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A B S T R A C T   

Background: Glioblastoma multiforme (GBM) is a very aggressive primary central nervous system (CNS) tumor with limited therapeutic options and 
poor prognosis. This study aimed to analyze the association between single nucleotide polymorphisms (SNPs), including IDH1 rs121913500C > T, 
IDH2 rs11540478G > A, and EGFR rs1468727C > T, and their association on the risk and overall survival of GBM patients in Jordan. 
Methods: Using a case-control study design involving 63 GBM patients and 226 healthy controls was conducted at King Abdullah University Hospital 
in Jordan. DNA extraction was performed using formalin-fixed and paraffin-embedded tissue for GBM samples and blood samples for controls. SNPs 
analysis was performed using the Sequenom iPLEX assay sequencing technique. Survival outcomes were assessed using Cox models and hazard 
ratios (HR), and single-cell RNA (scRNA) analysis was performed from GSE70630. 
Results: The study showed a significant association between genotype frequency in GBM cases and controls for specific SNPs, including IDH1 
rs121913500C > T, and EGFR rs1468727C > T. The G/G genotype of rs11540478 (IDH2) was associated with better prognostic outcomes in GBM 
patients. The scRNA analysis demonstrated the differential expression of IDH1, IDH2, and EGFR in GBM, with enrichment in central carbon 
metabolism in cancer. 
Conclusion: Our findings suggest that SNPs, particularly in IDH1 and IDH2 genes and EGFR, may serve as diagnostic and prognostic biomarkers for 
GBM. While the study underscores the clinical relevance of these genetic variants, further investigations with larger and more diverse populations 
are essential to validate and extend these associations.   

1. Introduction 

Glioblastoma multiforme (GBM) is the most common malignancy affecting the brain and central nervous system (CNS), consti-
tuting 45.2 % of malignant primary brain and CNS tumors, 54 % of all gliomas, and 16 % of all primary brain and CNS tumors. GBMs 
are classified into primary and secondary subtypes [1,2]. The average annual-age-adjusted incidence rate (IR) of GBM is 3.19 per 100, 
000 population, making it the highest incidence rate among brain and CNS tumors with malignant behavior, followed by grade II 
diffuse astrocytoma, with an incidence rate of 0.56 per 100,000 according to Central Brain Tumor Registry of the United States 
(CBTRUS) [3]. Of all cancer-related deaths, primary CNS tumors are responsible for almost 3 % [4]. In Jordan, there has been an 
increase in GBM incidence rate change between 1990 and 2019 accounting for 105.9 % with an age-standardized incidence rate of 4.4 
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per 100,000 and prevalence rate of 15.8 per 100,000 [5]. 
GBM demonstrates a relatively low 5-year survival rate of 8.1(%) in both sexes, with higher rates in females of 9.9 (%) compared to 

6.9 (%) in males. Among other brain and CNS tumors, GBM shows the lowest 1-, 3-, and 5-year relative survival rates [6]. When 
comparing the survival outcomes of patients with GBM and high-grade astrocytoma, the SEER research data from 2005 to 2006 
revealed that individuals with glioblastoma who underwent surgical resection and postoperative radiation had a median survival of 15 
months and a 2-year relative survival rate of 26 % [7]. In contrast, a meta-analysis of studies indicated that patients with high-grade 
astrocytoma had a mean overall survival of 31.9 months with a 2-year survival rate of 38 % and a 5-year survival rate of 29 % [8]. 

Grading of diffuse gliomas, according to the World Health Organization (WHO), depends on the presence of nuclear atypia or 
pleomorphism, mitotic activity (count), vascular proliferation, and necrosis. Accordingly, grade II/IV diffuse gliomas include diffuse 
astrocytoma and oligodendroglioma, grade III/IV tumors include anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic 
oligo-astrocytoma and anaplastic ependymomas; and grade IV/IV tumors, such as glioblastoma multiforme. Grade III and Grade IV 
tumors are considered High-Grade Gliomas (HGGs) [9]. Grade IV gliomas, including Isocitrate dehydrogenase (IDH) wild-type GBM 
and IDH mutant astrocytoma, are among the most malignant primary CNS tumors. Among them, GBM is the most aggressive and 
currently untreatable brain tumor [10]. 

Over recent years, there has been an improved assessment of new molecular mechanisms and specific genes that play a role in the 
growth of GBM. Mutations in IDH1/IDH2 lead to the conversion of alpha-ketoglutarate to 2-hydroxyglutarate, an oncometabolite that 
plays a crucial role in driving gliomagenesis [11]. The mutational status of IDH works as a robust prognostic factor, influencing the 
course of CNS gliomas. This significance was explicitly emphasized in the 2021 World Health Organization (WHO) classification of 
CNS tumors [9,10]. EGFR is commonly overexpressed and/or hyper-activated in human malignancies, including glioblastoma, making 
EGFR-targeted therapeutic strategies a frequently employed treatment approach. EGFR overexpression and activation are known to 
profoundly influence hallmark traits of cancer cells, including enhanced survival, proliferation, and invasion [12,13]. The prognostic 
significance of EGFR gene and protein alterations is still under evaluation, particularly in GBMs. Among these, 40 % exhibit EGFR 
amplification, 60 % show overexpression, and 24%–67 % have a mutated gene [14]. 

Exploring new factors in the tumor’s gene expression and epigenetic patterns, which contribute to its molecular diversity and 
aggressiveness, could potentially enhance clinical outcomes [15]. Investigations into the impact of synonymous polymorphisms on 
disease physiopathology have indicated that they may disrupt protein folding, impede mRNA stability, and hinder both constitutive 
and alternative splicing [16,17]. Our goal in this case-control study is to identify diagnostic and prognostic biomarkers using 
single-nucleotide polymorphisms of IDH and EGFR genes in a Jordanian population with GBM. 

2. Materials and methods 

The study received approval from the Institutional Review Board (IRB) of King Abdullah University Hospital (KAUH), Jordan (IRB 
code number 6/106/2017, dated June 8, 2017). All control subjects participated voluntarily and provided written informed consent. 
The need for a formal written informed consent from patients was waived by the IRB approval. The name of the subjects and cases were 
coded, blinded, and confidentially was ensured. All clinical investigations were conducted in accordance with the principles outlined 
in the Declaration of Helsinki. 

2.1. Study design 

A case-control study of 63 diagnosed GBM patients with sufficiently available clinical information were recruited from King 
Abdullah University Hospital (KAUH), the main tertiary hospital in north Jordan between the period 2015–2020. The diagnosis of all 
cases of GBM was done independently by a pathologist (SK) based on the 2016 WHO Classification of Tumors of the Central Nervous 
System [10]. A total of 226 healthy controls were included in the study. The names of both cases and control subjects were encoded and 
blinded to ensure confidentiality. 

2.2. DNA extraction 

Genomic DNA extraction for GBM patients was performed on formalin-fixed and paraffin-embedded (FFPE) tissue using the DNeasy 
Blood & Tissue Kit (Qiagen Ltd., West Sussex, UK), following the manufacturer’s protocols. For control subjects, genomic DNA was 
extracted from blood samples using the QIAamp® DNA Mini Kit, also adhering to the manufacturer’s instructions. The quality of the 
extracted DNA was assessed by agarose gel electrophoresis and ethidium bromide staining, while concentration and purity were 
measured using the NanoDrop 1000® spectrophotometer. The purified DNA samples, along with their concentrations, were sent to the 

Table 1 
The SNPs, SNPs positions and primers sequences for IDH1, IDH2, and EGFR genes.  

SNP-ID Gene Chr^ bpa Primer Forward Primer Reverse 

rs121913500 IDH1 2 209113112 ACGTTGGATGACATGACTTACTTGATCCCC ACGTTGGATGAAAATATCCCCCGGCTTGTG 
rs11540478 IDH2 15 90085305 ACGTTGGATGTTCTGGTGCTCCCGATAGTG ACGTTGGATGTGATGGGAAGACGATTGAGG 
rs1468727 EGFR 7 55162412 ACGTTGGATGTTTACTCTCTGGGCATGGAC ACGTTGGATGGCCTATCAGCTAAAGGATTC  

a bp: base pair (Genomic Position). ^ Chr: Chromosome. 
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Australian Genome Research Facility (AGRF), Melbourne Node, Melbourne, Australia, for genotyping. Genotyping with the Sequenom 
MassARRAY® system (iPLEX GOLD) (Sequenom, San Diego, CA, USA) was performed at the AGRF by following the manufacturer’s 
protocols (Sequenom, San Diego, CA, USA). Table 1 shows SNPs’ positions and primers’ sequences for IDH1, IDH2, and EGFR genes. 

2.3. Survival outcomes 

The survival outcome in our study was overall survival (OS), defined as the time from surgery to the time of death or the last follow- 
up for those still alive at the time of final data collection and analysis. To examine the prognostic impact of the identified SNPs, as well 
as age and sex, the univariable Cox proportional hazards model was employed. Log-rank test and Kaplan-Meier curves were used to 
represent survival rates between groups. A significant association with survival was determined at p-value <0.05. Survival analyses 
were performed in the R software package (Version 4.3.1) using the survminer, survival, and finalfit packages. 

2.4. Single-cell RNA analysis 

Single-cell (scRNA) datasets of GBM patients were obtained from the Gene Expression Omnibus (GEO) under the following 
accession number: GSE70630 by Filbin et al. [18] comprising 3829 cells from six IDH1 and IDH2 mutant freshly resected human 
samples and sequenced using SmartSeq2. The Seurat package (v2.2) in R was used for scRNA analysis. The CreateSeuratObject function 
was used to generate a Seurat object for each dataset with the detection of genes that are expressed in at least 3 cells and cells 
expressing at least 200 genes. The PercentageFeatureSet function was used to calculate the percentage of mitochondrial gene content 
using the “^MT-” regex pattern to match the genes. After quality control (QC) filtering for cells with unique molecular identifiers 
(UMIs) > 400, gene expression >100 and < 8000, and mitochondrial gene content <5 %, a total 3829 cells were retained from 
GSE70630. Count data were normalized using the “LogNormalize” method and a scaling factor of 10,000. The top 2000 variable genes 
were obtained using the Variance Stabilizing Transformation (vst) method which transforms the count matrix into a constant variance 
along the values with respect to library size. Genes were then centered using the ScaleData function, and linear dimensionality 
reduction using principal component analysis (PCA) was used to summarize the variable genes. The number of principal components 
that capture the highest variability was determined using the ElbowPlot function. The FindNeighbors and FindClusters functions were 
used to calculate the shared nearest neighbor (SNN) between every cell and identify cell clusters by the SNN. Subsequently, non-linear 
dimensionality reduction was performed using the Uniform Manifold Approximation and Projection (UMAP) method from the Run-
UMAP function and visualized using the dimensionality reduction plot DimPlot. The FeaturePlot function was used to visualize gene 
expression across each cell in the DimPlot, and VlnPlot was used to visualize the distribution of gene expression across cell clusters. Cell 
clusters were annotated using the SingleR package and a reference dataset from the HumanPrimaryCellAtlasData, and matched with the 
original annotation from each dataset. 

2.5. Statistical analysis 

For continuous variables, the mean ± standard deviation (SD) was used when data followed a normal distribution, as determined 
by the Shapiro-Wilk test. When data deviated from normality, the median (Q1, Q3) was reported. Categorical variables were presented 

Fig. 1. Flow diagram of the study.  
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as frequencies (percentages). The correlation between demographic, clinical, and genetic variables and study groups was assessed 
using the Wilcoxon (Mann-Whitney U) test for continuous variables, and the chi-squared (X^2) or Fisher’s exact test for categorical 
variables when the category count was less than 5. A logistic regression model was applied to the identified SNPs to analyze the as-
sociation between genotypes and study groups. A significance level was set at p-value <0.05. All analyses were conducted using the R 
software package (Version 4.3.1) with the glm and gtsummary packages. 

3. Results 

3.1. Baseline characteristics 

Fig. 1 shows the flow diagram of the study. A total of 63 GBM cases were included in our study, of which 37 (58.7 %) were males, 
and 26 (41.3 %) were females. The mean age at diagnosis was 50.1 (18.4), median overall survival was 2.8 (0.5, 9.9) months, and 30 
(47.6 %) patients were dead. Mean tumor size was 126.7 (96.9) cm, with 31 (49.2 %) patients having right-sided tumors. The majority 
of patients 80 % (n = 48) had liquefactive necrosis, with 21 (35.6 %) having necrosis spanning the whole tumor. A total of 226 healthy 
control subjects were retrieved, with a mean age of 30.6 (11.8) and 147 (65.3 %) of them were females. Table 2 shows the baseline 
characteristics of included GBM cases and controls. 

3.2. Genotype frequency of the identified SNPs 

Of the identified four SNPs, a statistically significant difference in genotype frequency between GBM cases and controls was seen in 
rs121913500 (IDH1) in which 100 % of healthy controls had C/C genotype, while 5 (7.9 %) of GBM cases had C/T genotype (p- 
value<0.001). The C/C genotype of rs1468727 (EGFR) was predominant in 69 % of GBM cases, while C/T genotype was predominant 
in 39 % of healthy controls (p-value = 0.040). Table 3 shows the single allele and genotype frequency of the identified SNPs between 
GBM cases and controls. 

3.3. Inheritance models 

Four inheritance models were constructed: codominant, overdominant, dominant, and recessive. Logistic regression model showed 
significant association of the codominant model of rs1468727 (EGFR) with higher likelihood of C/T genotype in healthy controls 
compared to GBM cases (OR: 0.41, 95 % CI: 0.20–0.83, p-value = 0.013) and no significant difference in the T/T genotype. While the 
overdominant model of rs1468727 (EGFR) showed that C/C-T/T genotype was associated with higher prevalence in GBM cases 
compared to controls. The dominant model of rs1468727 (EGFR) showed that the C/C genotype was significantly associated with GBM 

Table 2 
Baseline characteristics of GBM cases included in our study.  

Variable GBM (n = 63) 

Age at diagnosis, Mean (SD) 50.1 (18.4) 
Sex, n (%)  
Females 26 (41.3 %) 
Males 37.0 (58.7 %) 
Survival Status, n (%)  
Alive 33 (52.4 %) 
Dead 30 (47.6 %) 
Overall survival (months), Median (Q1, Q3) 2.8 (0.5, 9.9) 
Serum LDH, Mean (SD) 34.0 (179.0) 
Total protein, Mean (SD) 47.3 (33.1) 
Monocytes, Mean (SD) 3.7 (4.0) 
Lymphocytes, Mean (SD) 9.2 (10.0) 
Platelets, Mean (SD) 281.9 (96.4) 
Tumor size, Mean (SD) 126.7 (96.9) 
Tumor laterality, n (%)  
Right 31 (49.2 %) 
Left 29 (46.0 %) 
Bilateral 3 (4.8 %) 
Necrosis, n (%)  
Coagulative 7 (11.7 %) 
Geographic 1 (1.7 %) 
Liquefactive 48 (80.0 %) 
None 4 (6.7 %) 
Degree of necrosis, n (%)  
Foci of palisading necrosis 34 (57.6 %) 
Whole tumor 21 (35.6 %) 
None 4 (6.8 %) 
Radiotherapy, n (%) 9 (14.3 %) 
Chemotherapy, n (%) 6 (19.4 %)  

S.M. Al-khatib et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e35323

5

cases compared to higher association of C/T-T/T genotypes in healthy controls. Table 4 showed the odds ratio of the four models of 
inheritance of the identified SNPs. 

3.4. Survival analysis 

The univariable Cox proportional hazard model revealed that the G/G genotype of the codominant model of rs11540478 (IDH2) is 
associated with a significantly better prognosis in GBM patients compared to the A/G genotype (HR: 0.02, 95 % CI: 0.0–0.29, p-value 
= 0.005) as shown in Fig. 2. Table 5 shows the univariable cox proportional hazard model analysis of the identified SNPs. 

3.5. Immune and functional landscape of IDH1, IDH2, and EGFR 

We investigated the expression of IDH1, IDH2, and EGFR the GSE102130 scRNA dataset with a total of 3829 cells were retrieved. 
IDH1 was mainly expressed by malignant cells, followed by patient-derived xenograft (PDX) and oligodendrocytes. While IDH2 was 
mainly expressed by immune cells and malignant cells. EGFR expression was predominantly by tumor cells. Fig. 3 shows the ex-
pressions of IDH1, IDH2, and EGFR in scRNA dataset. Protein-protein interaction analysis showed significant enrichment in the 
following KEGG pathways between IDH1, IDH2, and EGFR: “2-Oxocarboxylic acid metabolism”, “TCA Cycle”, “central carbon 
metabolism”, “glutathione metabolism”, “Biosynthesis of amino acids”, and “peroxisome”. 

4. Discussion 

Glioblastoma multiforme (GBM) is a highly aggressive and malignant type of brain cancer that originates in the brain’s glial cells, 
specifically the astrocytes. It is the most prevalent and lethal primary brain tumor in adults [19]. Despite extensive research efforts, the 
survival of glioblastoma patients frequently remains constrained, and there is still a lack of curative therapy [20]. Following the release 
of the 2021 WHO classification of tumors of the CNS, it was recommended that a unified diagnosis and a comprehensive report, 
incorporating both morphology and genetic findings, be integrated into the classification of gliomas [9,21]. Therefore, our goal is to 

Table 3 
Allele frequency of identified variants between GBM cases and control subjects.  

SNP ID GBM (n = 63) Controls (n = 226) P-value 

rs11540478 
Allele G 125 445  
Allele A 1 5  
NA 0 1  
Genotype G/G 62 (98 %) 220 (98 %) >0.9 
Genotype A/G 1 (1.6 %) 5 (2.2 %)  
NA 0 1  
rs121913500 
Allele C 121 450  
Allele T 5 0  
NA 0 1  
Genotype C/C 58 (92 %) 225 (100 %) <0.001 
Genotype C/T 5 (7.9 %) 0 (0 %)  
NA 0 1  
rs1468727 
Allele C 88 305  
Allele T 22 127  
NA 8 10  
Genotype C/C 38 (69 %) 110 (51 %) 0.040 
Genotype C/T 12 (22 %) 85 (39 %)  
Genotype T/T 5 (9 %) 21 (10 %)  
NA 8 10   

Table 4 
Logistic regression models on four modes of inheritance of the identified SNPs between GBM cases and controls.  

SNP Model Genotype Controls, N = 226 GBM, N = 63 OR (95 % CI) P-value 

rs1468727 (EGFR) Codominant C/C 110 (51 %) 38 (69 %) 1  
C/T 85 (39 %) 12 (22 %) 0.41 (0.20–0.83) 0.013 
T/T 21 (9.7 %) 5 (9.1 %) 0.69 (0.24–1.96) 0.484 

Overdominant C/C-T/T 131 (61 %) 43 (78 %) 1  
C/T 85 (39 %) 12 (22 %) 0.43 (0.22–0.86) 0.017 

Dominant C/C 110 (51 %) 38 (69 %) 1  
C/T-T/T 106 (49 %) 17 (31 %) 0.46 (0.25–0.87) 0.017 

Recessive C/C–C/T 195 (90 %) 50 (91 %) 1  
T/T 21 (9.7 %) 5 (9.1 %) 0.93 (0.33–2.58) 0.887  
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investigate the association between specific single nucleotide polymorphisms (SNPs), including IDH1 rs121913500C > T, IDH2 
rs11540478G >A, and EGFR rs1468727C > T and their potential influence on the risk and overall survival of patients with GBM within 
the Jordanian Arab population. 

A total of 63 GBM patients were included in our study, with male predominance accounting for 58.7 %. This finding was concordant 
to another study in Jordan in 2021, of 800 GBM cases of which 63 % were males [22]. Previous literature extensively documents 
gender-based variations in the occurrence and outcome of CNS tumors [23]. In a study by Yu et al., it was discovered that androgen 
receptor signaling might contribute to the development of GBM in males by suppressing transforming growth factor β (TGF-β) receptor 
signaling [24]. Another study by Gilbert et al., on 833 GBM patients also showed male predominance with 58 % rate which is in line 
with our results [25,26]. 

Out of the four identified SNPs, a significant difference in genotype frequency between GBM cases and controls was observed in 
IDH1 rs121913500C > T, in which healthy controls exhibited the C/C genotype, whereas 7.9 % of GBM cases possessed the C/T 
genotype. Isocitrate dehydrogenase (IDH) comprises a set of enzymes responsible for catalyzing the oxidative decarboxylation of 
isocitrate to alpha-ketoglutarate within the Krebs cycle. These IDH enzymes exist in three isoforms: IDH1, IDH2, and IDH3 [27,28]. 
IDH1, located on chromosome 2, facilitates the NADP (+)-dependent oxidative decarboxylation of isocitrate into 2-ketoglutarat. IDH2, 
located on chromosome 15, participates in intermediary metabolism and the generation of energy [29]. IDH1 and IDH2, which depend 
on NADP(+), operate at a crucial juncture in cellular metabolism, influencing lipogenesis, oxidative stress, and oxygen-sensing signal 
transduction [30,31]. Our findings showed a favorable prognostic effect of IDH2 rs11540478G > A in GBM, with no significant as-
sociation of IDH1 rs121913500C > T. The prognostic relevance of the IDH1 SNP was initially evaluated in acute myeloid leukemia 
(AML), revealing its independent association with a poorer prognosis in myeloid leukemia with a normal karyotype (AML-NK) [32,33]. 

Fig. 2. Kaplan-Meier curves of significant survival-associated SNPs of codominant mode of rs11540478 (IDH2) showing better prognosis in the 
G/G genotype compared to A/G genotype. 

Table 5 
Univariable Cox proportional hazard model for overall survival of four modes of inheritance of identified SNPs in GBM cases.  

SNP ID Model Genotype HR (95 % CI, P-value) 

rs1468727 (EGFR) Codominant C/C – 
C/T 0.70 (0.24–2.05, p = 0.511) 
T/T 2.27 (0.74–6.98, p = 0.152) 

Overdominant C/C-T/T – 
C/T 0.63 (0.22–1.82, p = 0.388) 

Dominant C/C – 
C/T-T/T 1.05 (0.46–2.43, p = 0.905) 

Recessive C/C–C/T – 
T/T 2.46 (0.81–7.41, p = 0.111) 

rs11540478 (IDH2) Codominant A/G – 
G/G 0.02 (0.0–0.29, p¼0.005) 

rs121913500 (IDH1) Codominant C/C – 
C/T 0.98 (0.23–4.19, p = 0.973)  

S.M. Al-khatib et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e35323

7

Vorasidenib, an orally administered brain-penetrant inhibitor targeting mutant IDH1 and IDH2 enzymes, exhibited initial efficacy 
in gliomas with IDH mutations. Among individuals diagnosed with grade 2 IDH-mutant glioma, Vorasidenib demonstrated a notable 
enhancement in progression-free survival and prolonged the duration before the next intervention was required [34]. However, it is 
still not tested in high-grade gliomas and glioblastoma. Ivosidenib an IDH1 inhibitor approved in hematological malignancies such as 
IDH-mutant AML showing favorable outcomes in high-grade patients [35]. A phase I trial on advanced IDH-mutant gliomas, Ivosidenib 
also exhibited a favorable safety profile, prolonged disease control, and mitigated the growth of non-enhancing tumors [36]. 

Epidermal growth factor receptor (EGFR) gene situated on chromosome 7, plays a functional role in regulating the development 
and homeostasis of epithelial tissue. In pathological contexts, particularly in lung and breast cancer, as well as glioblastoma, EGFR 
serves as a driver of tumorigenesis [37]. Genetic alterations in EGFR dictate aberrant EGFR trafficking, leading to heightened signaling 
and the development of tumors [38]. Numerous alterations in the EGFR gene have been detected in gliomas, particularly glioblas-
tomas. These alterations encompass amplifications, deletions, and SNPs. Several trials have been unsuccessful in establishing definitive 
evidence linking various changes in the EGFR gene and protein to survival outcomes. Additionally, investigations into targeted 
anti-EGFR therapy have produced inconsistent results [39]. 

A study by Wang et al. exploring the prognostic role of EGFR SNPs showed that EGFR rs1468727C > T has been connected to 
treatment response in breast cancer patients [40]. Our findings were concordant with the results of Yan et al. study the genotype C/C 
was significantly associated with GBM cases in the codominant model of rs1468727C > T. These findings suggest that mutants situated 
in the EGFR gene might be factors associated with increased risk of GBM; however, larger and more diverse populations with EGFR 
polymorphisms are necessary to validate these associations [41]. Mellinghoff et al. showed that response to EGFR kinase inhibitors was 
associated with coexpression of EGFR deletion mutant variant III and Phosphatase and tensin homolog (PTEN) gene [42]. There is 
suggestive evidence indicating that molecular profiles might anticipate the response to EGFR inhibitors in certain patient subgroups 
[43]. In previous research, individuals with recurrent disease demonstrated a higher likelihood of responding to erlotinib or gefitinib 
when their tumors exhibited EGFR overexpression, amplification, or mutation, and were simultaneously found to have intact PTEN or 
lacked Akt phosphorylation [44]. 

EGFR amplification serves as a molecular target for tailoring individualized patient care. EGFR overexpression could be a promising 
focus in glioblastoma therapy. The inhibition of EGFR using monoclonal antibodies or small-molecule tyrosine kinase inhibitors (TKIs) 
has received approval for treating various tumor types [45]. The occurrence of EGFR amplification is primarily observed in IDH wild 
type gliomas. Additionally, Bale et al. discovered a higher prevalence of EGFR gene amplification and overexpression in IDH wild type 
gliomas compared to IDH mutated gliomas [46,47]. 

Our study presents a comprehensive examination on Glioblastoma Multiforme (GBM), within the Jordanian Arab population. With 
several strengths presented in our study, we implemented a case-control design which facilitates the examination of rare diseases and 
enables the simultaneous exploration of multiple risk factors [48]. Additionally, our study adopts a molecular classification approach 

Fig. 3. Single-cell analysis of IDH1, IDH2, and EGFR Violin plots showing genes’ expression across cell types.  

S.M. Al-khatib et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e35323

8

based on IDH genetic variants, aligning with the latest WHO guidelines, and highlighting the pivotal role of molecular markers in 
diagnostic processes [9]. 

Despite its strengths, our study faces some constraints, such as a relatively small sample size and a case-control design relying on 
data from a single tertiary hospital which may limit the generalizability of the findings to a broader population. Given their often- 
retrospective nature, case-control studies can identify correlation between exposures and outcomes; however, they fall short of 
establishing causation due to the absence of a follow-up period. Another limitation of our study is the absence of sample size calcu-
lations, as we included all GBM patients who underwent DNA sequencing within the specified period at our hospital, which may affect 
the generalizability and statistical power of our findings. Future prospective studies could involve larger, multi-center studies, 
incorporation of advanced technologies like next-generation sequencing, functional analyses of genetic markers, and exploration of 
GBM in diverse populations are warranted to better understand the disease. Our findings hold clinical promise for the development of 
personalized diagnostic and treatment strategies, emphasizing the evolving landscape of cancer research and the potential for targeted 
interventions to improve overall survival outcomes for GBM patients. 
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