
1Scientific Reports |         (2020) 10:7980  | https://doi.org/10.1038/s41598-020-64723-9

www.nature.com/scientificreports

Finite deformation elastography of 
articular cartilage and biomaterials 
based on imaging and topology 
optimization
Luyao Cai   1, Eric A. Nauman1,2,3, Claus B. W. Pedersen4 & Corey P. Neu1,5 ✉

Tissues and engineered biomaterials exhibit exquisite local variation in stiffness that defines their 
function. Conventional elastography quantifies stiffness in soft (e.g. brain, liver) tissue, but robust 
quantification in stiff (e.g. musculoskeletal) tissues is challenging due to dissipation of high frequency 
shear waves. We describe new development of finite deformation elastography that utilizes magnetic 
resonance imaging of low frequency, physiological-level (large magnitude) displacements, coupled 
to an iterative topology optimization routine to investigate stiffness heterogeneity, including spatial 
gradients and inclusions. We reconstruct 2D and 3D stiffness distributions in bilayer agarose hydrogels 
and silicon materials that exhibit heterogeneous displacement/strain responses. We map stiffness 
in porcine and sheep articular cartilage deep within the bony articular joint space in situ for the 
first time. Elevated cartilage stiffness localized to the superficial zone is further related to collagen 
fiber compaction and loss of water content during cyclic loading, as assessed by independent T2 
measurements. We additionally describe technical challenges needed to achieve in vivo elastography 
measurements. Our results introduce new functional imaging biomarkers, which can be assessed 
nondestructively, with clinical potential to diagnose and track progression of disease in early stages, 
including osteoarthritis or tissue degeneration.

The stiffness of a tissue, or its ability to resist deformation when subjected to an applied force, is associated with 
the structure of the extracellular matrix, a dynamic and biological aggregate of macromolecules that help to reg-
ulate the phenotype, expression, and differentiation of embedded cells. Abnormal stiffening or softening of tissue 
is often a functional hallmark of the pathologic, regenerative, or aging state in most organs in the body, including 
stiffening in liver fibrosis1 and developed tumors2,3, or softening in early development and invasive cancer cells4,5. 
The ability to capture the health and structure of a tissue, manifesting as microscale stiffness, represents a poten-
tial functional imaging biomarker with significant clinical utility for diagnosis of disease and repair.

The stiffness of tissues often changes during degeneration or pathology. In the articular cartilage lining the 
bony ends in our joints, softening and volumetric loss is a hallmark of osteoarthritis (OA), a degenerative joint 
disease that affects millions of people in the United States alone6 that often leads to pain, disability, and total joint 
arthroplasty. An unmet medical challenge is the diagnosis of early OA7, when emerging disease-rectifying ther-
apies may be most effective6,8. However, conventional diagnostic methods for OA are largely insensitive to subtle 
morphological changes, and only reliably detect advanced OA9. Bulk softening of articular cartilage, attributed 
to the structural deterioration of the superficial collagen network, altered permeability, and depletion of prote-
oglycan content, has been linked to early degeneration in OA10–13. Local structural changes in the tissue, such as 
cartilage degradation differences through the (zonal) thickness, and among regional (e.g. anterior/posterior or 
load-/non-load-bearing) locations, present an opportunity to noninvasively probe tissue mechanical function 
and stiffness via imaging. Functional monitoring may be conducted spatiotemporally, especially between super-
ficial and middle zones of cartilage, and may further assist in the design and in situ monitoring of engineered 
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constructs post implantation14. Unfortunately, no conventional methods exist that enable noninvasive stiffness 
measurements of cartilage within the intact joint space.

Elastography provides a spatial map of mechanical quantities, including strain fields and elastic properties, 
using noninvasive (e.g. often imaging-based) tools to assess intra-tissue mechanics. Current elastography meth-
ods based on ultrasound, such as ultrasound elastomicroscopy15 or indentation16, and high-frequency ultra-
sound17, have demonstrated the ability to measure mechano-acoustic properties of ex vivo cartilage and revealed 
its relationship with tissue degradation. However, the weak scattering signals obtained from cartilage and the 
significant attenuation of the high-frequency ultrasound remains a challenge for imaging within intact joints7. 
Traditional magnetic resonance elastography (MRE), which is accomplished through synchronized imaging with 
shear wave excitation18, is able to map the mechanical properties of cartilage explants in vitro19,20. However, due to 
the large attenuation of high frequency waves required to probe stiff cartilage (Fig. 1), and limitations of current 
gradient systems to encode high frequency waves, it is still unclear whether shear wave-based MRE can be used 
to access cartilage deep within an intact joint or have sufficient spatial resolution to differentiate the thin cartilage 
(of 1~2 mm mean thickness) from the underlying subchondral bone of the articular joint21. In addition, unknown 
(force, displacement) boundary conditions of contacting tissues in the body further complicate measurements. 
For example, analysis of a separate musculoskeletal tissue, the nucleus pulposus in the intervertebral disc of the 
spine, demonstrated that shear properties were highly dependent on boundary and preload conditions, chosen 
frequency range, and wave signal-to-noise ratio (SNR)22. Similarly, articular cartilage contacts numerous complex 

Figure 1.  Finite deformation elastography workflow based on image acquisition and topology optimization. 
(A) Increased tissue stiffness demands high shear wave frequency in conventional MRE57. Instead, we use cyclic 
loading during MRI to enable large deformation imaging of stiff materials like cartilage. (B) Experimental setup 
of indentation test and undeformed and deformed morphology images; (C) dualMRI measured complex data 
from deformed tissue to extract phase maps that scale directly to displacements. Volume images were used to 
establish 2D and 3D mesh models. (D) Topology optimization was able to reconstruct a complex (e.g. bilayer) 
stiffness configurations by minimizing the difference of displacement between initial model and input (e.g. 
experimental) model.
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(e.g. cartilage-cartilage, cartilage-meniscus, cartilage-bone) boundaries within the native joint space, variable 
stiffness and preload properties, and consequently reliable elastography strategies are unclear.

In order to directly measure displacement- and strain-based elastography in joint cartilage, we exploit a 
technique developed in our laboratory termed dualMRI (displacements under applied loading by MRI), which 
measures tissue deformation under exogenous mechanical loading23,24. Unlike high-frequency shear wave prop-
agation in MRE, dualMRI utilizes physiological magnitudes of mechanical loading to mimic the walking cycle 
(e.g. compression magnitude and frequency) and ensure the mechanical stimuli propagate through the cartilage 
to closely mimic in vivo conditions. By acquisition and analysis of phase contrast data, displacements and strains 
can be computed with precision on the order of 11 μm and 0.1%, respectively, i.e. approaching the cellular scale25. 
dualMRI has been applied to investigate the strain pattern of human articular cartilage in vivo26, explanted human 
and bovine cartilage25, and intact joints and intervertebral discs27. Compared to shear wave based MRE, elastog-
raphy that utilizes finite deformations imaged by dualMRI does not require wave propagation and specialized 
gradient coils, and therefore provides a means to study stiff cartilage.

Our objective was to establish and test a workflow, termed finite deformation elastography, to quantify stiffness 
in tissues and biomaterials, with a particular emphasis on articular cartilage and analog hydrogels and bioma-
terials. We utilize a new combination of dualMRI and topology optimization to provide a general framework 
capable of broad applicability in numerous materials, and in two- and three-dimensional (2D/3D) configurations 
of material complexity and heterogeneity. We describe development, validation, and application of steady-state, 
physiological-magnitude cyclic loading to extract the displacements, followed by inverse modeling to estimate 
relative stiffness maps.

Results
Finite deformation elastography, based on dualMRI and topology optimization, allowed for inverse calculation 
of stiffness in cartilage tissues and biomaterials (Fig. 1). Image acquisition was performed in 2D or 3D to provide 
spatially complex input data. When combined with boundary conditions, topology optimization allowed for 
reconstruction of stiffness maps under ideal (noise-free) conditions (Fig. 2), and with increasing noise levels and 
material complexity (Fig. 3).

Error analysis and sensitivity.  The inverse modeling successfully reconstructed the stiffness distribution 
defined in the forward simulation (Fig. 2A). With the normally distributed error of standard deviation 0.1 mm 
added to the ideal displacement, similar to noise observed in MRI data, the algorithm was still able to reconstruct 
a bilayer pattern. Moreover, the stiffness calculation was robust to increasing noise levels from the MRI acquisi-
tion (Fig. 2B). The defined (2:1) stiffness ratio between two layers decreased as the noise level approached 50%, 
and the stiffness values in each layer exhibited increased scattering. The objective function corresponding to each 
noise level decreased with iterations, indicating that the difference of displacements between experiments and 
simulation was minimized.

The results of the sensitivity analysis, using Cotter’s method, demonstrated that the noise and smoothing 
technique were the most important (concerning) parameters (Fig. 2C). This emphasized the necessity to improve 
the SNR of dualMRI and utilize best smoothing techniques to filter the displacement input. One manner to 
improve the SNR is by increasing the number of averages over which an experiment is repeated. As presented in 
(Fig. 2C) right panel, increasing the number of averages from 4 to 16 reduced the standard deviation of dX and 
dY from 0.2 mm to 0.1 mm. For the smoothing technique, as opposed to Gaussian smoothing, which altered the 
gradient at the edges for thin masks, LOWESS smoothing did not exhibit a systematic bias, allowing for visualiza-
tion of through-thickness displacement patterns which reflect cartilage-cartilage contact28 (Supplemental Fig. 1). 
Interestingly, the use of different constitutive laws, including linear elastic, or Neo-Hookean or Mooney-Rivlin 
solids, indicated minimal influence on the stiffness values (Supplemental Fig. 2).

Stiffness distributions were reliably reconstructed in materials with complex stiffness abnormalities, includ-
ing (stiff) circular inclusions, gradients of elastic properties, or soft, slender inclusion (Fig. 2D). Additionally, 
though the structural mesh in the base model was different from the input displacement map, we observed that 
the method was able to interpolate the meshes and reconstruct the stiffness distribution. Our approach was also 
validated in three-dimensional loading configurations with a defined 2:1 (top:bottom) stiffness ratio (Fig. 2E). 
Finally, Monte Carlo simulations revealed a relative stiffness bias of 0.092 and precision of 0.066. An average bias 
map showed elevated values at the interface of this bi-layer structure and at the bottom where boundary was fixed 
(Supplemental Fig. 3).

Stiffness reconstruction of bilayered gel materials.  Stiffness distributions were reconstructed in 
bilayer hydrogels and silicone materials, in both 2D and 3D (Fig. 3). We consistently documented increased 
stiffness in regions of higher agarose concentrations. We calculated the stiffness ratio between the top and bot-
tom layers and rescaled them as 1:2.0 for the 2%:4% (top:bottom) layered hydrogel, and 3.1:1 for the 4%:2% 
layered hydrogel. We additionally demonstrated reconstruction of cylindrical (volumetric) stiffness based on 3D 
MRI displacement data. However, we observed stiffness artifacts (aberrant values) arising from dualMRI near 
the edges (Supplemental Fig. 4), and proposed two solutions to overcome potential problems (Fig. 3B). In one 
solution, the entire data space is used with the addition of a larger filter radius. In a second solution, the artifact 
regions were removed to create a partial model with boundary conditions defined at new edges. As it has been 
demonstrated with ideal forward simulation displacements (Fig. 2E), the bilayer cylinder was successful restored 
with both methods.

Elastography in articular cartilage within intact tibiofemoral joints.  We were able to further cal-
culate stiffness values within the articular cartilage of intact tibiofemoral joints (Fig. 4). In an intact porcine joint 
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(Fig. 4B), while the maximum displacements in the loading direction (dY) were greatest in the superficial region 
of femoral cartilage, the relative stiffness in the superficial zone was observed to be stiffer than middle or deep 
cartilage zones (nearer to subchondral bone). In sheep joint cartilage, a stiffer superficial layer was also observed 

Figure 2.  Validation of stiffness reconstructions in complex materials and simulations. (A) Stiffness calculation 
results from ideal displacement with normally distributed noise. (B) Stiffness calculation results with standard 
deviation at different level of noise added; (C) Sensitivity values of different factors by Cotter’s method, which 
identified MRI noise level and smoothing, or the quality of fundamental image data as factors most impacting 
stiffness measurements. (D) Stiffness reconstruction results were robust to inclusion of complex stiff/soft 
inclusion representative of tissue defects and heterogeneity. (E) Bilayer stiffness was reconstructed from 
displacement in a 3D cylindrical indentation model.
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in the tibia cartilage, compared to middle or deep zones (Fig. 4C). We observed a decrease in T2 values in the 
superficial region that corresponded to regions of elevated stiffness (Fig. 4D). We additionally note that the values 
for transverse relaxation time T2 are very sensitive to water content in cartilage29.

Discussion
The purpose of this study was to develop finite deformation elastography, a hybrid of magnetic resonance imaging 
and topology optimization, to investigate stiffness heterogeneity, including spatial gradients and inclusions, in 
soft tissues and biomaterials. To solve for stiffness distribution from displacement fields, inverse methods based 
on a complete understanding of the equivalent forward simulation was required. The forward elasticity problem 
was usually described by numerical techniques such as the finite difference method30–32, and the finite element 
method33–35, with the latter preferred due to its ability to tackle complex geometries, inhomogeneities, and bound-
ary conditions. To reconstruct stiffness distributions from the forward models, indirect iterative methods are 
preferably used, compared to direct inversion of matrices, by updating the stiffness distribution to minimize the 
fit errors between the simulated model and the experimental displacement/strain results35,36. In this study, we 
utilized an iterative finite element method to reconstruct stiffness matrices using topology optimization36. With 
this framework, displacement or stress boundary conditions can be specified37, and the stiffness distribution is 
iteratively updated to match the measured displacements as design objectives.

Validation studies revealed that our approach was able to reconstruct heterogeneous stiffness distributions, 
including a bilayer configuration of hydrogels and silicone materials, and in materials with stiff circular and soft 
slender inclusions. These patterns specifically mimicked different stiffness patterns that could exist in healthy and 
diseased tissues like articular cartilage (e.g. vertical fissures as soft inclusions when the depth or strain response 
under mechanical loading can be captured by MRI13), and are more broadly representative of a wide range of 
tissues and materials exhibiting gradient and nonuniform stiffness distributions. Moreover, our validation studies 
revealed that inverse modeling was robust to increasing noise levels. Taken together, the hybrid combination of 
imaging and topology optimization represents an effective means to reconstruct unknown interior stiffness dis-
tributions of complex materials based on noninvasive imaging.

Sensitivity analysis (via Cotter’s method) indicated that the noise level and the smoothing technique were the 
most significant factors impacting the technique error. To improve the SNR of the dualMRI system, the number 
of averages can be used at the cost of longer total imaging time. SNR could additionally be improved by min-
imizing the loading time to rapidly capture the encoded prior to signal loss, which follows an exponential T1 
(~sec) decay. To improve the smoothing technique, we filtered the noise in displacement data using LOWESS, 
which demonstrated better localized fitting of noise compared to Gaussian fitting27, especially at material edges. 
Monte Carlo simulation of smoothing techniques showed a smaller bias and precision using LOWESS smoothing. 

Figure 3.  Stiffness reconstruction in multilayered biomaterials. (A) Stiffness reconstruction results from bilayer 
agarose hydrogels with different configurations, including soft over stiff (2% over 4%) gels, and stiff over soft 
(4% over 2%) gels. (B) Stiffness reconstruction results from bilayer PDMS gel in three dimensions.
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Moreover, the calculated bias of 0.092 and precision of 0.066 were approximately 18% and 13.2%, respectively of 
the average relative stiffness (of 0.5; Fig. 2B). Considering the noise level of 0.1 mm (20% with average 0.5 mm 
deformation), the stiffness reconstruction method did not deteriorate the data quality. Based on this analysis, it 

Figure 4.  Stiffening of the articular cartilage surface zone within intact tibiofemoral joints under cyclic loading. 
(A) Experimental setup of knee joint loading within an MRI system. (B) A juvenile porcine knee joint was 
loaded to noninvasively measure displacements and calculate relative stiffnesses. (C) An adult sheep knee was 
loaded to measure displacement and stiffness of cartilage, revealing increased stiffness at the articular surface. 
(D) T2 value in cartilage before and after loading supported the increased stiffness measurement, and indicated 
water depletion and cartilage densification that likely occurred during cyclic loading before (preconditioning) 
and during image acquisition.
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is advantageous to set image acquisition parameters that maximize image quality (e.g. with maximum SNR) to 
ensure that minimal error propagates through topology optimization to influence stiffness measures.

Finite deformation elastography successfully reconstructed the bilayer pattern of stiffness in hydrogels and 
biomaterials. In 2D studies, the stiffness ratio between top and bottom layer were calculated to be 1:2.0 for the 
first case with 2% layer on top and 1:3.1 for the latter case with 4% on top. As a comparison, an unconfined com-
pression test measured the instantaneous modulus at largest stress of 2% and 4% agarose gels to be 74.6 kPa and 
173.4 kPa respectively (1:2.3 ratio), and equilibrium modulus after 30 sec relaxation to be 23 kPa and 112.7 kPa 
respectively (1:4.9 ratio)27. In both stiffness bi-layer configurations, the inverse-calculated stiffness ratio was close 
to the bulk testing results. Specifically, the 1:2.0 ratio derived from soft top – stiff bottom configuration was closer 
to the instantaneous modulus ratio of 1:2.3 than the stiff top – soft bottom configuration. This could be due to the 
error of the plane stress assumption, since this was a 3D cylindrical gel fixed at the bottom but unconfined at the 
side. In that way, the out of plane constraints behaves differently in bottom and top and might cause the ratio of 
stiffness to be different in these two reversed configurations. Besides, the cylindrical indenter should align well 
with the gel center in ideal scenario, but any error could generate a bias for through-thickness differences. The 3D 
indentation case showed that with the acquisition of multiple slices of displacement data, it was possible to recon-
struct the stiffness distribution without the 2D assumption. Consequently, our workflow was not constrained by 
complex geometries. Potentially, since topology optimization can also be utilized in contact problems, it is possi-
ble to calculate relative stiffness in multiple objects in contact, like the femur and tibia cartilage.

Topology optimization is similar to several iterative techniques that reconstruct the stiffness distribution35,38 
utilizing (1) a forward elasticity problem and finite element analysis, and (2) iterative updates to the stiffness dis-
tribution by minimizing the measured displacement distribution. Compared to these techniques, our topology 
optimization-based method is more computationally efficient and can accommodate different constitutive mod-
els including linear elasticity and hyperelasticity, as well as material anisotropies (Supplemental Fig. 2). It is also 
possible to model complex geometries and boundary conditions, and enable conservative or aggressive update 
strategies36. For concerns of outliers in the displacement input data, local regression smoothing is used prior to 
inverse modeling. Additionally, predetermined weight factors can be added to the design objective based on the 
input displacement smoothness. Currently, the design objective sensitivity is filtered to help to regularize the 
problem and to make the algorithm mesh independent and converge faster39. If direct filtering on stiffness value 
is desired, the weight factor on each node can be adjusted at each iteration, based on the smoothness of stiffness 
map.

Because our current framework utilized displacement boundary conditions, we focused on the calculation of 
relative stiffness. Compared to stress boundary conditions, displacement boundary conditions are independent of 
an initial guess, and produce superior images in terms of both spatial resolution and stiffness measurement sen-
sitivity37. Importantly, depending on the experimental measurements available, our inverse simulation method 
can be used to solve stress or displacement boundary conditions, or a hybrid of both. In future embodiments, 
inclusion of stress boundary conditions can enable calculation of absolute stiffness through the material interior. 
Additionally, it is important to note that finite element analysis software was used here largely because of its 
strong nonlinear capability and wide applications in biomechanics field36. However, topology optimization is not 
restricted to any specific software.

In our porcine and sheep joint loading experiments, stiffness distributions were reconstructed for cartilage 
within the articular joint space in situ. Due to the long scanning time (~30 min for each slice for these data), only 
a single slice was acquired using dualMRI. Additionally, repeated loading of the cartilage surface was advanta-
geous in our case as it led to collagen fiber compaction and reorientation representing the material response to 
physiologically-relevant loading, and a stiffer superficial layer40. Cyclic loading before imaging (i.e., precondition-
ing), and during imaging, likely led to lateral tissue deformation and fluid flow, particularly in the superficial zone, 
further exasperating collagen densification after cyclic loading41. The loading and flow resulted in compaction as a 
temporary change, similar to what may be expected during a walking cycle, which would be restored by Donnan 
equilibrium after cyclic loading is ended. Our observations of a stiffer superficial layer, and assumptions of fiber 
compaction and water loss, were supported by decreased T2 magnitudes in the superficial layer after loading42–44. 
Additionally, while cyclic loading was acquired over a long total experimental time, the loading rate within any 
cycle was considered rapid (0.3 sec to reach one-times body weight), and a nearly incompressible behavior was 
assumed. Importantly, the compressibility assumption in our workflow relates to potential errors in estimates for 
mechanical parameters (Supplemental Fig. 2), which indicates that for a broad range of (e.g. quasi-static) loading 
conditions, the assumption of incompressibility requires further study.

Our finite deformation elastography workflow, which was based on dualMRI and topology optimization, 
enabled the measurement of stiffness within musculoskeletal tissues and biomaterials. Compared to traditional 
MRE, which excites and images shear wave maps to calculate shear stiffness, our elasticity reconstruction tech-
nique does not depend on shear waves, and thus is capable of measurements in stiff structures or tissues with 
complex interfaces, including bony articulating joints of the body. Sensitivity analysis indicated that MRI acqui-
sition, and not topology optimization, parameters dominate the error in the workflow, and suggest that improve-
ments in MRI SNR should remain as a primary goal when setting experimental parameters to have the greatest 
potential to improve stiffness measures. Moreover, Monte Carlo simulations were utilized to evaluate the bias and 
precision of the stiffness reconstruction, which was measured to be no larger than the input displacement meas-
urements. We also extended this technique to three dimensions, showing that our approach was not constrained 
by plane stress/strain assumptions or complex geometries. We additionally tested the elastography approach on 
sheep and porcine joint articular cartilage in situ, reconstructed stiffness maps in cartilage at the submillimeter 
scale, and found that the superficial layer only was densified after cyclic loading and during image acquisition. 
We envision that our technique can be potentially be used to analyze cartilage softening observed in osteoarthri-
tis or damage, similar to data presented on stiffness inclusions, or provide a unique imaging biomarker for tissue 
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repair. In order to reach the goal of in vivo, first-in-human elastography measurements, improvements to reduce 
the imaging acquisition time (e.g. through rapid MR acquisition) and additional in situ studies on the effects of 
preconditioning of healthy and degraded tissue are required. Additionally, finite deformation elastography can 
be extended to other load-bearing and stiff biomaterials of the musculoskeletal system, including intervertebral 
disc and ligament.

Methods
Finite deformation elastography is based on dualMRI to measure displacements during cyclic loading and topol-
ogy optimization to calculate internal patterns of stiffness. To develop and validate our workflow, we evaluated 
how displacement maps determined by experiment or simulation, with predefined stiffness distributions, were 
used with topology optimization to reconstruct stiffness values. We further evaluated how the sensitivity of a 
broad space of independent variables (e.g. levels of random noise) influenced method robustness, and to under-
stand how error propagates through the calculation workflow. Using finite deformation elastography, we meas-
ured stiffness in unique hydrogel and material model systems in two and three dimensions, and for the first time 
in cartilage in situ, deep within the bony contacting interface of porcine and sheep joints.

Finite deformation elastography workflow.  Imaging high-magnitude displacements at low fre-
quency.  Using dualMRI, (Fig. 1B), samples were cyclically loaded at high (e.g. ~0.1–10 mm displacement; up to 
1–2 times body weight) magnitude and low (e.g. ~0.1–1.0 Hz) frequency. To acquire displacements and visualize 
internal sample motion, we used an MRI pulse sequence that incorporated displacement encoding with a stimu-
lated echo (DENSE) imaging39. The DENSE sequence sensitized the phase data Δϕ to changes in displacement, 
Δx, according to:

ϕ γΔ = − ′ Δt G G x,( ) (1)H enc de de

where γH is the gyromagnetic ratio, tenc is the duration of the encoding gradient, Gde is the gradient magnitude for 
xyz displacement encoding, and ′G de is the gradient magnitude for a reference image used to eliminate other 
phase contributions common to both images25,45. The whole displacement measurement included phase mapping, 
phase unwrapping to calculate raw displacement, and displacement smoothing as described previously (Fig. 1C, 
Supplemental Fig. 1)27.

Reconstruction of stiffness distributions.  To inversely calculate the stiffness map from displacements, we uti-
lized topology optimization (Fig. 1D). Traditionally, topology optimization is a non-parametric optimization 
method to design stiff, durable and light-weight structures25. Here, displacement boundary conditions were 
used, which can be readily adapted to alternatively include stress boundary conditions37. Compared to the pre-
vious iterative FE methods which use Newton-Raphson or Gauss-Newton methods39, topology optimization 
uses the method of moving asymptotes, which convert each single iteration into a subproblem with separable 
and convex approximations46–48. This method generally reduced the computational effort and made it possible 
to deal with models that included a large number of design variables, defined here as element stiffness, and 
additionally with constraints such as stiffness limits and smoothness35. Topology optimization was also not 
constrained by the constitutive laws of different materials, and can be applied with linear elastic, hyperelastic, 
and anisotropic materials37, and also in problems where with nonlinearities in geometry, material behavior, 
or contact.

In our elastography workflow, instead of maximizing the structure stiffness, as is used in traditional applica-
tions, we minimized the maximum value of the absolute difference between the measured material deformation 
and the deformation of a base model at nodes indicated as Pi

37:

= Δ − Δ= ( )F x P x Pmin: max ( ) ( ) (2)i
N

i i1 exp sim

where F is the design objective and Δxexp, Δxsim are experimental, simulated displacement at internal node Pi. If 
outliers exist in the displacements measured, smaller weights are applied beforehand on those nodes. The finite 
deformation elastography workflow was solved using finite element method software (Abaqus, Version 2017)37 
and optimization software (Tosca, Version 2017; Dassault Systèmes)39, to iteratively update the stiffness of each 
element representing the material as described (Supplemental Materials). Briefly, the stiffness of each element was 
associated with a relative density parameter ρk, and the material properties of a given material E0, through the 
Solid Isotropic Material with Penalization (SIMP) method49:

ρ
ρ ρ

=
< < <








E E( )
0 1 (3)

k k
p

k

0

min

Instead of penalizing the density results to reach a 0 (void) to 1 (solid) range, we set the =p 1 to make the 
stiffness of the constitutive material modeling linearly related with the density in element k. In this study, if not 
specified, a linear elastic model with Poisson’s ratio 0.49 was used. Because we utilized a displacement boundary 
simulation, a random Young’s modulus 500 was chosen. For element types, CPS8 was used for 2D meshes, and 
tetrahedral element C3D4 and brick element C3D8 were used for 3D meshes. A mesh density of 0.6 mm was 
usually chosen to demonstrate the stiffness heterogeneity and at the same time to keep the computational cost 
low.

Following determination of displacements, 2D and 3D models were established using the location of each 
pixel in the model or sample (MATLAB), and Delaunay triangulations were created to connect each pixel. The 
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boundaries of the model were automatically identified with positive area or volume triangulation, and with a 
dimension not shorter than 0.5 mm. In our finite element models, displacements in all coordinates were prede-
fined at all pixels at boundaries.

Error analysis and sensitivity.  Error analysis and sensitivity studies were performed to validate finite 
deformation elastography. We first validated our workflow in two dimensions, with ideal displacements that 
were derived from forward modeling in finite element software. A rectangular model of side length 6 by 6 mm 
was created (Fig. 2A) with a bilayer stiffness structure defined by a top and bottom stiffness of E = 1000 Pa and 
500 Pa, respectively. The element size matched the dualMRI spatial resolution (i.e., 150 μm). Considering the 
rapid (0.3 sec) loading ramp and the large water content of the real cartilage, fluid permeation is very minimal by 
Darcy’s law25 and nearly incompressible behavior (Poisson’s ratio = 0.49) was assumed27. With the bottom edge 
of the model fully constrained, the top edge was indented to 15% of the thickness, and displacements were calcu-
lated, with linear elasticity and plane stress assumptions. To analyze the robustness of the algorithm against noise, 
different levels of noise were applied and the average stiffness of two layers were calculated (Fig. 2B).

We ranked the model input parameters based on their influence on the model output using a sensitivity analy-
sis (Cotter’s method)49. A two-level, factorial design was used with all parameters set either at an extreme high or 
low level. We considered the following parameters: noise level in the raw input data, smoothing technique applied, 
and FE modeling parameters such as linear/hyperelastic (i.e., linear elastic, Neo-Hookean, or Mooney-Rivlin) 
constitutive laws, Poisson’s ratio, 2D assumption, and optimization values. In this analysis, Gaussian smoothing 
and LOcally WEighted Scatterplot Smoothing (LOWESS) were compared and the analysis provided a ranking for 
each factor by its impact to the final output.

To analyze the stiffness error (defined by precision and bias) of the whole elastography procedure, we applied 
Monte Carlo simulations. The pixel number, model dimensions, and data noise (standard deviation = 0.1 mm), 
were determined from displacement-encoded MRI data27. Within each iteration of the Monte Carlo simulation, 
experimental level Gaussian random noise (standard deviation = 0.1 mm) was added directly to the ideal dis-
placement not only the internal pixels but also pixels at boundaries. By repeating the random noise generation 
and inverse simulation for 100 times50, different stiffness maps were reconstructed. Precision was defined as the 
pooled standard deviation of respective stiffness from all elements between the reconstructed map and the distri-
bution from the ideal model. Bias was calculated by determining the root mean square error of the stiffness value.

We further validated our ability to reconstruct stiffness maps in model systems representative of variation 
expected in biological samples. Using a 2D model, similar to (Fig. 2A) with a homogeneous stiffness (500 Pa), we 
added stiff (1000 and 1500 Pa) inclusions representative of tissue heterogeneity during disease or degeneration 
(Fig. 2D). In a separate model, we additionally added a soft (200 Pa) inclusion, similar to a tissue fissure, on a 
background of a gradient increasing stiffness (to 1000 Pa) (Fig. 2D). Finally, we simulated a cylindrical model to 
reconstruct a 3D stiffness map (Fig. 2E).

Stiffness reconstruction of bilayered gel materials.  To validate finite deformation elastography in 
complex engineered materials, we prepared multiple bilayer models with defined stiffness values in top and bot-
tom layers. In a hydrogel model system51, 2% (softer) and 4% (stiffer) w/v agarose was mixed in PBS and cured to 
create uniform and layered constructs with a 6 mm total height, and 10 mm diameter cylindrical implants. There 
were two gels made to test the stiffness reconstruction accuracy: one gel had 2% agarose (soft) on the top with 
2/3 thickness and the second gel was created with 4% agarose (stiff) on the top with 1/3 thickness. In a separate 
silicone model system, polydimethylsiloxane (PDMS) (Dow Corning, Midland, MI)38 was used to create a bilayer 
gel with a 1:2 mix ratio (Sylgard 527) in the top (soft) layer, and a 1:50 mix ratio (Sylgard 184) in the bottom (stiff) 
layer. These materials allowed us to establish baseline deformation and noise levels commonly observed in small 
materials or explanted tissues52 (Fig. 3A).

Finite displacements were determined using dualMRI10 under cyclic compressive loading with a DENSE-FISP 
imaging sequence at 0.33 Hz frequency, and with a spatial resolution of 0.10 × 0.10 mm2 (agarose) or 0.15 × 0.15 
mm2 (silicone). For hydrogel samples, the target load was set to be 0.67 N and the gel reached indentation of 6% 
(configuration: 2% agarose on the top) and 4.6% (configuration: 4% agarose on the top) of the sample depth. As 
a two-dimensional case, plane stress was assumed for agarose gel and displacement data from the middle section 
was extracted. For silicone samples, to address the potential bias of the 2D assumption mentioned in the sensi-
tivity analysis, inverse modeling was tested in three dimensions. To test the algorithm on experimental data, we 
applied 0.33 Hz frequency load to reach 15% indentation and collected the xyz displacement data from 13 con-
secutive slices (Supplemental Fig. 4). As a 3D linear elastic model, tetrahedral element C3D4 and brick element 
C3D8 were used. Since the hydrogel and PDMS materials were considered to be incompressible53,54, a Poisson’s 
ratio 0.49 was used. Prior to topology optimization, displacements were smoothed using LOWESS in MATLAB 
(Supplemental Fig. 1)27. For smoothing by LOWESS, least absolute residuals were utilized to make the process 
resistant to outliers due to the noise. The window size for calculating local weight was set to be 150 pixels for con-
sistency among different regions of interest. Finally, we compared different material models, using displacement 
data from a homogeneous PDMS gel (Supplemental Fig. 2) and linear elastic, Neo-Hookean, or Mooney-Rivlin 
constitutive models.

Elastography in articular cartilage within intact tibiofemoral joints.  To demonstrate finite defor-
mation elastography in a challenging biological system, we measured stiffness in the articular cartilage of intact 
tibiofemoral joints. dualMRI data describing internal displacements of cartilage juvenile porcine joints38 and 
sheep joints55 were utilized from previous studies. Both data sets were acquired after preconditioning and during 
cyclic loading at a spatial resolution of 0.25 × 0.25 mm2, with displacements resulting from 0.2 Hz frequency 
loading at one-times body weight (78 N for a 2-month old porcine and 445 N for an adult sheep). We note that 
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the loading frequency was tuned for ramp loading (i.e., ramp to load, ramp to unload), which resulted in a 
steady-state response56. As explained previously, the material was modeled as nearly incompressible material with 
Poisson’s ratio 0.49, considering the time duration needed to reach (i.e., ramp to) one-times body weight in each 
loading cycle was only 0.3 sec. Additionally, because we observed a counterintuitive stiffening of the cartilage in 
the superficial zone (described subsequently), we also acquired an independent measurement of matrix structure 
using MRI T2 relaxometry mapping. T2 was determined at each volumetric region using monoexponential fitting 
of data from a multi-echo sequence with parameters: TE/TR = 10.04/4000 ms, number of averages = 1, rare factor 
= 2, echo spacing = 20.08 ms.

Statistics.  One-way Analysis of Variance (ANOVA), followed by post hoc Tukey’s test was used to determine 
statistically significant differences between the groups. The coefficient of regression (R2) was calculated using 
linear regression.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 27 October 2019; Accepted: 17 April 2020;
Published: xx xx xxxx

References
	 1.	 Wells, R. G. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. Journal of clinical gastroenterology 39, 

S158–S161 (2005).
	 2.	 Wellman, P., Howe, R. D., Dalton, E. & Kern, K. A. Breast tissue stiffness in compression is correlated to histological diagnosis. 

Harvard BioRobotics Laboratory Technical Report, 1–15 (1999).
	 3.	 Liu, T., Babaniyi, O. A., Hall, T. J., Barbone, P. E. & Oberai, A. A. Noninvasive in-vivo quantification of mechanical heterogeneity of 

invasive breast carcinomas. PLoS One 10, e0130258 (2015).
	 4.	 Friedl, P. & Alexander, S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011).
	 5.	 Mierke, C. T. Endothelial cell’s biomechanical properties are regulated by invasive cancer cells. Molecular BioSystems 8, 1639–1649 

(2012).
	 6.	 Yelin, E. et al. Medical care expenditures and earnings losses among persons with arthritis and other rheumatic conditions in 2003, 

and comparisons with 1997. Arthritis & Rheumatology 56, 1397–1407 (2007).
	 7.	 Neu, C. Functional imaging in OA: role of imaging in the evaluation of tissue biomechanics. Osteoarthr. Cartilage 22, 1349–1359 

(2014).
	 8.	 Gomoll, A. et al. Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg. Sport Tr. A. 20, 450–466 

(2012).
	 9.	 Kon, E. et al. Non-surgical management of early knee osteoarthritis. Knee Surg. Sport Tr. A. 20, 436–449 (2012).
	10.	 Griebel, A. J., Trippel, S. B., Emery, N. C. & Neu, C. P. Noninvasive assessment of osteoarthritis severity in human explants by 

multicontrast MRI. Magn. Reson. Med. 71, 807–814 (2014).
	11.	 Kempson, G., Muir, H., Pollard, C. & Tuke, M. The tensile properties of the cartilage of human femoral condyles related to the 

content of collagen and glycosaminoglycans. Biochimica et Biophysica Acta (BBA)-General Subjects 297, 456–472 (1973).
	12.	 Hayes, W. & Mockros, L. Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 31, 562–568 (1971).
	13.	 Waldstein, W. et al. OARSI osteoarthritis cartilage histopathology assessment system: a biomechanical evaluation in the human 

knee. J. Orth. Res. 34, 135–140 (2016).
	14.	 Setton, L. A., Elliott, D. M. & Mow, V. C. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an 

experimental model of joint degeneration. Osteoarthr. Cartilage 7, 2–14 (1999).
	15.	 Kim, W., Ferguson, V. L., Borden, M. & Neu, C. P. Application of elastography for the noninvasive assessment of biomechanics in 

engineered biomaterials and tissues. Ann. Biomed. Eng. 44, 705–724 (2016).
	16.	 Zheng, Y.-P. et al. High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility. Phys. 

Med. Biol. 49, 3925 (2004).
	17.	 Laasanen, M. S. et al. Ultrasound indentation of bovine knee articular cartilage in situ. J. Biomech. 36, 1259–1267 (2003).
	18.	 Nieminen, H. J. et al. Real-time ultrasound analysis of articular cartilage degradation in vitro. Ultrasound Med. Biol. 28, 519–525 

(2002).
	19.	 Muthupillai, R. et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 

1854–1857 (1995).
	20.	 Lopez, O., Amrami, K. K., Manduca, A., Rossman, P. J. & Ehman, R. L. Developments in dynamic MR elastography for in vitro 

biomechanical assessment of hyaline cartilage under high‐frequency cyclical shear. J. Magn. Reson. Imaging 25, 310–320 (2007).
	21.	 Faber, S. et al. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative 

three-dimensional MR imaging. Skeletal Radiol. 30, 144–150 (2001).
	22.	 Lopez, O., Amrami, K. K., Manduca, A. & Ehman, R. L. Characterization of the dynamic shear properties of hyaline cartilage using 

high-frequency dynamic MR elastography. Magn. Reson. Med. 59, 356–364 (2008).
	23.	 Streitberger, K. J. et al. In vivo multifrequency magnetic resonance elastography of the human intervertebral disk. Magn. Reson. Med. 

74, 1380–1387 (2015).
	24.	 Chan, D. D. & Neu, C. P. Transient and microscale deformations and strains measured under exogenous loading by noninvasive 

magnetic resonance. PloS one 7, e33463 (2012).
	25.	 Neu, C. P. & Walton, J. H. Displacement encoding for the measurement of cartilage deformation. Magn. Reson. Med. 59, 149–155 

(2008).
	26.	 Chan, D. D. et al. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the 

human knee. Sci. Rep. 6, 19220, https://doi.org/10.1038/srep19220 (2016).
	27.	 Chan, D. D. et al. Functional MRI can detect changes in intratissue strains in a full thickness and critical sized ovine cartilage defect 

model. J. Biomech. 66, 18–25 (2018).
	28.	 Butz, K. D. Numerical techniques for the noninvasive assessment of material properties and stresses in soft biomaterials. (2013).
	29.	 Lüssea, S. et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn. 

Reson. Imaging 18, 423–430 (2000).
	30.	 Chan, D. D. & Neu, C. P. Intervertebral disc internal deformation measured by displacements under applied loading with MRI at 3T. 

Magn. Reson. Med. 71, 1231–1237 (2013).

https://doi.org/10.1038/s41598-020-64723-9
https://doi.org/10.1038/srep19220


1 1Scientific Reports |         (2020) 10:7980  | https://doi.org/10.1038/s41598-020-64723-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

	31.	 Skovoroda, A., Emelianov, S. & o’Donnell, M. Tissue elasticity reconstruction based on ultrasonic displacement and strain images. 
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 42, 747–765 (1995).

	32.	 Raghavan, K. & Yagle, A. E. Forward and inverse problems in elasticity imaging of soft tissues. Nuclear Science, IEEE Transactions on 
41, 1639–1648 (1994).

	33.	 Zhu, Y., Hall, T. J. & Jiang, J. A finite-element approach for Young’s modulus reconstruction. Medical Imaging, IEEE Transactions on 
22, 890–901 (2003).

	34.	 Romano, A. J., Shirron, J. J. & Bucaro, J. A. On the noninvasive determination of material parameters from a knowledge of elastic 
displacements theory and numerical simulation. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 45, 751–759 
(1998).

	35.	 Kallel, F. & Bertrand, M. Tissue elasticity reconstruction using linear perturbation method. Medical Imaging, IEEE Transactions on 
15, 299–313 (1996).

	36.	 Doyley, M., Meaney, P. & Bamber, J. Evaluation of an iterative reconstruction method for quantitative elastography. Phys. Med. Biol. 
45, 1521 (2000).

	37.	 Bendsoe, M. P. & Sigmund, O. Topology optimization: theory, methods and applications. (Springer, 2003).
	38.	 Griebel, A., Khoshgoftar, M., Novak, T., van Donkelaar, C. & Neu, C. Direct noninvasive measurement and numerical modeling of 

depth-dependent strains in layered agarose constructs. J. Biomech. 47, 2149–2156 (2014).
	39.	 Systèmes, D. In Simulia Corp. Providence, RI, USA (2017).
	40.	 Ateshian, G. A., Maas, S. & Weiss, J. A. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral 

and charged solutes. J. Biomech. Eng. 135, 111001 (2013).
	41.	 Kaplan, J. T., Neu, C. P., Drissi, H., Emery, N. C. & Pierce, D. M. Cyclic loading of human articular cartilage: the transition from 

compaction to fatigue. J. Mech. Behav. Biomed. Mater. 65, 734–742 (2017).
	42.	 Alhadlaq, H. A. & Xia, Y. Modifications of orientational dependence of microscopic magnetic resonance imaging T2 anisotropy in 

compressed articular cartilage. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic 
Resonance in Medicine 22, 665–673 (2005).

	43.	 Gründer, W., Kanowski, M., Wagner, M. & Werner, A. Visualization of pressure distribution within loaded joint cartilage by 
application of angle‐sensitive NMR microscopy. Magnetic resonance in medicine 43, 884–891 (2000).

	44.	 Nag, D., Liney, G. P., Gillespie, P. & Sherman, K. P. Quantification of T2 relaxation changes in articular cartilage with in situ 
mechanical loading of the knee. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic 
Resonance in Medicine 19, 317–322 (2004).

	45.	 Aletras, A. H., Ding, S., Balaban, R. S. & Wen, H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. 
J. Magn. Reson. 137, 247–252 (1999).

	46.	 Bendsøe, M. P. & Sigmund, O. Material interpolation schemes in topology optimization. Archive of applied mechanics 69, 635–654 
(1999).

	47.	 Svanberg, K. The method of moving asymptotes—a new method for structural optimization. International journal for numerical 
methods in engineering 24, 359–373 (1987).

	48.	 Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM 
journal on optimization 12, 555–573 (2002).

	49.	 Systèmes, D. TOSCA Structure manual. www.simulia.com (2016).
	50.	 Neu, C., Hull, M. & Walton, J. Heterogeneous three‐dimensional strain fields during unconfined cyclic compression in bovine 

articular cartilage explants. J. Orth. Res. 23, 1390–1398 (2005).
	51.	 Neu, C. P., Hull, M. L. & Walton, J. H. Error optimization of a three-dimensional magnetic resonance imaging tagging-based 

cartilage deformation technique. Magn. Reson. Med. 54, 1290–1294, https://doi.org/10.1002/mrm.20669 (2005).
	52.	 Chan, D. D., Toribio, D. & Neu, C. P. Displacement smoothing for the precise MRI-based measurement of strain in soft biological 

tissues. Comput. Methods Biomech. Biomed. Eng. 16, 852–860 (2013).
	53.	 Anseth, K. S., Bowman, C. N. & Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. 

Biomaterials 17, 1647–1657 (1996).
	54.	 Pritchard, R. H., Lava, P., Debruyne, D. & Terentjev, E. M. Precise determination of the Poisson ratio in soft materials with 2D digital 

image correlation. Soft Matter 9, 6037–6045 (2013).
	55.	 Chan, D. D., Neu, C. P. & Hull, M. L. Articular cartilage deformation determined in an intact tibiofemoral joint by displacement‐

encoded imaging. Magn. Reson. Med. 61, 989–993 (2009).
	56.	 Chan, D., Neu, C. & Hull, M. In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI. 

Osteoarthr. Cartilage 17, 1461–1468 (2009).
	57.	 Mariappan, Y. K., Glaser, K. J. & Ehman, R. L. Magnetic resonance elastography: a review. Clin. Anat. 23, 497–511 (2010).

Acknowledgements
This work was supported in part by National Institutes of Health (NIH) grants R01 AR063712 and R21 AR066230, 
and National Science Foundation (NSF) grant CMMI CAREER 1349735.

Author contributions
L.C., E.A.N., C.D.W.P. and C.P.N. conceived of the study, designed the experiments, and edited the manuscript. 
L.C. and C.P.N. performed the experiments and carried out the data analysis. L.C. and C.P.N. wrote the 
manuscript. L.C., E.A.N., C.D.W.P. and C.P.N. reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-64723-9.
Correspondence and requests for materials should be addressed to C.P.N.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-020-64723-9
http://www.simulia.com
https://doi.org/10.1002/mrm.20669
https://doi.org/10.1038/s41598-020-64723-9
http://www.nature.com/reprints


1 2Scientific Reports |         (2020) 10:7980  | https://doi.org/10.1038/s41598-020-64723-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64723-9
http://creativecommons.org/licenses/by/4.0/

	Finite deformation elastography of articular cartilage and biomaterials based on imaging and topology optimization

	Results

	Error analysis and sensitivity. 
	Stiffness reconstruction of bilayered gel materials. 
	Elastography in articular cartilage within intact tibiofemoral joints. 

	Discussion

	Methods

	Finite deformation elastography workflow. 
	Imaging high-magnitude displacements at low frequency. 
	Reconstruction of stiffness distributions. 

	Error analysis and sensitivity. 
	Stiffness reconstruction of bilayered gel materials. 
	Elastography in articular cartilage within intact tibiofemoral joints. 
	Statistics. 

	Acknowledgements

	Figure 1 Finite deformation elastography workflow based on image acquisition and topology optimization.
	Figure 2 Validation of stiffness reconstructions in complex materials and simulations.
	Figure 3 Stiffness reconstruction in multilayered biomaterials.
	Figure 4 Stiffening of the articular cartilage surface zone within intact tibiofemoral joints under cyclic loading.




