentate nucleus, but not cerebellar granule cells. Mouse Purkinje cell
expression of Atp1a3 is particularly high, a condition that could promote accumulation of mis-
folded mutated Na,K-ATPase and lead to cell death if the UBQLN4 variant impaired
degradation.

Redundancy inGPRIN1
In the patient one identical allele of GPRIN1 (G-protein-regulated inducer of neurite out-
growth 1) was inherited from each heterozygous parent. In variant databases, the in-frame
deletion is a known variant (rs371149640) in a cluster of similar short deletions and SNPs with
no associated pathogenesis. The deletion disrupts a motif that is present in multiple copies (Fig
4). The redundancy of the deleted motif is expected to reduce the likelihood that the deletion is
causative of disease. The repeated motifs and other features of the GPRIN1 protein sequence
suggest a scaffolding function consistent with the protein’s role in neurite outgrowth and the
association of receptors with membrane [43–45]. Detail is provided in Figure A in S1 File.

Implications for dystonia circuitry
Adult RDP patients generally manifest fixed dystonia [3], and it would be expected to accom-
pany the other RDP symptoms in this patient. Persistent or recurring dystonia generally devel-
ops in AHC patients as well. There is much evidence that dystonia circuits include the
cerebellum [46]. Purkinje cell ablation and cerebellectomy block dystonic symptoms in animal

Fig 4. Repeatedmotifs in GPRIN1.GPRIN1 (formerly known as GRIN1 until the name conflicted with the official gene name of an NMDA glutamate
receptor) has sequence characteristics of a relatively unstructured protein, and in human it has 23 copies, of differing fidelity, of a six amino acid motif typified
by KEDPGS. The diagram shows the distribution of motifs (red bars) and the location of an abrupt change of the degree of conservation between human and
mouse. The less-conserved segment is likely to be relatively unstructured, and the conserved segment is likely to be compactly folded. One motif copy
(green bar) is homozygously deleted in the patient.

doi:10.1371/journal.pone.0151429.g004
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models; cerebello-thalamo-cortical tracts are altered in diffusion tensor imaging in patients; in
RDP the dentate nucleus showed extensive neuropathology; and Na,K-ATPase inhibition
causes abnormal burst firing of Purkinje neurons [17,47–50]. The near-absence of dystonia in
the presence of severe cerebellar atrophy aligns with the importance of cerebellar output to dys-
tonia pathophysiology.

Supporting Information
S1 File. Supplementary data. Table A. Psychiatric evaluation. Table B. Neuropsychological
evaluation. Figure A. Redundancy of the deleted motif in GPRIN1.
(PDF)

S1 Video. Neurological exam of the patient.
(MP4)
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