
REVIEW
published: 13 July 2021

doi: 10.3389/fneur.2021.690404

Frontiers in Neurology | www.frontiersin.org 1 July 2021 | Volume 12 | Article 690404

Edited by:

David M. Labiner,

University of Arizona, United States

Reviewed by:

Claudio M. T. Queiroz,

Federal University of Rio Grande do

Norte, Brazil

Enes Akyuz,

University of Health Sciences, Turkey

*Correspondence:

Benjamin H. Brinkmann

brinkmann.benjamin@mayo.edu

†These authors share first authorship

Specialty section:

This article was submitted to

Epilepsy,

a section of the journal

Frontiers in Neurology

Received: 02 April 2021

Accepted: 10 June 2021

Published: 13 July 2021

Citation:

Brinkmann BH, Karoly PJ, Nurse ES,

Dumanis SB, Nasseri M, Viana PF,

Schulze-Bonhage A, Freestone DR,

Worrell G, Richardson MP and

Cook MJ (2021) Seizure Diaries and

Forecasting With Wearables: Epilepsy

Monitoring Outside the Clinic.

Front. Neurol. 12:690404.

doi: 10.3389/fneur.2021.690404

Seizure Diaries and Forecasting With
Wearables: Epilepsy Monitoring
Outside the Clinic
Benjamin H. Brinkmann 1*†, Philippa J. Karoly 2†, Ewan S. Nurse 2,3†, Sonya B. Dumanis 4,

Mona Nasseri 1,5, Pedro F. Viana 6,7, Andreas Schulze-Bonhage 8, Dean R. Freestone 3,

Greg Worrell 1, Mark P. Richardson 6 and Mark J. Cook 2

1Department of Neurology, Mayo Foundation, Rochester, MN, United States, 2Department of Medicine, Graeme Clark

Institute and St Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia, 3 Seer Medical, Melbourne,

VIC, Australia, 4 Epilepsy Foundation, Landover, MD, United States, 5 School of Engineering, University of North Florida,

Jacksonville, FL, United States, 6 Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London,

United Kingdom, 7 Faculty of Medicine, University of Lisbon, Lisboa, Portugal, 8 Faculty of Medicine, Epilepsy Center, Medical

Center, University of Freiburg, Freiburg, Germany

It is a major challenge in clinical epilepsy to diagnose and treat a disease characterized

by infrequent seizures based on patient or caregiver reports and limited duration

clinical testing. The poor reliability of self-reported seizure diaries for many people with

epilepsy is well-established, but these records remain necessary in clinical care and

therapeutic studies. A number of wearable devices have emerged, whichmay be capable

of detecting seizures, recording seizure data, and alerting caregivers. Developments

in non-invasive wearable sensors to measure accelerometry, photoplethysmography

(PPG), electrodermal activity (EDA), electromyography (EMG), and other signals outside

of the traditional clinical environment may be able to identify seizure-related changes.

Non-invasive scalp electroencephalography (EEG) and minimally invasive subscalp EEG

may allow direct measurement of seizure activity. However, significant network and

computational infrastructure is needed for continuous, secure transmission of data. The

large volume of data acquired by these devices necessitates computer-assisted review

and detection to reduce the burden on human reviewers. Furthermore, user acceptability

of such devices must be a paramount consideration to ensure adherence with long-term

device use. Such devices can identify tonic–clonic seizures, but identification of other

seizure semiologies with non-EEG wearables is an ongoing challenge. Identification of

electrographic seizures with subscalp EEG systems has recently been demonstrated

over long (>6 month) durations, and this shows promise for accurate, objective seizure

records. While the ability to detect and forecast seizures from ambulatory intracranial

EEG is established, invasive devices may not be acceptable for many individuals with

epilepsy. Recent studies show promising results for probabilistic forecasts of seizure risk

from long-term wearable devices and electronic diaries of self-reported seizures. There

may also be predictive value in individuals’ symptoms, mood, and cognitive performance.

However, seizure forecasting requires perpetual use of a device for monitoring, increasing

the importance of the system’s acceptability to users. Furthermore, long-term studies

with concurrent EEG confirmation are lacking currently. This review describes the current
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evidence and challenges in the use of minimally and non-invasive devices for long-term

epilepsy monitoring, the essential components in remote monitoring systems, and

explores the feasibility to detect and forecast impending seizures via long-term use of

these systems.

Keywords: wearable devices, seizure detection, seizure forecasting, multidian cycles, machine learning, epilepsy

INTRODUCTION

It has long been recognized that seizures occur more frequently
than self-reported, though the scale of this underestimation has
only recently been appreciated (1–4). This has complicated our
ability to provide optimal care and safety strategies (5, 6), and
casts uncertainty on the validity of therapeutic strategies and
clinical trials results (4).

Wearable sensing devices are increasing in popularity both in
the general community and through medical applications such
as seizure detection. However, there is insufficient data relating
to the clinical utility and reliability of these systems (7). There are
also significant concerns around data security, privacy, and data
ownership (8), and questions relating to the optimal software,
hardware, and data transmission systems. Additionally, there
are several separate issues to consider with wearable devices:
how the data is acquired, what systems can be used to achieve
this acquisition, and how the data may be used to provide
more sophisticated feedback to individuals and their caregivers.
Wearable devices may also facilitate reliable forecasts of seizure
likelihood, providing the potential for people with epilepsy to
take fast-acting medications or modify activities in anticipation
of an impending seizure (9–11).

Chronically implanted intracranial electroencephalography
(EEG) systems have resulted in dramatic insights into the
dynamics and underlying rhythms of epileptic activity and
seizures (2, 12–19) but are not suitable for widespread use
because of issues relating to cost and risk, and are limited in
spatial sampling. In addition to unreported seizures, these devices
also detect a large number of electrographic seizure patterns
without clear behavioral correlates. However, this electrographic
epileptic activity is highly relevant to epilepsy management
and seizure forecasting, and chronic EEG remains vital to
develop and validate standalone wearable systems. These recent
studies suggest that the aims of seizure forecasting might be
achieved through capturing data, which represent trends and
associations in individuals and populations, harnessing the
strength of multiple sources, and applying recently developed
strategies in machine-learning to combine this information and
generate measures of seizure risk. Seizure forecasting using these
techniques might ultimately become a useful way for individuals
to manage daily activities, and for clinicians to accurately judge
the efficacy of therapies.

SEIZURE REPORTING AND DETECTION

An obstacle currently to clinical management of epilepsy is
the scarcity of accurate, reliable information available to the

physician when diagnosing a seizure disorder and identifying
therapeutic options. Because seizure events are infrequent, the
physician may not be able to directly observe events, and
must rely on the individual, caregivers, and other witnesses
to describe events, identify potential precipitants, report their
frequency, and discuss the impact on the person’s daily life
(20). In-hospital diagnostic tests are expensive and may produce
a diagnosis of epilepsy, psychogenic non-epileptic events, or
syncope, or may be diagnostically inconclusive. Even when a
clear diagnosis of epilepsy is established, the limited availability
of accurate information hinders effective therapy (1). People with
epilepsy may be partly or fully amnestic to seizures (21, 22),
individuals may be unable to provide an accurate account of
seizure occurrence and severity (23–25), and witness accounts
of epileptic and behavioral events are often unreliable (26–28).
Changes in seizure frequency and severity, sometimes due to
poor medication adherence (29), may increase a person’s risk
of SUDEP (30), status epilepticus (31), or injury during daily
activities. Currently, physicians and caregivers have no way to
identify increases in seizure frequency and/or severity between
office visits. Many studies confirm that people under-report their
seizures for a variety of reasons [summarized by Elger and
Hoppe (3)]. A study of an implanted EEG monitoring device
for seizure forecasting (2), compared to monthly self-reported
seizure diaries to ambulatory intracranial EEG, found vast
discrepancies in seizure reports, with some subjects reporting
no seizures in months where the device recorded hundreds
of clinical and electrographic seizures. Compared to long-
term ambulatory EEG monitoring, individuals were found to
report less than half of measured seizures (3), and people
with epilepsy enrolled in clinical medication trials were aware
of their own seizure underreporting in post-study telephone
interviews (4).

Objective data characterizing seizure counts (32) and severity
(33) could be obtained using devices capable of capturing and
storing EEG or other biosignals that indicate seizure occurrence.
Invasive, implanted EEG (33) devices with limited capabilities
are available currently. The NeuroPace RNS device (16, 34)
is clinically available and provides responsive neurostimulation
to suppress seizures in focal epilepsy, but also has the ability
to record and store limited data segments on the device.
Investigational devices like the Medtronic PC+S have a similar
capabilities (35, 36) but are used only in limited research
applications. The limited data capacity of such devices makes
it difficult to evaluate detection sensitivity because there is no
way to confirm that all seizures have been identified, although
identified and stored events can be confirmed as electrographic
seizures (specificity). Finally, minimally invasive subscalp EEG
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devices are emerging as potential alternatives for continuous
EEG recording, providing a balance between signal quality and
user acceptability. One subscalp system (24/7 EEGTM SubQ)
has been CE-marked for epilepsy monitoring and diagnosis,
following a cumulative 490 day trial (nine patients, up to
90 days each) demonstrating its safety and feasibility (37).
Automatically assisted, visual identification of electrographic
seizures has also been demonstrated in the ultra long-term setting
(>6 months) with this system, with excellent sensitivity but low
specificity (38).

Non-invasive Seizure Monitoring
Non-invasive, wearable biosensors have the greatest immediate
potential to meet the needs of the majority of people with
epilepsy. The availability of inexpensive miniaturized electronic
components, wireless data telemetry, and rechargeable
battery technology has given rise to a large number
of lightweight, wearable sensors. Currently, sensors are
commercially available to measure continuous, non-invasive
photoplethysmography (PPG, to measure the blood volume
pulse signal), electromyography (EMG), accelerometry, EEG,
electrocardiography (EKG), electrodermal activity (EDA),
and skin temperature in a range of form factors. A summary
of available sensors is given in Figure 1 (see also Panels in
Appendix). Most individuals are familiar with the accelerometers
and optical PPG sensors included in consumer electronics like
smart watches and fitness monitors. These inexpensive sensors
with sophisticated data processing algorithms on cloud-based
data management systems are capable of tracking sleep and
exercise rates based on accelerometry (39–41), although the
accuracy of sleep staging with these devices is unclear. Variable
accuracy has been found as well in tracking heart rates from
wrist-worn PPG sensors (42). Nevertheless, wearable biosensors
remain of interest for epilepsy management, as changes in sleep
quality (43), exercise (i.e., heart rate and motion tracking) (44),
and stress (i.e., heart rate variability, EDA) (45, 46) may all
trigger seizure onset for some people.

Currently, there are two wearable sensors approved by the
FDA and EU for detecting convulsive seizures: the first, a
wrist-worn smartwatch (Empatica Embrace, Boston MA), uses
accelerometry and EDA to detect the subject’s movements and
maintains a Bluetooth link to the subject’s smartphone, where an
application telemeters data and detections to cloud servers and
issues caregiver alerts for seizures (47). The Empatica Embrace
was CE Marked in 2016 and FDA approved in 2018. The second
device is attached by an adhesive patch affixed to the subject’s
bicep and identifies changes in EMG to detect convulsions
(BrainSentinel SPEAC, San Antonio TX). This device also has
a cloud-based data platform and can send caregiver alerts and
was CE Marked in 2013 and FDA approved in 2017 (48). Other
CE-Marked devices are available (Biovotion Everion, ByteFlies
Sensor Dots, Livassured NightWatch, Epi-Care Free), and studies
of performance at detecting seizures are ongoing. Detection of
convulsive or motor seizures is relatively easier than other seizure
types (49), and studies are beginning to address these other more
difficult semiologies, but only with modest success to date (50–
52). As detection performance improves, approved devices may

become an adjunct measure of seizure activity for anti-seizure
medication trials. These would likely initially be used exclusively
for the detection of tonic–clonic seizures, as wearable sensors are
most performant for this seizure type.

Most commercially available sensors do not have regulatory
approval for use in epilepsy, and these sensors span an array
of form factors and capabilities. The majority of commercial
smartwatches now carry accelerometric and PPG sensors, which
could be useful in tracking seizures (53), and smartwatch
and smartphone applications have been developed for this
purpose. Rigorous testing data is needed, however, and until
clear estimates of sensitivity and specificity under a range of
conditions are established, wearable systems should not be
considered reliable sources of clinically actionable information
(54). Apple and FitBit’s consumer grade wearables have FDA and
CE approval for cardiovascular monitoring currently, and as data
accumulates, regulatory approvals for epilepsy could be possible.
Devices aimed at the clinical research market are available in a
wrist-watch form factor (Empatica E4, Geneactiv), and this form
factor is often rated well by people with epilepsy for comfort and
ease of use (55). Smart devices in a ring form factor (e.g., Oura
and Motiv) can collect accelerometry and finger PPG. The small
size of these devices severely limits their battery capacity, and
most devices do not incorporate real-time Bluetooth data linkage.
Ring devices may be useful for seizure diary applications, or to
provide estimates of sleep quality and other factors to forecasting
algorithms, but currently are not able to provide physiological
data in real time. PPG data quality is adversely affected by subject
movement, and wrist and hand-worn PPG sensorsmay suffer due
to limb movements. Recently published results of commercially
available wearable sensors in seizure detection are summarized
in Table 1.

Arm-band style wearable biosensors are available (Biofourmis,
BrainSentinel), and many adhesive wearable sensors can be
placed on the arm (Byteflies). This is a prime location for
measuring EMG, and muscle activity can be used as a proxy
for convulsive seizure activity. This placement may also facilitate
simultaneous EKG measurement if wires are run through the
sleeve to the subject’s chest, although thismay createmaintenance
challenges for long-term use. Arm band sensors can be rated
lower in comfort and acceptability by subjects (62), and data
quality may suffer due to movement or the sensor sliding
slightly during wear. Small sensors affixed by adhesive patches
(ByteFlies, EpiLog) can conceivably be placed anywhere on
the body, although hair and perspiration may interfere with
adhesives. Adhesive failure and skin irritation are a barrier
to long-term (multiple weeks) and ultra long-term (months
to years) use of these devices, although these devices may
be suitable for prolonged (up to 7 days) monitoring (e.g.,
baseline seizure diaries). This category may be the most flexible
sensor type, and there are commercially available research-
quality sensors for EEG, EMG, EKG, PPG, accelerometry,
and EDA (ByteFlies, Epilog). Continuous glucose monitor
(CGM) and flash glucose devices, FDA and EU approved
for diabetes monitoring, fall in this category of body-worn
sensors and have reached a high level of technical maturity and
reliability (63, 64).
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FIGURE 1 | Available wearable devices for seizure management. Approved

devices include sensor systems CE Marked and/or FDA approved for epilepsy.

Research grade devices are commercially available and provide accurate,

high-quality data. Consumer grade devices are commercially available sensors

designed around applications where data accuracy is not crucial and may

utilize interpolation or estimation methods to provide information to the user.

Benchtop devices are innovative sensors under development and not available

commercially. EEG, electroencephalography; ACC, accelerometry; PPG,

photoplethysmography; EKG, electrocardiography; EMG, electromyography;

EDA, electrodermal activity; T, temperature.

In addition to mature, commercially available wearable
biosensors, numerous early-stage sensors are under
development, which may find application in epilepsy. Sweat
sampling sensors are being developed for exercise applications
and can non-invasively measure glucose, lactate, sodium, and
other metabolites as well as drug or medication levels excreted
in sweat. Fluidic sensors with similar technology have been
integrated into mouth guards (65) and fabrics (66) to sample
saliva and other bodily fluids. Google subsidiary Verily Inc.
developed a contact lens with integrated glucose sensors, but
abandoned the project in 2018 citing inconsistent monitoring
results (67). Known hormonal and metabolic factors that may
be altered prior to or immediately following seizures include
melatonin (68), cortisol (69), reproductive hormones (70),
prolactin and growth hormone (71), lactate, glucose (72), tRNA
fragments (73), and others (74), thus providing a range of
possible biomarkers for seizure detection. The field is evolving
rapidly, and many innovative new sensors will likely become
available. Hopefully, new sensor technologies will allow for
the detection of a broader range of seizure types, beyond
convulsive events.

Behavioral Monitoring
Beyond sensing of basic biosignals, wearable devices and
smartphones can be used to track behavior at more complex
levels, including activity patterns, movement range, sleep

duration and quality, and behavioral indicators of mood,
for example, based on analyses of movement speed, social
connectivity, or affective tone of speech (75–77). This opens up
a window to analyzing behavioral changes occurring over days
or weeks, which may correlate with seizure risk as suggested
by studies on prodromes and on seizure precipitating factors
(78, 79). Beyond passive monitoring, smartphones can be used to
track mood changes and cognitive function by actively querying
the user (80). Assessments can include pop-up questionnaires
at predefined times, as well as specific test batteries assessing
general cognitive capabilities like attention or working memory,
thus capturing high level dynamic brain states. The use of a
smartphones also allows for behavioral intervention, which is
becoming a prominent adjunct therapy (81).

DESIGNING AND CONNECTING SEIZURE
MANAGEMENT SYSTEMS: DECREASING
BARRIERS TO USE

Despite a general willingness of people with epilepsy, caregivers,
and healthcare professionals to use seizure monitoring devices
(55), there are significant user requirements that impede long-
term use. Johansson et al. concluded that on average 19%
(range 6–24%) of data recorded from wearables in free-living
environments may be missing due to a combination of technical
and human factors (82). Cohen et al. found in a long-term
study of wearables in Parkinson’s and Huntington’s disease that
app-based reminders (“push notifications”) are useful tools in
increasing continued device adherence (83), which could provide
similar outcomes in seizure monitoring.

The aesthetics and comfort of devices are significant
considerations in improving long-term adherence with wearable
devices. Bruno et al. found that smartphone and watch-based
devices were acceptable to over 70% of people with epilepsy;
however, leg, upper-arm, chest, and head-based systems had
<50% acceptance. Ring-style wearables had over 60% approval
(84). Interestingly, there is a strong discrepancy between the
views of people with epilepsy and caregivers for wristband and
ring-style wearables, although why this is so is unclear (55).
Performance characteristics are significant as well, and Patel et al.
(85) showed a strong preference among people with epilepsy and
caregivers for excellent sensitivity and text message alerts over
comfort, battery life, and other features. Unfortunately, Patel et
al. do not separate their responses between people with epilepsy
and their caregivers, making it unclear if there are differences
in view between these two groups. Furthermore, it is not clear
that device users’ reported preferences are truly predictive of
their behavior. Janse et al. showed significant differences between
the preferences of people with epilepsy and caregivers in device
form factors, device accuracy, and seizure forecast range (10).
Charging the batteries of wearable devices presents a considerable
adherence challenge, as devices are ideally worn continuously
through both sleep and wakefulness (55). It is estimated that 38–
60% of users claim to be satisfied with recharging a device at
least daily (55, 85). Battery charging depends on frequency of data
sampling and telemetry. Many commercial fitness tracker devices
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TABLE 1 | Sensitivity and false alarm rates for detection of seizures with wearable biosensors.

Study Device Signal(s) Environment Seizure type Patients (seizures) Sensitivity (%) False alarms per

day

Beniczky (56) IctalCare EDDI EMG EMU GTCS 71 (32) 93.8 0.67

Halford (57) BrainSentinel SPEAC EMG EMU GTCS 199 (46) 76 2.52

149 (29)a 100a 1.44a

Onorati (49) Empatica E4 ACC,EDA EMU GTCS 69 (22) 94.5b 0.2b

Vandencasteele (58) 180◦ eMotion Faros EKG EMU CP (FT) 11 (47) 70 51.6

Empatica E4 PPG 32 43.2

Johansson (59) Shimmer3, custom device ACC EMU TCS 8 (10)c 100b 1.2b

Heidberg (51) Empatica E3 ACC, EDA EMU Multiple 8 (55) 89.1d 18.1e

Jeppesen (60) ePatch EKG EMU Focal, GTCS 43 (125)f 93.1f 1.1f

Vandenncasteele (61) ByteFlies EEG (behind ear) EMU Multiple 54 (182) 69.1 0.49g

Studies before 2015 or reporting earlier results for a device in an identical setting were excluded. GTCS, generalized tonic clonic seizure; CP, complex partial; FT, fronto-temporal; TCS,

tonic clonic seizure; FIA, focal impaired awareness.
aWith optimal placement of device over the belly of the bicep.
bBest performing of three candidate algorithms.
cThree additional patients and 27 additional seizures reserved for training.
dResults reported are for the best performing of two algorithms considered using a patient-wise cross validation.
eEstimated from reported 93.7% specificity, assuming independent 5-min detection windows.
fResults reported are from the 53% of the cohort who exhibited adequate HR response to seizures.
gResults reported are from a patient-specific detection algorithm, which performed better than a cross-patient algorithm.

upload a limited data stream to cloud platforms in near-real
time using smartphones connected to the internet, either through
broadband WiFi or mobile 4G. This approach is attractive for
immediate feedback to people with epilepsy and caregivers but
would pose a considerable burden on the battery of both the
wearable device and smartphone for clinical quality sensor data
on the order of 100s of samples per second.

Computation and Connectivity
Connecting data sources through cloud technologies has the
potential to create insights into seizure patterns (86) and even
forecast seizure events (9, 87). Measurements of a person’s
environment, physiology, and behavior through smartphones
and wearables can be used to make patient-specific models that
help clinicians understand individuals’ risk factors (88). The
following sections outline common methods for accessing data
sources (such as seizure diaries or wearables) through cloud
technologies. Figure 2 presents an overview of how various
software interfaces may interact with device data.

Modern on-demand computing services make the collection
and distribution of large datasets of potentially unknown size,
expanding in response to the users’ needs (14, 89). Importantly,
data sources should use common formats and definitions for data
storage, particularly for imperative entries such as timestamps,
seizure type descriptions, and definitions of seizure durations
(90). Without accurate timing information, errors can occur
between data sources, creating noisy repositories, and inaccurate
forecasts. Removing differences between data sources minimizes
barriers to integrating heterogeneous data streams and gives the
best opportunity for improved care.

Machine learning and artificial intelligence methods are
integral to seizure detection and forecasting with wearable
biosensors. Machine learning approaches allow algorithms to

adaptively learn patterns in data, which may not be apparent
to the human observer. Traditional machine learning requires
preprocessing raw data to extract features or characteristics of
interest, which are then normalized and passed to a classification
algorithm for analysis. However, deep learning, or convolutional
neural network approaches, provides “end to end” learning,
where extraction of salient features is handled by the initial layers
of the neural network after repeated presentation of training data
(91). Automatic feature extraction is considered a key advantage
of deep learning for seizure prediction, because it enables an
algorithm to be tailored to particular seizure types or even an
individual seizure semiology (or semiologies) (92, 93). Despite
this ability for automated feature extraction, the signals recorded
must contain some fundamental information relating to seizure
events, and hence, appropriate device and sensor selection is
still required for utility. For a discussion on factors that may
contribute to seizure likelihood, see Section Factors contributing
to seizure likelihood. A hurdle for machine learning, and deep
learning in particular, is that algorithms typically require a very
large number of training seizures in order to learn a generalized
representation of the data. Epilepsy databases have facilitated
development of machine learning and deep learning methods for
seizure detection (94) and forecasting (95–99). This “big-data”
approach may improve accuracy in detecting more challenging
seizure types.

FORECASTING SEIZURE LIKELIHOOD

People with epilepsy consistently rate the apparent
unpredictability of their seizures to be the most disabling
aspect of their condition (10, 11), and a reliable system to
forewarn individuals or caregivers of impending seizures could
allow fast-acting medications to be administered, or simply allow
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FIGURE 2 | Integrating device data into online accessible databases. An abundance of data relating to physiology, behavior, and environment can be collected with

wearable devices and smartwatches. These can then be collected into a single repository in cloud-based data storage. These data can then be accessed by relevant

clinicians and researchers through a web interface or programmatic access. Informed permission is necessary for each step of data transfer: from user to the

database, and from the database to the clinical environment.

FIGURE 3 | Forecasting seizure likelihood. The schematic shows how data from clinical notes, wearable devices, and mobile apps can be combined to obtain a

deeper understanding of patient-specific risk factors. Utilizing cloud computing, these factors can be integrated into an individualized model of seizure likelihood and

displayed as a real-time forecast to a user.
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FIGURE 4 | Overview of wearable devices in epilepsy.

a person to take preparatory measures. To date, most devices
for use in epilepsy monitoring have been focused on seizure
detection, where the main utility from the perspective of people
with epilepsy is providing a seizure alert to their clinicians or
caregivers. In this context, false alarms have the potential to be
disruptive to the life of someone with epilepsy, their families, and
caregivers, and can cause people to stop using seizure detection
devices (100). However, in seizure forecasting applications, the
primary end goal is to inform the individual of their current
seizure likelihood. This context reduces the impact of “false
alarms,” as not every high likelihood alert would be expected to
result in a seizure (92). When evaluating forecasts, probabilistic
measures can be used instead of only counting “hits” and
“misses.” Therefore, although the problem of seizure forecasting
is more complex than seizure detection from a signal analysis
perspective (101), wearable devices may have broader application
and wider acceptance in seizure forecasting, which will allow

people with epilepsy to plan daily activities and take measures
for seizure control. One retrospective validation study of seizure
forecasting with wearables recently reported better than chance
results in 30 of 69 (43.5%) in-hospital patients studied (102),
confirming that forecasting with non-invasive devices is possible
for many patients. The ability to record continuous, outpatient
data from wearables will enable long-term tracking of risk factors
and should improve forecasting performance.

Instead of trying to predict the exact time of an upcoming
seizure, it may be more feasible to estimate the probability
of someone having a seizure and communicate this risk in a
clinically useful manner (12, 92, 103, 104). Accordingly, there
is increasing interest within the clinical epilepsy community
to develop seizure forecasting devices and applications (9) and
understand user requirements (10, 105). In a survey-based study,
Schulze-Bonhage et al. reported that probabilistic forecasts were
generally considered equally useful to predicting exactly when a
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seizure would occur (105). They also found that missed seizures
were considered worse than false alarms, and perfect accuracy
was not considered a requirement for a forecasting device (105).
This survey agrees with reports from individuals enrolled in
the human study of a long-term seizure forecasting device (the
NeuroVista trial) (2). Subjects in the NeuroVista trial reported on
the usefulness of the device (106, 107), despite less than perfect
sensitivity and time-in-warning of up to 30% (2). More recently,
Janse et al. also showed that seizure forecasting devices were
deemed broadly acceptable despite the potential for inaccuracy
(up to “inaccurate 30% of the time”) (10). Externally worn devices
were ranked more highly than subcutaneous or implantable
devices (10), reinforcing the potential for development of
wearable devices for seizure forecasting applications.

The development of qualitative and clinically useful metrics
to evaluate seizure forecasts has been a key priority. Probabilistic
measures can be used to evaluate performance (86, 108, 109),
but defining an alarm threshold is often deemed necessary to
determine clinical utility and the system becomes parameterized
by the alarm duration, or “seizure prediction horizon” (110).
Nevertheless, evaluation of false alarms is challenging because
there is significant individual variability between seizure
prediction horizons (2), and the “time-in-warning” is frequently
reported as a proxy for a false alarm rate (2, 95, 111). In addition
to benchmarking performance, it is important to understand
user requirements for a forecasting interface (112). A recent
study surveyed people with epilepsy and caregivers about the
visual design of seizure forecasts, finding a range of preferences,
although graphs that provided some temporal context (i.e.,
seizure risk plotted over the course of a day or month as opposed
to a “gauge”) were rated more highly (113). Ultimately, post-
hoc studies and surveys can only provide an indicative measure
of the utility and benefits of a seizure forecasting device. In
a prospective setting, some people initially with interest in
forecasting devices may find false alarms to be debilitating,
whereas others whowere initially skeptical about the benefitsmay
find a forecasting device very helpful (107).

Patterns and Rhythms in Seizure
Probability
It is now understood that most people with epilepsy exhibit
circadian and slower, multiday temporal cycles that modulate
their seizure likelihood [see (17) for a recent review]. Recent
studies have demonstrated impressive seizure forecasting
performance using multiday cycles measured from implantable
EEG (114, 115), although prospective validation is needed.
Cycles of seizure likelihood can also be measured from self-
reported seizure times (116), and for a subset of people, cycles
measured from seizure diaries are predictive of the likelihood
of electrographic seizures and epileptic activity (116, 117).
Machine learning can also be used with historic trends from
self-reported seizure diaries, which may be useful to forecast
future reported seizures (118, 119). Both cyclic and machine-
learning approaches have been shown to accurately forecast
seizures (or, more specifically, seizure diary events) in both focal
and generalized epilepsies. Despite inaccuracy in individual

seizure reporting, long-term patterns and cycles may still be
accurately inferred for many individuals (116, 117). Due to
the indications for use of who can have implanted EEG for
long-term recording, the existence of cycles has largely been
validated electrographically in individuals with focal epilepsies.
Continuously recorded biomarkers remain important to truly
characterize underlying epileptic rhythms, without the inherent
limitations and biases of self-reported seizure diary records (120).

Wearable devices and subscalp EEG have the potential
to improve seizure diaries by providing objective data and
complementary information to help eliminate noise. Objective
seizure measures may capture more seizures, enabling cyclic
patterns to be detected earlier and characterized more accurately
(38). On the other hand, seizure detection with wearable devices
currently has a high error rate, and has only been established
for convulsive or motor seizures (48–50, 121), although progress
is ongoing for other seizure types (51, 52, 93, 122, 123). The
distribution of errors with wearables is likely to be different to the
error distribution of self-reported seizure diaries. There may also
be gaps or poor quality data due to non-adherence or charging
issues (124). Wearable seizure detectors may perform better
at night, when there are fewer movement artifacts, and when
individuals are less likely to self-report seizures (3). Wearable
devices also do not suffer from diary fatigue, or other uniquely
human biases. Therefore, wearable devicesmay have the potential
to improve the accuracy and completeness of the historic record
of individuals’ seizure times when used along with a seizure diary.
A more accurate seizure count, or a combined forecast from
the two data streams (86), may provide a higher performing
forecaster for users. A better record of seizure times enables
personalized forecasting models to be trained and validated more
rapidly and with greater reliability.

Factors Contributing to Seizure Likelihood
Combining multiple sources of information, including cyclic
patterns, EEG features, and other environmental factors, may
contribute to a stronger forecast of seizure likelihood than any
individual signal. There are many data sources that are readily
available and have been shown to be associated with seizure
likelihood. For example, sleep quality (68), weather (125, 126),
mood (78), and stress (45, 46) may all make seizures more likely.
These environmental factors can be combined with information
from seizure times that capture individuals’ daily, weekly, or
monthly cycles to deliver an individualized forecast of seizure
likelihood (12, 92, 104).

Wearable devices provide an opportunity to augment seizure
forecasts with a growing number of physiological signals relevant
to seizure likelihood. For instance, changes in heart rate have
been often found to precede seizure onset by several minutes
(127). Billeci et al. found that heart rate variability could be
used to predict seizures up to 15min before onset with >80%
sensitivity, albeit with a relatively high average false positive
rate of 0.41 per hour (almost 10 per day) (128). Signals that
show some well-defined ictal changes, such as EDA (129–131),
heart rate, or EMG (121), also show predictive changes prior to
seizure onset (32). For instance, a recent study found predictive
value in wearable sensor recordings EDA, blood volume pulse,
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accelerometry, and skin temperature (102). Average heart rate
has also been found to show similar circadian and multiday
cycles to epileptic activity, which are comodulated with seizure
risk (132). Long-term datasets that record large numbers of
individual seizures over long periods of time in conjunction
with continuous wearable monitoring data promise to shed new
light on these patterns governing autonomic nervous system
and metabolic activity that are co-modulated with seizure onset.
The potential of wearable monitoring to track individual seizure
triggers may be more powerful when coupled with behavioral
and mood data. Figure 3 illustrates the concept of a multi-modal
seizure forecasting system.

There is some early promise that physiological signals
derived from peripheral or autonomic systems (i.e., cardiac
activity) contain relevant information for predicting seizure
onset. Figure 4 illustrates a number of these systems. Currently,
insufficient evidence exists that any stand-alone peripheral signal
could be used as a seizure forecast with adequate sensitivity and
specificity (105). However, with more data to determine patient-
specific trends, and in combination with other predictive signals,
wearable monitoring may contribute to an integrated forecast
of seizure likelihood. As more prospective, clinical studies of
forecasting systems are undertaken, a better understanding of the
ideal signals, device specifications, user needs, and performance
benchmarks will be elucidated, and forecasting systems may
begin to reduce the burden of seizure unpredictability on people
living with epilepsy.

CONCLUSION

We are at the edge of a transition in the way that we identify,
analyze, and manage seizures and epilepsy. At the moment,
however, there is still relatively limited data on which to base
decisions about the suitability of various devices currently

available, and the types of seizures in which they might be best
deployed, particularly for non-motor events. There are challenges
ahead regarding the hardware, power, data, and security of the
various devices available, though these problems are being solved
in numerous mobile device applications. Significant challenges

remain around issues related to usability of the systems, and
certainly their chronic use. Developing concepts though relating
to utilization of multiple modality streams and integrating this
information will serve to provide accurate data on which to
more effectively manage epilepsy in the clinic and evaluate
new therapies. Ultimately, data from a variety of systems will
contribute to seizure forecasts and enable people with epilepsy
to achieve a greater degree of safety, freedom, and dignity.
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APPENDIX: PANELS

Panel 1: What Is Wearable?
This review focuses on how wearable devices can be used to
aid chronic, lifetime epilepsy management. Devices that may be
comfortable for a few hours, or even a day may not be classed
as wearable for life. Furthermore, the term “wearable” implies
a degree of accessibility that assumes no specialized medical
knowledge is required for use.

Smartwatches
Highly popular lifestyle tech device.

Signals: photoplethysmography, O2 saturation, skin
temperature, skin conductance, accelerometry, location (GPS),
EKG (in development).

Smart Rings
Similar to smartwatches but with different movement artifacts.

Signals: photoplethysmography, O2 saturation,
skin temperature.

Arm Bands
Sensors mounted on a band around the upper arm. Some devices
may be placed with adhesive stickers.

Signals: Heart rate, muscle activity, oxygen saturation, skin
temperature, skin conductance, accelerometry.

Stick-On Sensor Patches
Subtle patches stuck anywhere on the body that are either
re-useable or easily replaced at regular intervals, such as
EEG electrodes placed behind the ear, or blood-glucose
arm patches.

Signals: EEG/EKG/EMG, accelerometry, glucose, cortisol
(in development).

Smart Phones
Smart phones are not strictly wearable but most wearable
devices integrate and present information to users
via smartphone. Furthermore, more and more people
now carry their smart phone at all times, in a pocket
or handbag.

Signals: Location, accelerometry, microphone, usage patterns,
many aspects of external environment.

Excluded Devices
This review does not consider most scalp EEG electrode caps
or headbands to be wearable. Similarly, implantable devices
may be eminently suitable for long-term use, but they are not
considered “wearable.”

PANEL 2: KEY CONSIDERATIONS IN
WEARABLE DEVICE DESIGN

• Comfort: devices should be able to be wornwithout discomfort
for extended periods of time, including during sleep and
activities such as exercise and bathing.

• Battery life: wearables should be able to record at least 24 h
of activity without needing to recharge the device. Recharging
time should be limited to a few hours. Connectors should be
standard types such as micro-USB or USB-C.

• Accessibility: design of devices and associated phone apps
should account for differences in age groups, genders, vision
capabilities, and body sizes. Particular care should be given to
testing PPG sensors on a variety of skin pigments.

• Appearance: devices should be inconspicuous, or otherwise
not immediately identifiable as medical devices.

• Security: data security and individual anonymity are of high
concern to users, caregivers, and clinicians. Different regions
and jurisdictions will have unique requirements for security
compliance, and laws regarding data access and ownership.

• Internet connectivity: Broadband or 4G internet is required
to transmit data efficiently. Devices can only store a limited
amount of data internally before requiring upload to an
associated device (e.g., via Bluetooth) or the cloud.

• Integration: interfacing with other devices is essential.
Connection with resources such as diaries, smartphone
sensors, and location is becoming ubiquitous.

PANEL 3: CASE STUDY: A BUMP IN THE
DARK

A 30-year-old man presented with a generalized tonic–clonic
seizure after over 12 months of seizure freedom on 500mg
Sodium Valproate once daily. He complained of 6 month history
of occasionally feeling poorly rested. An MRI appeared normal,
and he was otherwise generally healthy. After two 7-day video-
EEG studies (first non-diagnostic), a GTCS was captured lasting
2min occurring during sleep, of which he had no memory. An
additional 500mg Sodium Valproate was given in the evening
and began wearing a wrist-worn accelerometry device to detect
nocturnal seizures in the home. Three events were detected
within a 2-month period, none of which could be recalled.
Carbamazepine was commenced, and he has since been free of
seizures for over 6 months.

This case presents a common problem—a seizure diary
that provides little information to guide treatment, and non-
diagnostic, time-consuming video-EEG studies. Monitoring
within the home can provide longitudinal seizure counts
with reasonable sensitivity for GTCS events (from both
wakefulness and sleep) and provide near real-time alerts to
caregivers. Without a wearable device, multiple video-EEG
studies may be required to measure the effect of each of the
additional medications.
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