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Schizophrenia is a severe psychiatric disorder that involves positive, negative and

cognitive symptoms. Prepulse inhibition of startle reflex (PPI) is a paradigm that assesses

the sensorimotor gating functioning and is impaired in schizophrenia patients as well

as in animal models of this disorder. Recent data point to the participation of the

endocannabinoid system in the pathophysiology and pharmacotherapy of schizophrenia.

Here, we focus on the effects of cannabinoid drugs on the PPI deficit of animal models of

schizophrenia, with greater focus on the SHR (Spontaneously Hypertensive Rats) strain,

and on the future prospects resulting from these findings.

Keywords: prepulse inhibition of startle reflex, animal models, schizophrenia, cannabidiol, endocannabinoid
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Schizophrenia is a debilitating neuropsychiatric disorder that affects 0.7% of world’s population
(MacDonald and Schulz, 2009) and involves positive (i.e., delusions and hallucinations), negative
(e.g., anhedonia, social withdrawal, affective flattening), and cognitive symptoms (such as impaired
processing of information and deficits in working memory) (van Os and Kapur, 2009). Currently,
schizophrenia’s pharmacotherapy is mainly limited to the positive symptoms and associated with
severe side effects and high rates of treatment resistance (Briles et al., 2012; Hasan et al., 2012;
Abi-Dargham, 2014).

KEY CONCEPT 1 | Schizophrenia

Debilitating psychiatric disorder that affects 0.7% of world’s population and presents an onset between late adolescence

and early adulthood. Schizophrenia’s symptomatology includes positive, negative and cognitive symptoms.

Sensorimotor gating is a physiological process that filters sensory information as it
is transmitted to motor output systems, preventing information overload and cognitive

KEY CONCEPT 2 | Sensorimotor gating

Physiological process that filters sensory information as it is transmitted to motor output systems, preventing information

overload and cognitive fragmentation. It is impaired in schizophrenia and in other neuropsychiatric disorders.
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fragmentation (Cryan and Reif, 2012). This process is impaired
especially in schizophrenia (Braff et al., 2001), but also in
other neuropsychiatric disorders such as obsessive-compulsive
disorder (Ahmari et al., 2012), Tourette’s syndrome (Swerdlow
et al., 2001), Huntington’s disease (Swerdlow et al., 1995), and
bipolar disorder (Perry et al., 2001). Prepulse inhibition of

startle reflex (PPI) is considered an operational measure of
sensorimotor gating and is extensively used in translational
studies of schizophrenia, since it is seen in both rodents and
humans (Braff et al., 2001). PPI is defined as a reduction
of acoustic startle reflex to an intense stimulus (pulse) when
immediately preceded by a low intensity stimulus (prepulse).

KEY CONCEPT 3 | Prepulse inhibition of startle reflex (PPI)

Reduction of acoustic startle reflex to an intense stimulus (pulse) when

immediately preceded by a low intensity stimulus (prepulse). PPI is an

operational measure of sensorimotor gating and is seen in both rodents and

humans, being extensively used in translational studies.

Prepulse inhibition of startle reflex (PPI) is disrupted in
schizophrenia patients and evidence show that PPI deficits are
positively correlated to thought disorder (Perry and Braff, 1994;
Perry et al., 1999), and associated with impaired functional status
and with the presence of auditory hallucinations (Swerdlow
et al., 2006; Kumari et al., 2008). PPI deficits are improved
by treatment with antipsychotic drugs (Kumari et al., 1999;
Weike et al., 2000; Leumann et al., 2002; Oranje et al., 2002;
Minassian et al., 2007; Wynn et al., 2007; Martinez-Gras et al.,
2009), and this improvement is associated with treatment-related
amelioration of schizophrenia symptoms (Minassian et al., 2007).
PPI is also disrupted in several animal models of this disorder
(Swerdlow et al., 2008), being a useful paradigm to investigate the
neurobiology and pharmacotherapy of information processing
abnormalities in schizophrenia.

KEY CONCEPT 4 | Antipsychotic drugs

Drugs used primarily to treat psychotic states, in particular schizophrenia and

bipolar disorder. The antipsychotic drugs are classified in typical and atypical

compounds: the typical antipsychotic drugs are associated with motor side

effects, and the atypical are linked to metabolic disturbances.

Recent data point to the involvement of the
Endocannabinoid system in the pathophysiology of
schizophrenia. The endocannabinoid system was described
subsequent to the identification of the molecular target of
19-tetrahydrocannabinol (19-THC), the main psychoactive

TABLE 1 | Cannabinoid drugs as potential agents to treat prepulse inhibition of startle (PPI) deficits in schizophrenia.

Cannabinoid drug Effect on SHR’s PPI Limitations/advantages

WIN 55212,2 Attenuates the deficit Induces psychotomimetic effects in animal models.

Rimonabant Worsens the deficit Is associated with increased symptoms of depression and anxiety.

AM 404 Does not modify PPI

Cannabidiol Attenuates the deficit Displays antipsychotic properties in humans and in other behavioral abnormalities in animal models. Is safe in

animals and humans.

KEY CONCEPT 5 | Endocannabinoid system

System described subsequent to the identification of the molecular target of

19-THC. It comprises the cannabinoid-1 and 2 receptors (CB1 and CB2), their

endogenous ligands (named endocannabinoids) and the enzymes involved in

the endocannabinoid’s metabolism.

compound of Cannabis sativa, and comprises the classical
cannabinoid-1 and 2 receptors (CB1 and CB2), their endogenous
ligands known as endocannabinoids (e.g., anandamide and
2-arachidonoylglycerol), and the enzymes involved in the
endocannabinoid’s synthesis and degradation.

The contribution of the endocannabinoid system in
schizophrenia is suggested based on some compelling evidence.
The exposure to 19-THC may induce a transient psychotic
condition in healthy subjects (D’Souza et al., 2004; Morrison
et al., 2009), whereas in schizophrenia patients, cannabis
consumption provokes more and earlier psychotic relapses, even
among those under antipsychotic treatment (Linszen et al., 1994;
D’Souza et al., 2005; Grech et al., 2005). Moreover, cannabis
use has been proved to be a risk factor for psychotic outcomes
(Matheson et al., 2011). In accordance, several alterations in the
endocannabinoid system are seen in schizophrenia: (1) levels
of anandamide are increased in patients’ cerebrospinal fluid
and peripheral blood (Leweke et al., 1999, 2007; De Marchi
et al., 2003; Giuffrida et al., 2004); (2) post-mortem studies
show increased CB1 density in patients’ dorsolateral prefrontal,
anterior cingulate and posterior cingulate cortices (Dean et al.,
2001; Zavitsanou et al., 2004; Newell et al., 2006; Dalton et al.,
2011); (3) in vivo studies using positron emission tomography
(PET) reveal increased density of CB1 in the brain in both
medicated and non-medicated schizophrenia patients (Wong
et al., 2010; Ceccarini et al., 2013); (4) polymorphisms of the
genes that code the cannabinoid receptors CB1 and CB2 are
associated to some schizophrenia phenotypes (Ujike et al.,
2002; Chavarría-Siles et al., 2008; Ishiguro et al., 2010).
In addition, pre-clinical studies show that cannabinoid
drugs are able to modulate schizophrenia-like behaviors,
including PPI.

In the work that generated this focused review, we evaluated
the effects of four cannabinoid drugs on the PPI deficit
displayed by the Spontaneously Hypertensive Rat (SHR)

strain an animal model characterized by our group to study
several aspects of schizophrenia (Levin et al., 2014; Table 1).
Here, we will focus on the effects of these four cannabinoid
drugs—WIN 55212,2 (WIN–cannabinoid agonist), rimonabant
(CB1 antagonist/inverse agonist), AM404 (anandamide uptake
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KEY CONCEPT 6 | Spontaneously Hypertensive Rat (SHR) strain

Inbred strain developed by brother-sister mating rats with hypertensive

phenotype of the outbred strain Wistar. SHRs display spontaneous

hypertension and also several behavioral abnormalities that fit the behavioral

phenotype associated with schizophrenia.

inhibitor) and cannabidiol (CB1 antagonist, anandamide uptake
inhibitor, among other effects)—on PPI of animal models, mainly
the SHR strain, and on the future prospects resulting from these
findings.

SHR strain was developed by selecting rats from Wistar
strain with hypertensive phenotype and brother-sister mating
(Okamoto and Aoki, 1963). In addition to hypertension, the
inbreeding selected some behavioral abnormalities—such as
impulsivity, impaired sustained attention and hyperactivity—
leading to the proposal of the SHR strain (mainly young animals)
as an animal model for attention deficit/hyperactivity disorder
(ADHD). It is noteworthy that most of the studies using SHR
as ADHD model were performed using as control the Wistar-
Kyoto strain (developed by inbreeding Wistar rats without
hypertension). Wistar-Kyoto rats may be inappropriate as a
control strain since they display inactivity and depressive-like
behavior when compared to Wistar rats (WRs) (Overstreet,
2012), and do not show genetic similarities when compared to
SHRs (Johnson et al., 1992; St Lezin et al., 1992). In addition,
SHR’s predictive validity as ADHD model is inconsistent: several
studies describe that the administration of psychostimulants
(drugs used to treat ADHD) does not attenuate SHRs’ behavioral
abnormalities (Amini et al., 2004; Yang et al., 2006; van den Bergh
et al., 2006; Bizot et al., 2007; Barron et al., 2009; Calzavara et al.,
2009), and may even potentiate them (Amini et al., 2004; Yang
et al., 2006; Barron et al., 2009; Calzavara et al., 2009).

Conversely, we reported that SHRs, when compared to
WRs, display schizophrenia-like behavioral abnormalities. SHRs
display increased locomotion (a model for the positive symptoms
of schizophrenia—Lipska and Weinberger, 2000), decreased
social interaction (that mimics the negative symptoms—File and
Seth, 2003), and deficits in the contextual fear conditioning
(associated with impairments in emotional memory seen in
schizophrenia—Maren et al., 2013) and PPI. These abnormalities
are reversed by antipsychotic drugs (with varied effects in
WRs, depending on the drug, the dose, and the behavior), but
not by psychostimulant drugs, mood stabilizers, dopaminergic
antagonists without antipsychotic activity or drugs that modulate
anxiety (Calzavara et al., 2009, 2011; Levin et al., 2011).
In addition, psychotomimetic manipulations, such as sleep
deprivation and administration of psychostimulants, potentiate
the behavioral abnormalities displayed by SHRs and induce
a schizophrenia-like behavioral phenotype in WRs (Calzavara
et al., 2009, 2011; Levin et al., 2011)—as seen in other animal
models of the disorder, as well as in patients (Laruelle et al.,
1999; Jones et al., 2011). As a result, the SHR strain has been
used to investigate genetic alterations related to schizophrenia
as well as novel therapeutic strategies for this disorder, including
cannabinoid drugs (Levin et al., 2012, 2014; Almeida et al., 2013,
2014; Diana et al., 2015).

WIN is an agonist of CB1 and CB2 receptors. The acute
administration ofWIN attenuates the SHRs’ PPI deficit, and does
not modify the PPI ofWRs—although a trend to reduce theWRs’
PPI is seen with the lowest dose (Levin et al., 2014). Accordingly,
other studies demonstrate thatWIN reverses the PPI impairment
displayed by psychosocially stressed mice (Brzózka et al., 2011)
and induced by chronic administration phencyclidine (Spano
et al., 2010), two other animal models of schizophrenia. The
beneficial effect of WIN on the PPI of psychosocially stressed
mice is prevented by pretreatment with the CB1 antagonist
rimonabant (Brzózka et al., 2011), suggesting an involvement
of these receptors on the WIN’s actions on sensorimotor gating
functioning.

In rodents without PPI deficits some authors describe absence
of WIN effect on PPI (Bortolato et al., 2005; Brzózka et al.,
2011), but others show thatWIN disrupts PPI when administered
systemically (Schneider and Koch, 2002; Wegener et al., 2008;
Brosda et al., 2011), intra-prefrontal cortex, or intra-ventral
hippocampus (Wegener et al., 2008). In addition, repeated
administration of WIN during puberty induces PPI deficits that
last until adulthood (Schneider and Koch, 2003; Schneider et al.,
2005; Wegener and Koch, 2009; Klein et al., 2013). Therefore,
WIN seems to present a psychotomimetic profile (supported also
by its effects on other schizophrenia-like symptoms—Schneider
and Koch, 2002; Pamplona and Takahashi, 2006; Wegener et al.,
2008; Spano et al., 2010; Almeida et al., 2014), being unsuitable
for schizophrenia patients.

The administration of the CB1 antagonist rimonabant
worsens SHRs’ PPI deficit, and does not alter PPI levels in WRs
(Levin et al., 2014). The absence of rimonabant effects in WRs
is corroborated by previous studies with animals without PPI
impairments (Martin et al., 2003; Malone et al., 2004; Malone
and Taylor, 2006; Ballmaier et al., 2007). In animal models of
schizophrenia, while some studies show that rimonabant is able
to counteract the PPI impairments (Malone et al., 2004; Nagai
et al., 2006; Ballmaier et al., 2007), others show no effect (Martin
et al., 2003; Malone and Taylor, 2006). In addition, clinical trials
show that rimonabant induces significant psychiatric side effects,
such as symptoms of depression and anxiety, and increases
suicide-related adverse events (Christensen et al., 2007; Food and
Drug Administration Advisory Committee, 2007; Topol et al.,
2010). These data, thus, argue against the clinical use of this
compound.

It should be noted that both a CB1/CB2 agonist and a CB1
antagonist provoke differential effects in WRs and SHRs (Levin
et al., 2014). This information suggests that these rat strains
display distinct endocannabinoid system functioning. Indeed,
our group observed that SHRs present higher CB1 density in
the prefrontal and anterior cingulate cortices when compared to
WRs (Almeida et al., submitted), which is in accordance with data
from schizophrenia patients (Dean et al., 2001; Zavitsanou et al.,
2004; Newell et al., 2006; Wong et al., 2010; Dalton et al., 2011;
Ceccarini et al., 2013).

AM 404 is a competitive and selective inhibitor of anandamide
transportation, and therefore increases its extracellular levels.
Anandamide is an endocannabinoid that acts as an agonist of
CB1 and CB2 receptors and of vanilloid receptor 1 (TRPV1).
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When administered to WRs and SHRs, AM 404 did not
modify their PPI levels (Levin et al., 2014). No other study has
investigated the effects of AM 404 on PPI of animal models of
schizophrenia. In control animals, one study shows absence of

AM 404 effects on PPI in Sprague-Dawley rats (Bortolato et al.,
2006), but another reveals that AM 404, either injected acutely or
chronically, disrupts PPI in Swiss mice (Fernandez-Espejo and
Galan-Rodriguez, 2004). Evidence, therefore, do not support the

TABLE 2 | Summary of the studies investigating the effects of cannabinoid drugs on the PPI of animal models.

Reference Results

WIN 55, 212-2 (WIN)

Schneider and Koch, 2002 Acute administration of WIN (0.6 or 1.2 mg/kg) impairs PPI in a dose-dependent manner. The administration of haloperidol reverses

the PPI deficit.

Schneider and Koch, 2003;

Schneider et al., 2005

Treatment for 25 days with WIN (1.2 mg/kg) during puberty induces PPI deficits that last until adulthood. This impairment is reversed

by the administration of haloperidol.

Bortolato et al., 2005 Chronic (during 7 or 21 days) or acute treatment with WIN (0.5, 1, or 2 mg/kg) does not alter PPI levels.

Wegener et al., 2008 Acute systemic administration of WIN (1.2 mg/kg), as well as the administration intra-medial prefrontal cortex or intra-dorsal

hippocampus (5 µg/0.3 µl) diminish PPI levels.

Wegener and Koch, 2009 Treatment for 25 days with WIN (1.2 mg/kg) during puberty induces PPI deficits that last until adulthood. In addition, WIN treated

animals display altered basal neuronal activity and respond differently to haloperidol and apomorphine.

Spano et al., 2010 Chronic WIN self-administration (12.5 µg/kg/infusion) as well as experimenter-given (0.3 mg/kg, i.v.) attenuates

phencyclidine-induced impairments in PPI.

Brosda et al., 2011 Acute systemic administration of WIN (0.6 or 1.2 mg/kg) impairs PPI.

Brzózka et al., 2011 WIN (3 mg/kg) administration restores the PPI deficit induced by chronic psychosocial stress. This effect is antagonized by

pretreatment with rimonabant.

Klein et al., 2013 Chronic treatment with WIN (1.2 mg/kg) during puberty induces PPI deficits that last until adulthood and are reversed by deep brain

stimulation.

Levin et al., 2014 Acute administration of WIN (1 mg/kg) restores the PPI deficit displayed by the SHR strain. WIN (0.3, 1 or 3 mg/kg) does not alter the

PPI of control animals.

RIMONABANT

Martin et al., 2003 Acute administration of rimonabant (5 mg/kg) does not alter PPI on its own or following disruptions by apomorphine, d-amphetamine

or MK-801.

Malone et al., 2004 Rimonabant (1 or 3 mg/kg) does not alter PPI on its own. The acute administration of rimonabant (3 mg/kg) inhibits the PPI disruption

promoted by apomorphine.

Malone and Taylor, 2006 Acute administration of rimonabant (5 mg/kg) is not able to counteract the PPI deficit promoted by social isolation. In addition,

rimonabant does not alter the PPI of control animals.

Nagai et al., 2006 Acute administration of rimonabant (10 mg/kg) reverses the 19-THC-induced PPI deficit and increased dopamine release in the

nucleus accumbens.

Ballmaier et al., 2007 Acute administration of rimonabant (0.75, 1.5, or 3.0 mg/kg) does not alter PPI on its own, and counteracts the PPI disruption

induced by administration of phencyclidine, MK-801 or apomorphine.

Levin et al., 2014 Acute administration of rimonabant (0.75 mg/kg) worsens the PPI deficit displayed by the SHR strain. Rimonabant (0.75, 1.5, or 3

mg/kg) does not alter the PPI of control animals.

AM 404

Fernandez-Espejo and

Galan-Rodriguez, 2004

AM 404 either injected acutely (2.5 mg/kg) or chronically (5 mg/kg daily, 7 days) disrupts PPI. This effect is blocked by pretreatment

with rimonabant.

Bortolato et al., 2006 Acute administration of AM 404 (2.5, 5, or 10 mg/kg) does not alter PPI levels.

Levin et al., 2014 Acute administration of AM 404 (1, 5, or 10 mg/kg) does not alter the PPI of SHRs or Wistar rats.

CANNABIDIOL

Long et al., 2006 Acute administration of cannabidiol (1, 5, or 15 mg/kg) does not alter PPI on its own, but reverses (5 mg/kg) the MK-801-induced

disruption of PPI. Pretreatment with capsazepine (antagonist of TRPV1 receptors) prevents cannabidiol effect.

Gururajan et al., 2011 Acute administration of cannabidiol (3, 10, or 30 mg/kg) disrupts PPI on its own, and has no effect on MK-801-induced PPI

disruption.

Levin et al., 2014 Acute administration of cannabidiol (30 mg/kg) restores the PPI deficit displayed by the SHR strain. Cannabidiol administration also

increases the PPI levels of control animals.

Gomes et al., 2015 Treatment with MK-801 for 28 days impairs PPI. Chronic treatment with cannabidiol (30 or 60 mg/kg) attenuates this impairment.

Cannabidiol does not alter PPI on its own.

Pedrazzi et al., 2015 Pretreatment with cannabidiol (15, 30, or 60 mg/kg) attenuates the amphetamine-induced disruption of PPI. Cannabidiol does not

alter PPI on its own.

MK-801, dizocilpine; PPI, prepulse inhibition of startle; SHR, spontaneously hypertensive rats; ∆9
−
THC, delta-9-tetrahydrocannabinol; WIN, WIN 55212,2.
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TABLE 3 | Antipsychotic effects of cannabidiol in psychiatric patients and in schizophrenia-like behaviors in animal models (for PPI, see Table 2).

Reference Results

ANIMAL MODELS

Zuardi et al., 1991 Acute administration of cannabidiol (60 mg/kg) diminishes the stereotyped behavior induced by apomorphine, without promoting

catalepsy.

Moreira and Guimaraes, 2005 Acute administration of cannabidiol (30 or 60 mg/kg) attenuates the hyperlocomotion induced by d-amphetamine, without promoting

catalepsy.

Malone et al., 2009 Pretreatment with cannabidiol (20 mg/kg) counteracts the 19-THC-induced decrease in social interaction.

Long et al., 2010 Chronic treatment with cannabidiol (50 mg/kg, 21 days) attenuates the dexamphetamine-induced hyperlocomotion.

Gururajan et al., 2012 Pretreatment with cannabidiol (3 mg/kg) counteracts the hyperlocomotion and the decrease in social interaction induced by MK-801.

Levin et al., 2012 Acute administration of cannabidiol (1 mg/kg) restores the SHR’s deficit in the contextual fear conditioning task.

PSYCHIATRIC PATIENTS

Zuardi et al., 1995 Treatment with cannabidiol for 4 weeks reduced the psychotic symptoms in one schizophrenia patient.

Zuardi et al., 2009 Treatment with cannabidiol for 4 weeks, in addition to their usual treatment, reduced the psychotic symptoms in six patients with

Parkinson’s disease without worsening their motor function.

Leweke et al., 2012 Treatment with cannabidiol for 4 weeks reduced the schizophrenia symptoms in 21 schizophrenia patients, in a way non-inferior to

the antipsychotic amisulpride. Cannabidiol induced fewer side effects than amisulpride.

GW Pharmaceuticals, 2015 Proof of concept study including 88 schizophrenia patients. Treatment with cannabidiol for 6 weeks, in addition to their usual

antipsychotic medication, reduced the schizophrenia symptoms without inducing serious adverse events.

MK-801, dizocilpine; SHR, spontaneously hypertensive rats; ∆9
−
THC, delta-9-tetrahydrocannabinol.

use of AM 404 as a strategy to treat sensorimotor processing
deficits associated to schizophrenia.

It is worth mentioning that the doses of AM 404 used in
our previous study have been shown to increase anandamide
levels in plasma and brain regions of rats (Giuffrida et al.,
2000; Bortolato et al., 2006). Clinical findings show that the
levels of anandamide in the cerebrospinal fluid of non-medicated
schizophrenia patients are negatively correlated to their psychotic
symptoms (DeMarchi et al., 2003; Giuffrida et al., 2004), and that
prodromal individuals with lower levels of anandamide display
a higher risk for transitting to psychosis earlier (Koethe et al.,
2009). These results led some authors to suggest that anandamide
plays a protective role in schizophrenia. The absence of AM 404
effects on the PPI of SHRs suggest that increasing anandamide
levels is not sufficient to restore SHRs’ PPI impairment.

Cannabidiol is one of the major constituent of cannabis,
being the most abundant after 19-THC. Cannabidiol acts as an
antagonist of the cannabinoid receptors CB1 and CB2 agonists
and inhibits the reuptake and degradation of anandamide. It is
also an antagonist of the orphan receptor GPR55 and an agonist
of the serotonin receptor 5-HT1A and of the vanilloid receptors
TRPV1 and TRPV2 (Izzo et al., 2009). When administered to
SHRs, cannabidiol restores the PPI deficits (Levin et al., 2014).
In fact, this compound has been shown to restore the PPI
impairments provoked by MK-801 (Long et al., 2006), and by
systemic or intra-accumbens administration of amphetamine
(Pedrazzi et al., 2015). In addition, when administered repeatedly,

KEY CONCEPT 7 | Cannabidiol

One of the over 60 compounds of Cannabis sativa, being the most abundant

after 19-THC. Unlike 19-THC, cannabidiol is a non-psychotomimetic drug,

and presents antipsychotic, anxiolytic, anti-inflammatory and neuroprotective

actions.

cannabidiol prevents the PPI disruption induced by chronic
administration of MK-801 (Gomes et al., 2015). Acute or chronic
administration of psychostimulant drugs such as MK-801 and
amphetamine are used to model schizophrenia. The results,
thus, point to an antipsychotic profile of cannabidiol and to the
use of this compound on the treatment of sensorimotor gating
impairments seen in schizophrenia.

In animals without PPI impairments, some authors describe
that cannabidiol does not modify the PPI levels when
administered acutely or chronically (Long et al., 2006; Gomes
et al., 2015; Pedrazzi et al., 2015), while one study shows that it
is able to disrupt PPI (Gururajan et al., 2011). Nonetheless, in
our previous work, administration of cannabidiol increased PPI
in WRs (Levin et al., 2014). Interestingly, typical and atypical
antipsychotic drugs have been shown to increase PPI inWRs and
Sprague-Dawley rats (Hoffman et al., 1993; Swerdlow and Geyer,
1993; Johansson et al., 1995; Depoortere et al., 1997a,b; Levin
et al., 2011). This effect is mainly seen when PPI levels are below
50%, which is our case. Therefore, the effects of cannabidiol on
PPI of WRs are in accordance with the antipsychotic profile
suggested for this drug.

The mechanisms whereby cannabidiol modifies PPI are still
to be elucidated. Our data suggest that the increase in PPI
promoted by this drug is not only due to an increase in
anandamide levels, since the anandamide uptake inhibitor AM
404 does not modify PPI (Levin et al., 2014). Likewise, it is
unlikely that the cannabidiol’s antagonism of CB1 receptors is
the mechanism responsible for its effect on the PPI deficit of
SHRs, given that the CB1 antagonist rimonabant promoted an
opposite outcome (Levin et al., 2014). Regarding cannabidiol’s
action on CB1 receptors, it is noteworthy that although this
compound is able to antagonize cannabinoid CB1/CB2 receptor
agonists-induced stimulation in brain membranes, this effect is
observed with KB values in the nanomolar range, way below
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the Ki for displacement of [3H]CP55940 from CB1 and CB2
(Pertwee, 2008). In addition, the effectiveness of cannabidiol
in inhibiting [35S]GTPγS binding to brain membranes of wild-
type mouse is not different from CB1−/− mouse (Pertwee,
2008). On the other hand, Long et al. (2006) described that
cannabidiol’s ability of restoring the PPI deficit induced by
MK-801 is prevented by pretreatment with capsazepine, a
TRPV1 antagonist. Thus, although other mechanisms of action
cannot be disregarded, cannabidiol’s effects on PPI seem to
be at least partially related to its action on the vanilloid
system.

Other animal studies, investigating additional schizophrenia-
like behavioral paradigms, support cannabidiol’s antipsychotic
properties (Table 3). The administration of this compound is able
to diminish the stereotyped behavior and the hyperlocomotion—
behaviors that model the positive symptoms of schizophrenia—
induced by psychotomimetic drugs (Zuardi et al., 1991; Moreira
and Guimaraes, 2005; Long et al., 2010; Gururajan et al., 2012).
Cannabidiol also restores drug-induced impairments in social
interaction (Malone et al., 2009; Gururajan et al., 2012), and
counteracts the deficit in contextual fear conditioning displayed
by the SHRs (Levin et al., 2012).

The promising aforementioned pre-clinical data led to
clinical studies (Table 3). In healthy volunteers, cannabidiol
is able to attenuate the psychotic symptoms induced by the
administration of psychotomimetic drugs (Karniol et al., 1974;
Zuardi et al., 1982; Bhattacharyya et al., 2010). In a case-study,
this cannabinoid significantly reduced schizophrenia symptoms
in the Brief Psychiatric Rating Scale (BPRS), in a way superior to
the typical antipsychotic drug haloperidol (Zuardi et al., 1995).
Moreover, an open-label study with Parkinson’s disease patients
showed that cannabidiol administration, in addition to their
usual treatment, decreases psychotic symptoms—evaluated by
BPRS and by the Parkinson Psychosis Questionnaire—without
worsening their motor function (Zuardi et al., 2009). Also,
several studies suggest that cannabidiol is safe in humans and
animals, and does not alter physiological parameters (blood
pressure, heart rate and body temperature) or induce motor and
psychological side effects (Bergamaschi et al., 2011).

Thereafter, a double-blind controlled clinical trial with
schizophrenia patients was performed: treatment with
cannabidiol, for 4 weeks, decreased patients symptoms—
evaluated by BPRS and Positive and Negative Syndrome Scale

(PANSS)—in a way non-inferior to amisulpride, one of the most
effective antipsychotic drugs currently in use. Interestingly, the
cannabinoid induced fewer side effects (weight gain, changes in
prolactin levels and extrapyramidal symptoms) than amisulpride,
and treatment with cannabidiol, but not with amisulpride, led
to an increase in the levels of anandamide in serum that was
associated with the decrease of psychotic symptoms (Leweke
et al., 2012).

All these encouraging clinical and pre-clinical data led to
a recent proof-of-concept study by GW Pharmaceuticals. The
phase IIa included 88 schizophrenia patients only partially
responsive to standard antipsychotic treatment, who received
cannabidiol or placebo in addition to their antipsychotic
medication for 6 weeks. Cannabidiol was consistently superior to

placebo in attenuating the schizophrenia symptoms, and did not
induce serious adverse events (GW Pharmaceuticals, 2015).

Taken as a whole, data regarding the effects of cannabinoid
drugs on PPI reinforce the involvement of the endocannabinoid
system in the sensorimotor gating functioning and in the
pathophysiology of schizophrenia. Among the drugs that
act on the endocannabinoid system, pre-clinical and the
subsequent clinical data point to cannabidiol as the most
promising compound for treating schizophrenia symptoms
without inducing significant side effects. Nevertheless, most
of the clinical evidence that suggests cannabidiol as a new
antipsychotic agent or adjunctive treatment does not investigate
specifically sensorimotor gating/ PPI deficits. Accordingly, data
from pre-clinical studies using animal models, like our previous
one (Levin et al., 2014), are fundamental to support future
clinical studies focused on these deficits in schizophrenia
patients.
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