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Abstract: Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As 
the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, 
microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory 
polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in 
the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors 
in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of 
microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling 
crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an 
overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, 
polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, 
inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of 
innovative therapeutic strategies. 
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Introduction
Stroke ranks as one of the top causes of death and disability globally.1 Over the past thirty years, there has been a 70% rise in 
the global incidence of stroke, a 43% increase in its mortality rate, and at the same time, a 32% increase in disability-adjusted 
life years.2 It is predicted that 12 million people will die from stroke by 2030.3 Stroke is divided into two types. Most strokes 
are essentially ischemic strokes due to blood clots or lumps blocking blood vessels, while a few strokes are hemorrhagic 
strokes caused by blood vessel rupture.4 The latter includes intracerebral hemorrhage and subarachnoid hemorrhage.5 Stroke 
has a significant impact on both physical and mental health, disrupting regular daily activities and leading to economic 
hardship for families and society. Numerous factors have been identified as controllable risk factors for stroke, including 
hyperlipidemia, alcohol and drug abuse, smoking, unhealthy diet, and diabetes.6

Even though ischemic stroke has a high incidence rate, the treatment options remain limited. Commonly used treatments 
include thrombolysis and surgical treatments. Thrombolysis includes intravenous thrombolysis (IVT),7 arterial thrombolysis 
(IAT),8 and bridging therapy (IVT combined with IAT).9 When it comes to thrombolytic drugs, the FDA only approves 
thrombolysis with tissue plasminogen activator. The surgical treatment for stroke is mechanical thrombectomy.10 Further 
research is being conducted on treatments such as antiplatelet therapy, neuroprotective therapy, stem cell therapy, and 
rehabilitation therapy, yet their therapeutic effects remain limited.6 The significance of inflammation in stroke has been 
emphasized more and more in recent studies. Moreover, the promotion of effective neurogenesis is increasingly being 
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recognized as a crucial therapeutic approach for stroke treatment. The response of microglia post-stroke is intricate and closely 
linked to the development and prognosis of the stroke. Microglia, functioning as resident immune cells, rapidly activate after 
an ischemic injury, displaying both pro-inflammatory and anti-inflammatory characteristics and regulating neuroinflammation 
through polarization and secretion of various chemokines.11 Microglia-targeted therapy for ischemic stroke has significant 
potential due to their ability to clear away debris and secrete deleterious factors and trophic cytokines to support tissue 
regeneration and remodeling.12 Examining the basic roles of microglia in both physiological and ischemic brains, along with 
their communication with neurons and other glial cells, this review summarizes potential therapeutic targets for ischemic 
stroke that have been linked to them in the last decade. The article highlights potential therapeutic targets for ischemic stroke 
associated with microglia over the past ten years.

Physiological Functions of Microglia
Microglia, accounting for up to 10% of the cells in the brain,13 play a crucial role in protecting the central nervous system 
(CNS) from damage.14 Controversy remains regarding the exact origin of microglial progenitors, which are usually thought to 
originate from primitive yolk sac macrophages and infiltrate the CNS in the early stages of development.15 Most human 
microglia are situated in the gray matter, and they typically have a morphology characterized by cells with numerous short, 
fine processes.16 Microglia also express a number of specific and non-specific molecular markers that manifest different 
functions in different physio-pathological processes, respectively (Table 1).17 Microglia are typically referred to as “resting” in 
physiological conditions, whereas their reactive morphology under pathological conditions is referred to as “activated”. 
However, this terminology has been pointed out to be imprecise, since microglia are constantly responding to changes in their 
CNS environment (the adjacent tissue cells and the various factors they secrete) in different ways (by continually retracting 
and extending their ramified processes), even in normal physiological circumstances.18 Microglia also play a unique “sentinel” 
surveillance role,13 monitoring the quantity of synapses, which are neuronal structures that rapidly transmit information 
between neurons and transform this information during transmission.19 They also promote synapse formation, prune synapses, 
phagocytose cellular synapses, control neuronal firings, and tidy away debris, thereby preserving homeostasis in the CNS.20,21 

Table 1 Major Markers for Specific Identification of Microglia

Markers Full Name Specificity Functions References

P2Y12 P2Y purinoceptor 12 Microglia-specific 
detection

The expression of P2Y12 is significantly reduced after 
microglial activation

[23–25]

TMEM119 Transmembrane protein 119 Microglia-specific 
detection

During pathological conditions, the immunoreactivity for 
TMEM119 decreases

[26,27]

SALL1 Sal-like protein 1 Microglia-specific 
detection

Its inactivation resulted in the transition of microglia from 
resting tissue macrophages to inflammatory phagocytes

[28,29]

Hexb Hexosaminidase subunit beta Microglia-specific 
detection

Stably expressed during both homeostatic and pathological 
conditions

[30]

IBA1 Ionized calcium binding 
adapter molecule 1

Macrophages and 
microglia marker

Provide an exceptional visualization of their morphology [31,32]

CD11b Cluster of differentiation 11b Macrophages and 
microglia marker

Well-established markers; associated with pathological 
remodeling of neural circuits

[33,34]

TREM2 Triggering receptor expressed 
on myeloid cells 2

Macrophages and 
microglia marker

In pathological conditions, the expression of TREM2 increases [35,36]

CX3CR1 CX3C chemokine receptor 1 Macrophages and 

microglia marker

CX3CR1 levels are downregulated in activated microglia, 

which affects microglia migration and adhesion

[37–41]

CSF1R Colony-stimulating factor 1 

receptor

Macrophages and 

microglia marker

Directly controls the development and maintenance of 

microglia

[42,43]
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So there is no sudden shift from “resting” to “activated” in response to disease, injury, or other pathological conditions. 
Therefore, many scholars prefer to rename resting microglia as “homeostatic” and to use “reactive to” or “responding to” (ie, 
the context) to describe microglial activation.22 Despite the variety of names, the traditional terms “resting” and “activated” 
are still widely used.

Microglia and Phagocytosis
The primary role of microglia is the destruction of entire cells or cellular substructures, particularly synapses.44 When brain 
tissue is infected or brain cells perish, the parenchyma is left with dead cells and aggregated proteins. Failure to remove these 
substances can lead to tissue damage as they release reactive oxygen species (ROS) and inflammatory mediators.45 In cases of 
brain tissue infection or cell death, the parenchyma may accumulate dead cells and aggregated proteins. Therefore, under 
physiological conditions, microglial phagocytosis is the main way of getting rid of unwanted materials in the parenchyma.46 

During development, nucleotides (adenosine triphosphate (ATP), adenosine diphosphate (ADP), or uridine triphosphate 
(UTP)) released by neurons are involved in synaptic pruning through activation of P2Y12 receptors on microglia. These 
receptors are upregulated, particularly during ischemic brain injury.47,48 During pathological conditions, neurons also release 
nucleotides that act as “find-me” signals, directing microglia to the site of damage and promoting their activation.46 

Phosphatidylserine (PS), the primary phospholipid in the inner leaflet of the neuronal plasma membrane,49 acts as a crucial 
“eat-me” signal. Nevertheless, it remains unclear whether the presence of PS alone is adequate to trigger phagocytosis. During 
cell death/dying, the irreversible translocation of PS to the cell surface can be caused by ATP depletion, intracellular calcium 
accumulation, DNA damage, and oxidative stress.50,51 This is recognized either directly or indirectly (via bridging proteins 
that interact with PS) by microglial receptors, which then induce its phagocytosis.52 Several receptors directly recognize PS, 
including brain angiogenesis inhibitor I, Stabilin2,53 members of the T-cell immunoglobulin and mucin family,52,53 and the 
phosphatidylserine receptor. Bridging proteins, such as growth arrest-specific gene 6 and milk fat globule-EGF factor 8, bind 
to PS to facilitate indirect recognition.54 Interacting with low-density lipoprotein receptor-related protein 1 on microglia, cell 
surface calreticulin serves as an “eat-me” signal to initiate phagocytosis.50,55 Microglia are possibly the sole cells in the brain 
that express various crucial complement components, including complement component C1q (C1q), complement receptor 3 
(CR3), and CR5.56 By binding to cell debris or cells that are meant to be phagocytosed, complement can enhance 
phagocytosis. C1q, for instance, induces phagocytosis by binding to calreticulin or cell-surface PS to enhance signaling 
recognition, or directly to the functional phagocytosis CR3 on the surface of microglia.57

The Role of Microglia in Ischemic Brain
Ischemic strokes are typically divided into three stages: the acute phase (within 3 days), the subacute phase (7–10 days), 
and the chronic phase (weeks to months). The ischemic-damaged brain tissue is comprised of two main regions: the 
ischemic core and the penumbra. With minimal blood flow in the ischemic core leading to instant neuronal death, the 
penumbra, accounting for half of the lesion volume, is a hypoperfused area on the periphery of the core.58 Over time, this 
area gradually transforms into irreversibly damaged tissue, becoming the ischemic core. However, with rapid reperfusion, 
the penumbra can be salvaged and normal function can be restored.59 We have summarized the manifestations of 
microglia in the ischemic brain into three main areas: activation, polarization, and crosstalk with other cells (Figure 1).

Microglia and Activation
When cerebral ischemia occurs, neurons in the vicinity of the affected arteries tend to perish rapidly, accompanied by 
cerebral oedema, blood-brain barrier destruction, and neuroinflammation.60 When cells are under stress and are dying, 
they begin to emit molecules of danger that have an immediate effect on microglia including ATP, UTP, and damage- 
associated molecular pattern molecules (DAMPs).61 Since complement factors such as C5a are released at pathological 
sites, the motility of microglia can be enhanced and directed to the diseased or damaged area through G-protein- 
dependent pathways and rearrangement of the actin cytoskeleton.62 Purinergic receptors P2X7 and P2Y12 are expressed 
in microglia and act as key sensors of brain injury, triggering microglia activation upon stimulation.63 They can both be 
activated by ATP, with activation of the P2X7 receptor triggering microglial proliferation,64 superoxide production,65 and 
release of interleukin 1β (IL-1β)66 and tumor necrosis factor (TNF)-α.67 Upon activation of the P2Y12 receptor, 
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Figure 1 Microglial behavior after ischemia and their crosstalk with other cells. After ischemic stroke, complement factors are released at the site of the pathology, directing microglia 
to the lesioned or damaged area. Damage-associated molecular pattern molecules (DAMPs) are released from damaged or dying cells, which activate microglia. In addition to 
morphological changes, activated microglia polarize in response to different factors towards an anti-inflammatory phenotype that secretes neurotrophic factors and acts as 
a neuroprotectant, and a pro-inflammatory phenotype that releases deleterious factors that not only injure oligodendrocytes, but also induce A1-responsive astrocytes. At the 
same time, signals from these cells can, in turn, modulate microglial responses. 
Abbreviations: TNF, tumor necrosis factor; IL, interleukin; NO, nitric oxide; ROS, reactive oxygen species; MMPs, matrix metalloproteinases; IFN, interferon; iNOS, inducible nitric oxide 
synthase; TGF, transforming growth factor; IGF, insulin-like growth factor; NGF, nerve growth factor; VEGF, vascular endothelial growth factor; GLT, glutamate transporter; GDNF, glial-derived 
neurotrophic factor; CNTF, ciliary neurotrophic factor; BDNF, brain-derived neurotrophic factor; NT, neurotrophins; C, complement; HMGB1, damage-associated molecular pattern molecules; 
ATP, adenosine triphosphate; PRX, peroxiredoxin; LPS, lipopolysaccharide; IRF, interferon regulatory factor; Glu, glutamate; UTP, uridine triphosphate; HSPs, heat shock proteins.
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microglia undergo process extension and then migrate towards the stimulus by interacting with integrin-β1.25,68 

Microglia possess Toll-like receptors (TLRs), a group of transmembrane proteins that are essential for detecting and 
defending against microbials. They can be stimulated by endogenous ligands and agonists, such as high-mobility group 
box 1 (HMGB1) protein,69 fibronectin, heparan sulfate, galectin-3,70 peroxiredoxin (PRX) family proteins,71 heat shock 
proteins (HSPs),72 and hyaluronic acid. This triggers the activation of microglia, which increases the expression of 
several pro-inflammatory genes.73 Prostaglandin E2, an inflammatory mediator, interacts with the G protein-coupled 
receptor EP2 expressed on microglia. Activation of the EP2 receptor exacerbates the induction of inflammatory 
mediators such as cyclooxygenase-2, IL-6, TNF-α, and IL-1β.74 The triggering receptor expressed on myeloid cell 2 
(TREM2) is an immune-related receptor on the surface of microglia. One of its ligands, HSP60, stimulates TREM2 to 
activate microglial phagocytosis, and the absence of TREM2 promotes inflammation.75,76 In addition, zinc released from 
neurons after injury has been shown to trigger microglial activation by sequentially activating nicotinamide adenine 
dinucleotide phosphate oxidase, poly (ADP-ribose) polymerase-1 (PARP-1), and nuclear factor kappa B (NF-κB).77 

However, when microglia become over-activated, it can result in neuronal dysfunction, oxidative stress, and neuroin-
flammation. This is caused by the excessive production of various cytotoxic factors including ROS, IL-1β, TNF-α, and 
nitric oxide (NO).78,79 Microglial activation is the initial stage of the inflammatory response triggered by ischemic brain 
injury, followed by infiltration of various immune cells, such as T-cells, natural killer cells, and neutrophils, all of which 
exacerbate the inflammatory process.80,81

There is a connection between the morphology and function of microglia as well. Ramified microglia are associated with 
a homeostatic state, while activated microglia have rounded cell bodies and usually have fewer and shorter processes.22 After 
stroke, microglia undergo four distinct morphological stages that signify a rising level of activation: ramified, intermediate, 
amoeboid, and round.82 In the uninjured area, microglia show a ramified pattern, while in the peri-infarct region, intermediate 
and amoeboid cells can be seen.83 When microglia take on a rounded form, it is a sign of a highly activated state, usually found 
in the core of an infarct.84 In the acute phase of ischemic stroke, neurons in the ischemic core region experience a lack of 
glucose and hypoxia, causing rapid activation of microglia within a few minutes.85 At 24 hours, activated microglia can be 
found in the ischemic core and the boundary region, with their presence increasing in the ischemic core after 72 hours.86 

Simultaneously, activated microglia release various inflammatory factors that play a role in a robust inflammatory response.87 

Microglial activation reaches its peak on Day 2 or 3 and lasts for several weeks thereafter.60 In addition to the infarct site, 
activated microglia can be observed in areas further away during the chronic phase.86 In the ischemic core, microglia are 
primarily activated due to excitotoxic cascade signals,88 while in the peri-infarct regions, their activation is initiated by 
DAMPs.89 Activated microglia remain in and around the area of the residual infarct for a period of 30 days.90

Microglia and Polarization
Microglia not only undergo morphological changes, but also exhibit different patterns of gene expression in different contexts, 
species, sex, time, and space, as well as genetic transcriptional profiles, leading to differentiation of cells into different 
phenotypic groups (including motility, morphology, and ultrastructure).22 Many current studies have used integrative analyses 
of gene and protein expression, single-cell technologies, and multi-omics to propose new nomenclatures based on the different 
microglia states observed in various species and models. For example, the disease-associated microglia (DAMs) in 
Alzheimer’s disease (AD) pathology models;23 microglial neurodegenerative phenotype (MGnD) in several disease 
models;91 activated response microglia (ARMs) and interferon-responsive microglia (IRMs) in an AD pathology mouse 
model;92 human AD microglia (HAMs).93 For more information on microglia nomenclature, we refer the reader to the 
distinguished review “Microglia States and Nomenclature: A Field at Its Crossroads”. The application of this nomenclature is 
somewhat controversial, and there is insufficient evidence to suggest that “DAM” applies to microglia in all cases of injury. 
Previous studies have classified microglia into anti-inflammatory and pro-inflammatory phenotypes based primarily on their 
responses, including pro- and anti-inflammatory characteristics of individual cells and small populations in the vicinity.94 

Upon stimulation of TLR or ATP receptors by DAMPs, lipopolysaccharide (LPS) and interferon (IFN)-γ can induce activated 
microglia to the pro-inflammatory phenotype, resulting in the secretion of numerous pro-inflammatory mediators.95,96 In 
contrast, fractalkine 16 (CXCL16), IL-4, and IL-13 can trigger a shift in microglia towards an anti-inflammatory phenotype, 
leading to the secretion of anti-inflammatory cytokines that inhibit neuroinflammation mediated by the pro-inflammatory 
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phenotype of microglia.96–98 The molecular processes underlying microglial polarization are still unclear, though.99 Early in 
ischemic stroke, microglia and recruited macrophages exhibit an anti-inflammatory phenotype that protects neurons from 
oxygen-glucose deprivation (OGD).100,101 However, as the stroke progresses, these cells gradually change into a pro- 
inflammatory phenotype in the peri-infarct regions, which exacerbates the damage that caused by OGD to neurons.100 

Hence, it is important to consider the equilibrium between proinflammatory and anti-inflammatory reactions in order to 
predict the outcome of a stroke.102

Microglia and Secretion
It is thought that microglia, primarily of the pro-inflammatory phenotype, contribute to the advancement or escalation of 
neuronal degeneration and inflammation in numerous brain diseases. This is a result of their generation of damaging 
elements such as inflammatory cytokines, NO, and superoxide anions.80 First, in response to an inflammatory stimulus, 
pro-inflammatory phenotype microglia secrete inflammatory molecules like inducible nitric oxide synthase (iNOS), IL- 
1β, TNF-α, and IL-6 to trigger a robust inflammatory response.103–105 Nonetheless, data is accumulating that microglial 
cells, predominantly of the anti-inflammatory phenotype, are able to protect nerve tissue from neuroinflammation by 
releasing substances that have anti-inflammatory properties.106 For example, CD11c+ microglia appear after behavioral 
pain hypersensitivity following nerve injury and express insulin-like growth factor 1 (IGF-1), which contributes to pain 
recovery.107 Two anti-inflammatory molecules, brain-derived neurotrophic factor (BDNF) and amylase 1, can be released 
by microglia when they are activated by astrocytes during tissue healing.108 In the normal brain, microglial subtypes 
express neurotrophins from the nerve growth factor (NGF) gene family, which play a role in promoting the development 
and normal function of neurons and glia. Additionally, they express neurotrophin 3 (NT-3), which encourages phagocytic 
function and microglial growth.109 Extracellular vesicles (EVs) secreted by microglia in the ischemic cerebral environ-
ment are enriched with transforming growth factor β1 (TGF-β1). This molecule stimulates the polarization of microglia 
into anti-inflammatory phenotypes, thereby aiding in the anti-inflammatory response.110 Furthermore, in response to 
inflammatory stimuli, microglia express higher levels of neuregulin-1, glial cell-derived neurotrophic factor (GDNF), and 
their receptors.111

Microglial Crosstalk with Other Cells
Microglia are essential for interactions with different types of cells in the CNS and are in charge of a number of 
developmental and functional activities, such as the removal of dead neurons and synaptic pruning.112 Acute damage and 
recovery after stroke can be impacted by the dynamic interactions that occur between microglia and neurons, as well as 
between other glial cells.113

Microglia and Neurons
Following ischemic stroke, neurons are severely damaged by the effects of ischemia and hypoxia.114 When neurons run 
out of energy, lactic acid builds up and causes acidosis. By raising H+ concentrations and speeding up the conversion of 
superoxide anion (O2

−) to hydrogen peroxide (H2O2) or the more reactive hydroperoxyl radical (HO2), an acidic 
environment encourages a pro-oxidant effect.115 ROS are naturally occurring byproducts of oxygen metabolism, 
including peroxides, free radicals, and oxygen ions.116 One of the main causes of neuronal malfunction and death is 
excess ROS, which also causes oxidative stress by oxidizing proteins, DNA, and RNA. Lipid peroxidation is another 
impact of excess ROS.117 As the primary excitatory transmitter in neuron-to-neuron communication, glutamate quickly 
rises in the ischemic brain as soon as ischemia occurs, with activated microglia being a source.118,119 Ionotropic 
glutamate receptor overactivation causes excitotoxicity, resulting in the death of neurons.120 By releasing “On” and 
“Off” signals, neurons can regulate microglial activity based on the normal or pathological conditions.121 Interactions 
between neurons and microglia involve a range of ligands and receptors.122 For example, CX3CL1 is a neuronally 
expressed chemokine, and its G-protein-coupled receptor, CX3CR, is predominantly expressed on microglia.123,124 In 
reaction to pro-inflammatory stimuli, CX3CL1 is secreted and its levels are increased, contributing to neuron-microglia 
communication. Mice that lack CX3CL1 show smaller infarct sizes and experience better functional outcomes.125 The 
pyrin domain-containing 3 (NLRP3), which has recently attracted the attention of many researchers, has the potential to 
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induce inflammatory responses and trigger a number of inflammatory pathways.126 Research indicates that CX3CR1 
adversely regulates NLRP3 signaling.127 Neurons have the capacity to affect microglial functioning, and a recent study 
revealed that lipocalin-2 secretion from damaged neurons can cause microglia to shift towards an anti-inflammatory 
phenotype. In addition, Lipocalin-2 stimulates BBB breakdown, white matter damage, neuronal death, and neutrophil 
infiltration. It also intensifies inflammation following a stroke.128 Furthermore, ischemia-induced damaged neurons can 
trigger the release of IL-4, which may then induce microglia to express the IL-4 receptor more strongly. Subsequently, 
this triggers the transformation of microglia into an anti-inflammatory phenotype.129 Moreover, the role of IGF-1 derived 
from microglia in maintaining neuronal life has been demonstrated. By encouraging angiogenesis and enhancing 
cerebrovascular function in ischemic regions, the IGF-1/insulin-like growth factor 1 receptor (IGF1R) axis mitigates 
ischemia-induced harm by supporting cerebral angiogenesis and neurogenesis.130

Microglia and Astrocytes
Within the CNS, astrocytes are not only the most abundant cell type, but also an integral part of the brain’s innate immune 
system.131 It has been shown that activated astrocytes exhibit two polarization states: a neurotoxic or pro-inflammatory 
phenotype (A1) and a neuroprotective or anti-inflammatory phenotype (A2).132 (Similar to the microglia paradigm) A1 
astrocytes are considered deleterious due to the up-regulation of synaptically detrimental genes and secretion of toxins, 
whereas A2 astrocytes up-regulate neurotrophic or anti-inflammatory genes and promote reparative functions, suggesting that 
they are protective.132,133 Recently, astrocyte subtypes with different expression patterns have been identified using single- 
nuclei and single-cell studies in different species, diseases and injury models, such as Alzheimer’s disease,134 amyotrophic 
lateral sclerosis,135 HIV infection,136 and spinal cord injury.137 The emergence of new typing patterns further illustrates the 
complexity of astrocyte expression in disease development. Microglia are the first responders to injury, and they can trigger 
astrocyte activation. It has been established that microglial activation is able to induce A1 reactive astrocytes both in vitro and 
in vivo conditions. This is due to the release of three cytokines: IL-1α, TNF-α, and C1q.132 A1 astrocytes lose their phagocytic 
function and fail to support neurite growth and synaptogenesis. Instead, they trigger the death of neurons and oligodendro-
cytes. In contrast, microglia induce the A2 phenotype in astrocytes by downregulating the astrocytic P2Y1 purinergic 
receptors and forming an astrocytic scar for neuroprotective and repair functions.138 By inducing intracellular signal 
transduction in astrocytes, activated microglia secrete various pro-inflammatory mediators that either directly initiate or 
promote astrocytic responses. These mediators include NF-κB, signal transducer and activator of transcription (STATs), and 
mitogen-activated protein kinase pathways.139 These responses include the formation of scars to exert a protective effect or the 
release of cytokines to exacerbate inflammatory responses.140 Further activation of distant microglia by astrocytes results in 
heightened secretion of specific inflammatory cytokines.141 Furthermore, astrocyte-derived IL-33 signals primarily to micro-
glia in physiological circumstances and encourages them to engulf synapses.142 Pathologically, by increasing the production of 
heme-oxygenase (HO)-1 and lowering intracellular ROS levels in microglia, astrocytes can further regulate the inflammatory 
response of microglia, thereby preventing excessive inflammatory responses in the brain.143 The extracellular release of C3 is 
initiated by the activation of the NF-κB pathway, an inflammatory pathway in astrocytes. C3 then interacts with microglial 
C3aR to facilitate microglial phagocytosis.144

Microglia and Oligodendrocytes
Oligodendrocytes, which form the myelin sheath in the CNS, are particularly susceptible to ischemia.145 After merely 30 
minutes of ischemia, there was obvious swelling of oligodendrocytes. By the time 3 hours had passed, a large number of 
oligodendrocytes had been fatally damaged, occurring before the neurons in the ischemic region met their demise.146 Various 
mechanisms have been identified as potentially causing harm to oligodendrocytes in ischemic conditions, including a 
deficiency of trophic factors, oxidative stress, and activation of apoptotic pathways.147 Following hypoxic injury, microglia 
produce inflammatory cytokines such as TNF-α and IL-1β via the mitogen-activated protein kinase signaling pathway, leading 
to oligodendrocyte loss.148 In addition, the expression of N-methyl D-aspartate receptor subunits on microglia after hypoxia 
can lead to oligodendrocyte death by mediating nitric oxide production through the NF-κB signaling pathway.149 Microglia- 
generated ROS can be damaging to both neurons and oligodendrocytes.150 However, evidence has come to light that microglia 
have a beneficial effect on oligodendrocytes/oligodendrocyte pro-genitor cells, with the anti-inflammatory phenotype 
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polarization of microglia being the primary source of its protective function. This can drive the differentiation of oligoden-
drocytes and promote myelin regeneration during myelin regeneration after stroke.151 The pro-inflammatory phenotype of 
microglia exacerbates oxygen glucose deprivation-induced oligodendrocyte death.152

Treatment Targets for Microglia in Ischemic Stroke
A wave of studies on microglia has been conducted in the last ten years, revealing possible targets for treatment. Overall, 
we divide them into three categories: adjusting the polarization of microglia to promote anti-inflammatory effects, 
inhibiting their activation, and controlling how other cells interact with microglia (Table 2).

Table 2 Therapeutic Targets for Ischemic Stroke Associated with Microglia

Targets Drugs/Methods Species/Model Assessment Timepoints and 
Methodology

Effects References

IRF4 

signaling

IRF5 conditional knockout 60-min MCAO in 

young male IRF5 
conditional 

knockout mice

3 days after MCAO. Detecting the 

expression levels of cell membrane 
proteins (CD68 and CD206) and 

intracellular inflammatory markers 

(IL-1β, TNF-α, and IL-4/IL-10) by 
flow cytometry

Promote the anti- 

inflammatory polarization 
of microglia

[153]

LPS-Ex Tail vein injection of LPS-Ex MCAO (2h)/r in 
rats

6h and 24h after MCAO/r. Staining 
brain sections with CD80 (a 

microglial pro-inflammatory 

surface marker) and CD206 (a 
microglial anti-inflammatory 

phenotype surface marker)

Promote the anti- 
inflammatory polarization 

of microglia

[154]

Caspase- 

1

Intraperitoneal injection of 

Vx-765 for 3 consecutive 

days

60-min MCAO in 

male mice

3 days after MCAO. Double 

immunofluorescent staining with 

the microglia marker IBA1, CD16/ 
CD32 (microglial pro-inflammatory 

phenotype surface markers), and 

CD206

Promote the anti- 

inflammatory polarization 

of microglia

[155]

PACAP Stereotaxic 

intracerebroventricular 
injection of PACAP- 

expressing embryonic stem

72h pMCAO in 

male mice

7 and 14 days after pMCAO. 

Immunohistofluorescence labeling 
for Arg-1 (a microglial anti- 

inflammatory phenotype marker)

Promote the anti- 

inflammatory polarization 
of microglia

[156]

IL-13/ 

STAT3

Intranasal IL-13 infusion two 

hours after reperfusion for 

7 consecutive days

60-min tMCAO in 

adult male mouse

35 days after tMCAO. Staining with 

IBA1, CD206, and CD16

Promote the anti- 

inflammatory polarization 

of microglia

[157,158]

STAT3 

signaling 
pathway

Intraperitoneal 

administration of FTY720 
for 3, 10, or 30 consecutive 

days

Chronic WM 

ischemic injury in 
wild-type mice

3, 10, and 30 days after ischemia. 

Double labeling IBA1 with CD16/ 
32 and CD206

Promote the anti- 

inflammatory polarization 
of microglia

[159]

PPARγ 
signaling 
pathway

Intraperitoneal injection of 

rhFGF21 6 h after 
reperfusion, followed by 

daily injections for 7 

consecutive days

MCAO (60-min)/r 

in mouse

1, 3, and 7 days after MCAO/r. 

Measure the number and 
phenotypes (CD68+, CD86+, and 

CD206+) of microglia by flow 

cytometry

Reduce the pro- 

inflammatory polarization 
of microglia

[160]

(Continued)
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Table 2 (Continued). 

Targets Drugs/Methods Species/Model Assessment Timepoints and 
Methodology

Effects References

TLR4/ 
NF-κB 

signaling 

pathway

TLR4 knock-out MCAO (2h)/r in 
mice

4 h after MCAO/r. Record the 
infarcted areas and volumes as 

images using a digital camera; 

examine the expression of CD11b 
(an activated microglia marker) by 

immunohistochemical and western 

blot analysis for NF-κB’s p65 
subunit

Improvement of cerebral 
infarction and neurological 

deficits; suppression of 

inflammation

[161,162]

rTMS twice per day 36h 
after MCAO/r for 7 

consecutive days

MCAO (60-min)/r 
in adult male mice

1 day before and 8 days after 
MCAO/r. Immunofluorescence 

staining for IBA1/CD86 and IBA1/ 

CD206 colocalization

Promote the anti- 
inflammatory polarization 

of microglia

[163]

Subcutaneous injection of 

CSO (1.3mL/kg) every 
other day for 3 weeks

MCAO (60-min)/r 

in adult male rats

24h after MCAO/r. 

Immunofluorescence staining for 
GFAP (an astrocyte marker) and 

IBA1

Inhibition of microglial and 

A1 astrocytic activation

[164]

Lpar5 

gene

Injection of LV-PARP14 into 

the prospective site 4 days 

prior to stroke

PT stroke mice 3, 7, and 14 after stroke. 

Immunostaining for AIF1/IBA1+ 

cells

Inhibition of microglial 

activation

[165]

STING Intraperitoneal 

administration of the 
STING inhibitor C-176 30- 

min after MCAO

90-min MCAO in 

adult male mice

3 days after MCAO. 

Immunofluorescence staining of 
IBA1 with CD16/32 and CD206

Promote the anti- 

inflammatory polarization 
of microglia

[166]

NF-κB 

pathway

Intraperitoneal 

administration of DBZ 1h 
before, and 4h after 

tMCAO/r, followed by daily 

injections for 7 consecutive 
days

tMCAO (90-min)/r 

in adult male rats

3 days after tMCAO/r. Measure the 

mRNA expression of inflammatory 
cytokines, pro-inflammatory 

markers (IL-1β, IL-6, TNF-α, and 

iNOS), and anti-inflammatory 
phenotype markers (CD206 and 

IL-10) in microglia

Reduce the release of pro- 

inflammatory factors; 
promote anti- 

inflammatory mediators

[167]

– Oral administration of 

atorvastatin (20 mg/kg/d)

pMCAO in adult 

male mice

1 day after pMCAO. Examine the 

expression of inflammatory 

phenotype signature genes and 
proteins by RT-qPCR and 

immunofluorescence

Anti-inflammatory effect [168]

Wnt/β- 

catenin 

signaling 
pathway

Intranasal delivery of Wnt- 

3a at the time of 

reperfusion, and repeated 
once a day for the next two 

days

60-min tMCAO in 

adult male mice

72h after tMCAO. Examine the 

expression of iNOS, TNF-α, Arg1 

and CD206 by 
immunofluorescence staining and 

western blot analysis

Decrease the production 

of pro-inflammatory 

substances; increase the 
expression of anti- 

inflammatory markers

[169]

Abbreviations: IRF, interferon regulatory factor; MCAO, middle cerebral artery occlusion; TNF, tumor necrosis factor; IL, interleukin; LPS, lipopolysaccharide; Ex, 
exosomes; MCAO/r, middle cerebral artery occlusion/reperfusion; IBA1, ionized calcium binding adapter molecule 1; PACAP, pituitary adenylate cyclase-activating 
polypeptide; pMCAO, permanent middle cerebral artery occlusion; Arg-1, arginase-1; STAT, signal transducer and activator of transcription; tMCAO, transient middle 
cerebral artery occlusion; WM, white matter; PPAR, peroxisome proliferator activated receptor; rhFGF, recombinant human fibroblast growth factor; TLR, toll-like 
receptor; NF, nuclear factor; rTMS, repetitive transcranial magnetic stimulation; CSO, cottonseed oil; GFAR, glial fibrillary acidic protein; Lpar5, lysophosphatidic acid 
receptor 5; LV-Parp14, lentiviral vector selectively expressing poly ADP-ribose polymerase; PT, photothrombosis; AIF1, allograft inflammatory factor 1;STING, stimulator of 
interferon genes; DBZ, tanshinol borneol ester; iNOS, inducible nitric oxide synthase; RT-qPCR, quantitative real-time PCR.

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S461795                                                                                                                                                                                                                       

DovePress                                                                                                                       
3343

Dovepress                                                                                                                                                              Shui et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Promoting Anti-Inflammatory Microglial Polarization
Since microglia show a dynamic response to ischemic injury,100 it has been proposed that inhibiting the pro-inflammatory 
phenotype may be a plausible therapeutic strategy for cerebral ischemia. Different inducers have been successfully used in in 
vitro experiments to analyze and regulate the polarization of microglia. Tanshinol borneol ester (DBZ) is a newly developed 
synthetic compound that has anti-inflammatory and anti-atherosclerotic characteristics. Research has demonstrated that in 
both LPS-stimulated BV2 cells and mouse primary microglia cells, NF-κB activity is dramatically inhibited by DBZ, which 
also reduces the production of pro-inflammatory molecules and increases the expression of mediators of anti-inflammatory 
phenotypes.167 A series of studies on mice with permanent middle cerebral artery occlusion (pMCAO) by Zhang et al 
discovered that atorvastatin had a positive effect on the defects in sensorimotor function, as well as reducing microglia- 
induced neuroinflammation through the suppression of proinflammatory polarization of microglia in the peri-infarct cortex.168 

What’s more, through the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway, ginkgetin and recombinant 
human fibroblast growth factor 21 (rhFGF21) therapies have been shown to enhance the anti-inflammatory polarization of 
microglia, which ultimately leads to the suppression of neuroinflammation and the enhancement of neurological function 
recovery in individuals suffering from ischemic stroke.160,170 In a mouse model of acute ischemic stroke (AIS), 
Chuanzhitongluo (CZTL), an ancient Chinese medicine mixture, was found to attenuate the inflammatory response by 
blocking the activation of the NLRP3 inflammasome and promoting a shift of microglia from a pro-inflammatory phenotype 
to an anti-inflammatory one.171 Research utilizing the transient middle cerebral artery occlusion mouse model (tMCAO) has 
revealed that IL-13 can enhance the long-term prognosis of ischemic stroke by inducing microglia/macrophages to adopt an 
anti-inflammatory phenotype, possibly through the inhibition of STAT3 phosphorylation.157,158 The process of microglia/ 
macrophage polarization towards the anti-inflammatory phenotype in cerebral ischemia/reperfusion (I/R) damage has also 
been demonstrated to be regulated by the janus-activated kinase (JAK2)/STAT3 signaling pathway.158 The study by Qin et al 
identified Fingolimod (FTY720) as an immune modulator that reduces microglia-mediated neuroinflammation after ischemia 
and uses the STAT3 pathway to polarize microglia into an anti-inflammatory state, stimulating the development of 
oligodendrocytes.159

In response to ischemic injury, the body spontaneously generates other anti-inflammatory and pro-inflammatory responses 
associated with microglia. These responses include the regulation of gene transcription and the production of various 
functional proteins and molecules. Our goal is to identify these regulators and guide them in a favorable direction to enhance 
endogenous brain repair. The interferon regulatory factor (IRF) family, particularly the IRF5-IRF4 regulatory axis, has 
recently been found to be significantly associated with neuroinflammation and the polarization of microglia following cerebral 
ischemia. Abdullah et al found that IRF4 suppresses inflammation and encourages the anti-inflammatory polarization of 
microglia, in contrast to IRF5, which induces pro-inflammatory polarization.172 An increasing amount of research has 
demonstrated that the impact of microRNAs (miRs) on the polarization or activation of microglia in CNS disorders is 
growing. For example, miR-124 and miR-Let7a have roles in regulating microglia polarization towards the anti-inflammatory 
phenotype.173,174 MiR-155 has been identified as a pro-inflammatory microRNA. The absence of miR-155 diminishes 
microglial polarization to the pro-inflammatory phenotype.175 Moreover, exosomes (Ex), which are released by macrophages, 
have been demonstrated in many studies to regulate inflammation by transitioning gene transcription.176 In contrast, exosomes 
produced by the LPS-stimulated macrophage RAW264.7 cell line (LPS-Ex) contained higher levels of anti-inflammatory 
factors and genes (miR-212, miR-21-3p, or miR-21#, and miR-126-5p),177–179 which promoted the polarization of microglial 
cells from a pro-inflammatory to an anti-inflammatory phenotype and exerted a more potent and neuroprotective effect.154

Knockout models or inhibitors of different inflammatory proteins, signaling receptors, and cytokines generated from 
microglia may be fully neuroprotective in ischemic brain injury.102 In the brain, innate immune cells (astrocytes, microglia, 
and oligodendrocytes) are the main sources of colony-stimulating factor 1 (CSF-1). Many CSF-1R inhibitors have been 
created and are widely used to deplete microglia, such as Dasatinib, PLX3397, and PLX5622.180 In an experiment using 
tMCAO (30 min) mice as models, investigators assessed the immunomodulatory effects of long-term administration of 
PLX5622 at different time periods after ischemia through in vivo multimodal imaging. They found that CSF-1R inhibition 
transiently reduced neuroinflammation within the infarct.181 Recently, continuous CSF-1R inhibition before and after injury 
has been found in other disease models (tMCAO and pMCAO rodent models, TBI mouse model) to instead exacerbate 
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inflammation and neurological deficits during the first few days of the injury, highlighting the anti-inflammatory role of 
microglia in the early stage of brain damage.138,182,183 It is not yet clear when inhibition of microglia is most effective, and 
research into the optimal therapeutic window may become critical for this targeted therapy. In the wounded CNS, microglia 
selectively express the calcium-activated potassium channel K(Ca)3.1. This channel’s activity is linked to the activation of 
microglia, which promotes inflammation. By using Senicapoc, a K(Ca)3.1 inhibitor, it could lead to modulation of stroke 
outcome by interfering with the inflammatory cascade that occurs after I/R.184 Following middle cerebral artery occlusion 
(MCAO), the stimulator of interferon genes (STING) is activated by mitochondrial DNA (mtDNA) and mediates microglia 
polarization towards a pro-inflammatory phenotype through IRF3/NF-κB signaling. In a recent study, I/R-induced neuronal 
injury, edema, and cerebral infarction were reduced by intraperitoneal injection of the specific STING inhibitor C-176 into 
a mouse model of MCAO.166 Furthermore, after ischemia, there is an increase in TLR4 expression on microglial membranes, 
which activates NF-κB and leads to a pro-inflammatory response in microglia.185 The neuroprotective effects of TLR4 knock- 
out mice in focal cerebral ischemia further support the possibility that we may be able to offer a potential treatment strategy for 
ischemic stroke by altering microglial phenotypes through the TLR4/NF-κB signaling pathway.161,162 In addition, Vx-765, 
a small-molecule caspase-1 inhibitor, safeguards against MCAO injury and reduces microglia-induced neuroinflammation 
mainly by altering microglia polarization from a pro-inflammatory phenotype to an anti-inflammatory phenotype.155

There are a number of other manipulations in experiments that have also been suggested to be connected to the anti- 
inflammatory effects of microglia, and thus, may hold therapeutic promise. In a study, investigators implanted stem cells that 
produced pituitary adenylate cyclase-activating polypeptide (PACAP) into the brains of mice. After seven days of ischemia, the 
data demonstrated that this caused microglia to polarize towards an anti-inflammatory phenotype.156 What’s more, it has recently 
been discovered that cerebral I/R injury-induced neuronal pyroptosis and locomotor impairments can be lessened by the non- 
invasive neuromodulatory method of repetitive transcranial magnetic stimulation (rTMS). This is achieved by restraining the pro- 
inflammatory activation and promoting the anti-inflammatory activation of microglia in the peri-infarcted region.163

Inhibition of Microglia Activation
Impeding the activation of microglia after stroke can reduce neuroinflammation. When human umbilical cord blood 
mononuclear cells are administered systemically after a MCAO in rats, it leads to a reduction in activated microglia and 
results in a decrease in the infarct size.186 Blocking the cellular P2Y12 receptors could impede microglial activation, 
resulting in a decrease in proinflammatory cytokine levels. This suggests that P2Y12 inhibitors have additional 
neuroprotective and anti-inflammatory benefits against ischemic stroke.187 According to Ying et al’s study, photothrom-
botic (PT) stroke mice have significantly elevated levels of PARP14 (poly (ADP-ribose) polymerase family, member 14) 
in the proximity of the infarct zone. Overexpression of PARP14 inhibits the transcription of the lysophosphatidic acid 
receptor 5 (Lpar5) gene, thus inhibiting microglial activation post-stroke.165 Other inhibitors of microglial activation, 
such as minocycline, ginsenoside Rd, and calycosin, have shown possible beneficial effects.188–190 Researchers combined 
the histone deacetylase inhibitor MS-275 and resveratrol in the pMCAO mouse model and found that it had a primary 
direct effect on inhibiting microglia and macrophage activation.191 MiRs can also affect microglial activation, in addition 
to their involvement in microglial polarization in neurological diseases. For instance, overexpression of let-7c-5p, 
a highly conserved miRNA, was observed to inhibit microglial activation in mice with experimental stroke, correlating 
with a decrease in infarction volume and improved neurological outcomes.192 As numerous signaling events are linked to 
microglial activity during ischemia, it is difficult to fully deactivate microglial activation.141

Regulating the Interaction Between Microglia and Other Cells
Controlling the exchange of information between microglia and other cells more precisely could open up possibilities for new 
treatments for stroke. Microglia express CX3CR1 as described previously. A deficiency in CX3CR1 has been shown to 
dysregulate microglial responses in three distinct in vivo models, leading to neurotoxicity. Consequently, enhancing CX3CR1 
signaling could serve to protect against microglial neurotoxicity.193 Furthermore, the collaboration between microglia and 
astrocytes is thought to be a part of the process of forming a glial scar after stroke. In studies conducted in vivo and in vitro, 
treatment with anti-inflammatory microglial small EVs was observed to inhibit astrocyte proliferation, leading to a decrease in 
glial scar formation and an improvement in recovery after stroke.110,194 Yun et al reported that NLY01, a potent glucagon-like 
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peptide-1 receptor agonist, can protect neurons by directly blocking microglia-mediated astrocyte transition into the neuro-
toxic A1 phenotype.195 What’s more, it has been demonstrated that cottonseed oil (CSO) guards against peripheral tissue 
damage, such as inflammatory bowel disease, through its anti-inflammatory effects.196 To investigate the anti-inflammatory 
effects of CSOs in stroke, it has recently been discovered that the use of CSO can reduce the severity of ischemic stroke 
damage by preventing microglial and astrocyte activation and inflammation. This is associated with a decreased activation of 
the neurotoxic A1 phenotype astrocytes and an inhibition of the TLR4/NF-κB pathway.164 In addition, Wnt-3a, a newly 
discovered Wnt protein, has been found to specifically enhance the Wnt/β-catenin signaling pathway, influencing cell 
proliferation and apoptosis. Results from research conducted using the tMCAO mouse model revealed that intranasal Wnt- 
3a could reduce the toxic effects of microglia/macrophages and astrocytes in ischemic brain injury.169

Conclusion
With the prevalence of ischemic stroke across the world, researchers are dedicating more resources to investigating 
treatments for stroke, as the major available treatments remain limited. This review gives a quick rundown of the 
physiological roles played by microglia and how they appear in the ischemic brain, including phagocytosis by microglia, 
microglial activation and polarization processes, and crosstalk with other glial cells. We summarize the therapeutic 
targets of microglia to prevent deterioration of the affected area and attenuate the inflammatory response by intervening 
at different stages of stroke, ultimately improving the prognosis and providing neuroprotection against stroke. With the 
increasing identification of substances and signaling pathways implicated in the intricate process of microglial activation 
and polarization following a stroke, it highlights the potential of microglial-targeted therapy. However, the modulation of 
microglial function following a stroke remains a topic of debate, and many therapies targeting microglia, such as immune 
regulatory strategies and anti-inflammatory treatments, have only been successful in animal models, such as mice. 
Because of the many differences in the physiological systems of rodents and humans, and the controversy over whether 
the microglial cell state found in mice exists in humans, it is essential to study the differences in the types and functions 
of microglia in humans and animal models. Because of the many differences in the physiological systems of rodents and 
humans, and the controversy over whether the microglial cell state found in mice exists in humans, further investigation 
is required before attempting to utilize microglia for clinical applications.
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