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A B S T R A C T   

In this study, we analyzed the chemical compositions of Alangium platanifolium (Sieb. et Zucc.) 
Harms (AP) using ultraperformance liquid chromatography-quadrupole time-of-flight mass 
spectrometry (UPLC-Q-TOF-MS) non-targeted plant metabolomics integration MolNetEnhancer 
strategy. A total of 75 compounds, including flavonoids, alkaloids, terpenes, C21 steroids, among 
others, were identified by comparing accurate mass-to-charge ratios, MS2 cleavage fragments, 
retention times, and MolNetenhancer-integrated analytical data, and the cleavage rules of the 
characteristic compounds were analyzed. A total of 125 potential cervical cancer (CC) therapeutic 
targets were obtained through Gene Expression Omnibus (GEO) data mining, differential analysis, 
and database screening. Hub targets were obtained by constructing protein-protein interaction 
(PPI) networks and CytoNCA topology analysis, including SRC, STAT3, TP53, PIK3R1, MAPK3, 
and PIK3CA. According to Gene ontology (GO) analysis, AP was primarily against CC by influ-
encing gland development, oxidative stress processes, serine/threonine kinase, and tyrosine ki-
nase activity. Enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
indicated that the PI3K/AKT and MAPK signaling pathways play a crucial role in AP treatment for 
CC. The compound-target-pathway (C-T-P) network revealed that quercetin, methylprednisolone, 
and caudatin may play key roles in the treatment of CC. The results of molecular docking revealed 
that the core compound could bind significantly to the core target. In this study, the compounds 
in AP were systematically analyzed qualitatively, and the core components, core targets, and 
mechanisms of action of AP in the treatment of CC were screened through a combination of 
network pharmacology tools. Providing a scientific reference for the therapeutic material basis 
and quality control of AP.   

1. Introduction 

Cervical cancer (CC) is the fourth most frequent malignancy globally and the fourth principal cause of cancer-related mortality in 
women [1]. According to statistics, there were 604,127 new cases of CC and 341,831 deaths from CC globally in 2020 [2]. Current 
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treatments for CC mainly include radiotherapy, chemotherapy, and/or surgical resection. However, these modalities can cause various 
adverse effects and have limited efficacy in advanced CC [3]. Therefore, identifying a safer and less toxic treatment strategy for the 
effective treatment of CC is crucial. Natural products have received widespread attention as a potential source of highly effective and 
low-toxicity antitumor drugs. There is increasing evidence that plant-derived natural products can achieve anti-CC effects through 
various mechanisms, including inhibition of CC cell proliferation, induction of CC apoptosis, reduction of telomerase activity, and 
inhibition of angiogenesis [4,5]. Based on previous literature research, Alangium platanifolium (Sieb. et Zucc.) Harms (AP) belonging to 
the family Alangiaceae is an important medicinal resource. In the "Quality Standards for Traditional Chinese Medicinal Materials and 
Ethnic Medicinal Materials in Guizhou Province (2003 Edition)" of China, it is explicitly stated that Bajiaofeng refers to the dried fine 
whisker roots or dry branches of the Alangium chinense (Lour.) Harms and the Alangium platanifolium (Sieb.et Zucc.) Harms. Recent 
studies have shown that monomeric compounds from Alangium chinese exhibit good inhibitory effects on HeLa cells [6]. The current 
research has placed significant emphasis on Alangium chinense, but insufficient with regards to AP. While a few glycosides have been 
extracted from its leaves, there is a dearth of information regarding the components of its root. To expand the potential applications of 
AP in medicinal contexts, it was selected as the primary focus of this study. 

Based on liquid chromatography-mass spectrometry (LC-MS), non-targeted plant metabolomics is an indispensable method for 
decoding and synthetically characterizing phytochemical components. However, Given the large number and complex chemical 
components of primary and secondary metabolites in plants, LC-MS-based non-targeted plant metabolomics methods are not ideal for 
large-scale identification of the structure of various compounds in samples. To address this challenge, several advanced informatics 
tools have been developed in recent years to improve the annotation of compounds [7]. The Global Natural Products Social Molecular 
Networking (GNPS) serves as a platform designed to analyze and archive tandem mass spectrometry data, which can build nodes 
(compounds) with similar secondary mass spectrometry cleavage fragments (MS2) into molecular networking based on the MS-Cluster 
algorithm. By comparing the node information in the network, it is helpful to identify similar compounds and discover novel com-
pounds [8]. In addition, MolNetEnhancer is a workflow in the GNPS molecular networking analysis platform that integrates analysis 
results from the GNPS library matching, Mass2Motifs LDA parameters (MS2LDA), Network Annotation Propagation (NAP), and 
DEREPLICATOR+, as well as automatically chemically classified via ClassyFire. This in-silico mining tool significantly enhances the 
scope and efficiency of compound identification in complex natural products [9]. Currently, MolNetEnhancer has been used to 
improve the annotation of compounds in metabolites and to characterize the chemical space in plants [10,11]. 

Several effective phytochemical components may theoretically act on multiple targets and pathways. Network pharmacology is 
suitable for revealing the overall mode of action of multi-component, multi-target, and multi-pathway natural products, which can 
solve the problems of poor efficacy and drug resistance of single-target drugs [12]. Molecular docking is one of the important means of 
computer-aided drug design, which can predict the optimal conformation and binding sites between small molecules, express in-
teractions in enzyme reactions, and predict and explain biological reaction mechanisms [13]. 

Herein, LC-MS-based non-targeted plant metabolomics coupled with the MolNetEnhancer strategy was applied to qualitatively 
analyze the components of methanol extracts of AP roots. In addition, the network pharmacological method combined with bioin-
formatics analysis was applied to identify key active ingredients, hub targets, and potential molecular mechanisms of AP against CC, 
and finally verified the binding effect of active compounds to hub targets through molecular docking. 

2. Materials and methods 

2.1. Materials and reagents 

HPLC-grade acetonitrile was obtained from Honeywell Burdick & Jackson (New Jersey, USA). LC/MS-grade acetonitrile was ob-
tained from Mallinckrodt Baker, Inc. (New Jersey, USA). HPLC-grade methanol was obtained from Sinopharm Chemical Reagent Co., 
Ltd. (Shanghai, China). Glacial acetic acid (GAA) was obtained from TEDIA. (Ohio, USA). The experimental water was purified by the 
Millipore water purification system (Massachusetts, USA). 

In August 2021, AP roots, aged between 8 and 10 years, were freshly collected from a humid valley at an altitude of 1400 to 2000 m 
in Qujing, Yunnan Province, China. The sample was identified by Professor Jian’an Wang (School of Pharmacy, Jining Medical 
University). The voucher sample (GMG-20210815) was stored at 4 ◦C at Jining Medical University. 

2.2. Sample preparation 

The AP roots were left in a cool, well-ventilated area for 30 days to allow natural evaporation of water. Methanol is the preferred 
solvent for extracting the polar and moderately polar compounds, which are the specific compounds we are targeting [14]. Therefore, 
the crushed root powder of AP (20.00 kg) was thoroughly extracted with methanol 3 times by methanol cooling extraction for 7 days 
each. After vacuum concentration, a methanol crude extract was obtained. 

The methanol extract of 200 mg of AP was precisely weighed, dissolved in 5 ml of methanol, then extracted ultrasound for 30 min 
(40 kHz, 200 W), and cooled to room temperature. The test solution was filtered once using a 0.22 μm microporous membrane for 
subsequent analysis. 

2.3. UPLC-Q-TOF-MS analysis 

The sample analysis used the Agilent 6530B Accurate Mass Q-TOF LC/MS System with an electrospray ionization source (ESI) 

H. Zhang et al.                                                                                                                                                                                                         



Heliyon 9 (2023) e20747

3

interface. A 4.6 × 150 mm TOSOH TSK gel ODS-100V column was used for chromatographic separations. The temperature of the 
column oven was maintained at 30 ◦C. The flow rate of the mobile phase was adjusted to 1.0 ml/min, and the injection volume was 5 μl. 

The conditions for UPLC and MS were optimized. Mobile phase A is GAA aqueous solution with a concentration of 0.5 % (pH = 3) 
and mobile phase B is acetonitrile. Gradient parameters were set as follows: 10 % B, 0–15 min; 10–20 % B, 15–30 min; 20–30 % B, 
30–40 min; 30–60 % B, 40–50 min; 60–80 % B, 50–60 min. 

For qualitative analysis of ESI-MS, both positive and negative ion full scans were used to obtain more detailed ion information. 
Scanning mass-to-charge ratio (m/z) ranged from 100 to 1200. The nebulizer pressure was set to 45 psi and the capillary volt was set to 
(±) 3000 V. The drying gas flow rate was adjusted to 5 l/min and the drying gas temperature was set to 350 ◦C. In the auto MS/MS 
mode, the acquisition of MS/MS spectra occurred at a scan speed of 2 spectra per second. 

The analysis data was preprocessed using Agilent MassHunter Qualitative Analysis B.06.00 software, including integration, 
smoothing, deconvolution, and isotope filtering. 

2.4. Molecular networking and compound identification 

The processed MS2 data was converted to mzML format by ProteoWizard MSConvert, which was then uploaded to the UCSD GNPS 
mass spectrometry platform. MS2 data were processed and filtered again during the creation of the METABOLOMICS-SNETS-V2. The 
value of the precursor ion mass tolerance (PIMT) was adjusted to 2.0 Da and the value of the fragment ion mass tolerance (FIMT) was 
adjusted to 0.5 Da. The remaining parameters were set to their default values. 

MS/MS data were decomposed into annotated Mass2Motifs using the MS2LDA tool [15]. Dereplication was performed using the 
DEREPLICATOR + algorithm tool to identify more compounds [16]. NAP was able to build molecular networks based on the principle 
of spectral similarity and then improved the annotation of small molecules using in silico fragmentation predictions [17]. The 
completed GNPS molecular network, MS2LDA, and DEREPLICATOR+ were integrated using MolNetEnhancer, analyzed online on the 
GNPS platform, and visualized using Cytoscape 3.9.1. 

2.5. Screening of compounds in AP by ADME druggability evaluation 

Compounds in AP were pharmacokinetically screened using SwissADME [18]. SwissADME is widely for evaluating the druggability 
of small molecule compounds in natural products [19,20]. The screening criteria for potential active compounds were: (1) Gastro-
intestinal (GI) absorption was ‘High’; (2) two or more of the five types of medicinal properties (Lipinski, Ghose, Veber, Egan, Muegge) 
results were ‘yes’. 

2.6. Screening of targets of active compounds in AP 

Predicted targets of active compounds were acquired through three online databases, including Swisstargetprediction, DrugBank, 
and BATMAN-TCM. The collected targets were normalized by using the UniProt database, the species was limited to ‘Homo sapiens’, 
and duplicate values were removed. 

2.7. Screening of CC-related targets 

Three CC-related chip data were downloaded from the GEO database: GSE26342 (NIAID GPL1052 Platform-NIAID-Hsaa, GPL1053 
Platform-NIAID-Hsab), GSE63514 (Affymetrix GPL570 Platform-HG-U133_Plus_2), GSE173097 (Agilent GPL16956 Platform-Agilent- 
045997 Arraystar human lncRNA microarray V3). Details of all GSE chip datasets were shown in Table 1. 

The R programming language 4.3.0 and the R package ‘limma’ were applied to acquire differentially expressed genes (DEGs) in 
each GSE dataset. A p-value <0.05 and |log (fold change) | > 1 were used as restriction criteria for sifting differential genes. The R 
packages "ggplot2" and "pheatmap" were applied to construct volcano plots and heatmaps of the DEGs, respectively. Robust Rank 
Aggregation (RRA) is a commonly used bioinformatics tool that comprehensively ranks genes from different data sources [24]. The 
RRA algorithm was employed to integrate and analyze the three data sets to obtain significant DEGs as potential targets for CC. 
CC-associated targets were also acquired from the DrugBank, OMIM, GeneCards, PharmGKB, and TTD databases. 

All obtained CC-related targets were standardized by using the UniProt database. Finally, the R package ‘VennDiagram’ was 
applied to analyze the potential protein targets of AP against CC. 

Table 1 
Information of the three GSE datasets.  

GEO Platform Samples(number) 
Total CC Control 

Experiment type Attribute Author/reference 

GSE26342 GPL1052 GPL1053 54 34 20 Array Test Mine, K.L [21] 
GSE63514 GPL570 128 28 24 Array Test den Boon, J.A [22] 
GSE173097 GPL16956 11 5 6 Array Test Shang, C.L [23]  
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2.8. Protein-protein interaction (PPI) networks 

Possible potential interactions between potential therapeutic targets were explored on the STRING database. Parameters were set 
as follows: only targets belonging to the species "Homo sapiens" were considered, a minimum interaction threshold of greater than 0.9 
was set, and nodes that were not connected to the network were removed. Cytoscape 3.9.1 software was used to analyze and visualize 
the resulting PPI networks. Using CytoNCA, the node topology parameters were calculated, and crucial targets were identified. 

2.9. GO and KEGG pathway enrichment analyses 

The GO and KEGG enrichment analyses were conducted using the R language and associated R packages “clusterProfiler”, “stringr”, 
“AnnotationDbi”, “org. Hs.eg.db”, “DOSE”, “ggplot2” and “ggrepel”. The pvalueCutoff was 0.05 and the qvalueCutoff was 0.2, and 
only GO and KEGG analysis results with a p-value of <0.05 were retained. 

2.10. The construction of a C-T-P network 

The C-T-P network was constructed by importing data for potential therapeutic targets, active compounds, and top 30 signaling 
pathways into Cytoscape 3.9.1. Core compounds were screened based on Degree values in the network. 

2.11. Molecular docking 

The top 6 target proteins with the highest CytoNCA scores in the core PPI network were selected as receptors, and compounds that 
met pharmacokinetic screening were selected as ligands. The core targets were acquired from the Protein Data Bank (PDB) in three- 
dimensional (3D) format. Non-protein molecules in the core targets were removed by the Pymol 2.5. The core targets were 

Fig. 1. TICs of methanol extracts of AP roots based on UPLC-Q-TOF-MS analysis. (A) TIC in the negative ESI mode. (B) TIC in the positive ESI mode.  
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hydrogenated using AutoDock Tools 1.5.7 and converted into the pdbqt file format for use as docking receptors. The two-dimensional 
(2D) structure of active compounds was drawn by ChemDraw 2019, and energy minimization was implemented by Chem3D 2019 and 
saved as a PDB file format. The active compounds were converted by Auto-Dock Tools 1.5.7 to a pdbqt file format for use as docking 
ligands. 

Molecular docking was run via AutoDock Vina, the results were visualized using Discovery Studio 2021 Client software, and 
heatmaps of molecular docking data were drawn using R and the R package ‘pheatmap’. 

3. Results 

3.1. Sample preparation 

The methanol extracts of AP roots were concentrated to about 1.79 kg, the estimated dry paste amount was 1.19 kg, and the dry 
paste extraction rate was 5.97 %. 

3.2. UPLC-Q-TOF-MS analysis 

High-resolution mass spectrometry data of AP roots methanol extracts in positive and negative ion modes were acquired by the 
UPLC-Q-TOF-MS system, and their total ion chromatograms (TICs) were shown in Fig. 1. UPLC-Q-TOF-MS analysis showed that the 
methanol extract of AP was rich in chromatographic peaks in positive and negative ionization modes, making it ideal for compre-
hensive characterization of composition. 

3.3. Molecular networking and compound identification 

The family of structurally related molecules in AP was revealed by MolNetEnhancer. As shown in Fig. 2A, approximately 34.1 % of 
the MS2 spectral matching nodes were classified as organoheterocyclic compounds, 7.5 % as lipids, and 5.2 % as phenylpropane and 
polyketones, etc. 

A total of 252 nodes were generated by MolNetEnhancer in (+)-ESI and (− )-ESI-based modes, of which 137 nodes were clustered 
into 19 independent molecular families, and spectra not aggregated into molecular families were represented as self-ring nodes at the 
bottom of the network. A total of 28 matched compounds were obtained by GNPS library alignment. A total of 5 compounds were 
identified using in silico fragmentation graph by DEREPLICATOR+. Mass fragment peaks and/or neutral losses (Mass2Motif) were 
discovered by using MS2LDA annotation. There were 248 nodes (~98 %) labeled according to the 217 Mass2Motifs mapped to 
MS2LDA. NAP was used to perform in silico fragmentation prediction and 80 MetFrag, 38 Fusion, and 74 Consensus candidates were 
obtained. The partial results of the compounds identified by NAP-integrated MS2LDA were shown in Fig. 2B. Web links to data analysis 
result from GNPS libraries, MS2LDA, NAP, DEREPLICATOR+, and MolNetEnhancer were presented in Table S1. 

Fig. 2. Chemical classification and structural identification of methanol extracts of AP roots. (A) Nodes annotation using MolNetEnhancer combined 
with GNPS molecular network, MS2LDA, NAP, and DEREPLICATOR + output. The same color in the node represented the same family of molecules. 
(B) Characterize compounds using GNPS molecular network and NAP, combined with Mass2Motifs generated by MS2LDA. The same color rep-
resented the same Mass2Motifs. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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A total of 75 compounds were identified by comparing accurate mass-to-charge ratios, MS2 cleavage fragments, retention times, 
and MolNetenhancer-integrated analytical data. (Fig. 3). Based on their distinct structural types, the identified compounds can pri-
marily be categorized into various groups, including flavonoids, alkaloids, terpenes, C21 steroids, organic acids, among others. Details 
of the 75 identified compounds are presented in Table S2. 

3.4. Mass spectral fragmentation behavior 

A total of fifteen alkaloids were identified, among which the excimer ion peak of the aporphine alkaloids in the positive ESI-MS 
mode was present in the form of [M+H]+. When nitrogen methyl groups were present in the structure, it was easy to neutrally lose 
substituents such as NH2CH3 and NH(CH3)2, and the molecular loss of CH3 and CH4 will also occur, which is easy to produce char-
acteristic fragment ions of m/z 279.10. Compound 15 (Duguetine N-oxide) was used as a representative expound. In the positive ESI- 
MS mode, the excimer ion peak was m/z 372.18 [M+H]+ and secondary MS fragment ions were m/z 325.14 [M + H–CHO2]+, m/z 
294.13 [M + H–CHO2–CH3O]+, m/z 279.10 [M + H–CHO2–CH3O–CH3]+, and m/z 312.14 [M + H–CHO2N]+. Possible cleavage 
pathways of Duguetine N-oxide are shown in Fig. 4A. 

A total of seven flavonoids were identified, among which the excimer ion peaks of flavonoids in both positive and negative ESI-MS 
modes exist as [M+H]+ and [M − H]- peaks, respectively. The fragment ion fracture was mainly based on the removal of glycogenic 
ions and CO and H2O, and the C ring was prone to RDA cleavage reaction. Compound 1 (Quercetin) was used as a representative 
expound. In the negative ESI-MS mode, the excimer ion peak was m/z 301.03 [M − H]-, its secondary MS fragment ion was m/z 179.00 
[M-H-C6H5O2]- and 151.00 [M-H-C8H6O3]-. The possible lysis pathway of quercetin is shown in Fig. 4B. 

Fig. 3. Identified compounds from the methanol extracts of AP roots by GNPS and NAP.  
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3.5. Screening of active ingredient by ADME druggability evaluation 

Through SwissADME screening, 52 compounds were identified based on the selected criteria. The screening results are shown in 
Table S3. These 52 compounds were used for subsequent target determination. 

3.6. Screening of targets of active compounds in AP 

Through an extensive search on the Swisstargetprediction, DrugBank, and BATMAN-TCM databases, 41 compounds were identified 
as having targets. After removal of duplicate values and standardizing the collected targets, 914 unique targets were obtained 
(Table S4). 

Fig. 4. Mass spectral fragmentation behavior of some characteristic compounds. (A) Cleavage pathways of Duguetine N-oxide. (B) Cleavage 
pathways of quercetin. 

Fig. 5. Volcano plots of DEGs between normal group samples and disease group samples in three GSE microarray datasets. (A) GSE26342, (B) 
GSE63514 and (C) GSE173097. Red represents up-regulated genes and blue represents down-regulated genes. Heatmaps of the top 50 DEGs sorted 
by P value in three GSE microarray datasets. (D) GSE26342, (E) GSE63514 and (F) GSE173097. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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3.7. Screening of CC-related targets 

A total of 379, 1225, and 1940 upregulated genes were obtained sequentially in the GSE26342, GSE63514, and GSE173097 chip 
datasets based on difference analysis. Similarly, a total of 346, 1135, and 1940 down-regulated genes were obtained sequentially in the 
GSE26342, GSE63514, and GSE173097 chip datasets. Normalizations of gene expression were shown in Fig. S1. 

Volcano plots of differential genes from three GEO chip datasets were shown in Fig. 5A–C. Heatmaps of the top 50 DEGs sorted by P- 
value in the three GEO chip datasets were shown in Fig. 5D–F. 32 integrated DEGs, including 16 significant up-regulated and 16 
significant down-regulated genes, were acquired based on RRA (Table 2, Fig. 6). 

The keyword “Cervical Cancer” was searched in several databases including GeneCards, DrugBank, OMIM, PharmGKB, and TTD. 
Following the standardizing of the targets, 351, 89, 156, 261, and 9 targets were obtained from each respective database (Table S5). 
The collected targets related to CC were integrated, resulting in a total of 758 CC-related targets. Finally, 125 potential protein targets 
for the treatment of CC were revealed using the R package “VennDiagram” (Fig. 7A). 

3.8. The PPI networks 

The PPI network was established by inputting 125 candidate therapeutic targets onto the STRING database. Through Cytoscape 
processing, a network consisting of 107 nodes and 594 edges was generated. The size and color of the nodes were indicative of their 
respective degree values (Fig. 7B). 

The CytoNCA tool was used to analyze the topological parameters of the PPI network. This analysis identified 34 targets that were 
above the average (Fig. 7C). Among these targets, the top 6 were SRC (degree = 41), STAT3 (degree = 40), TP53 (degree = 39), PIK3R1 
(degree = 37), MAPK3 (degree = 36), and PIK3CA (degree = 36). These core targets play a critical role in the treatment of CC. The 
original PPI network obtained from the STRING database is shown in Fig. S2. More detailed data regarding the CytoNCA analysis is 
presented in Table S6. 

3.9. GO and KEGG pathway enrichment analyses 

The R programming language and associated packages were employed to perform GO and KEGG enrichment analyses on 125 
potential therapeutic targets. In terms of biological processes, a total of 2455 statistically significant GO items were obtained, and the 
results ranked by P.adjust values showed that potential therapeutic targets mainly involve gland development and oxidative stress. 
Similarly, a total of 52 cellar composition items were enriched, mainly in membrane rafts and membrane microdomains. A total of 146 
molecular functional items were enriched, indicating that potential therapeutic targets mainly affect protein serine/threonine kinase 
activity and protein tyrosine kinase activity. The top ten terms for each of the three groups are shown in Fig. 8A. 

Through KEGG pathway analysis, a total of 168 signaling pathways were obtained (Table S7). The top 30 significant enrichment 
pathways are displayed in Fig. 8B, sorted by P.adjust values. The targets were mainly enriched in the PI3K/AKT and MAPK signaling 
pathways, Proteoglycans, and MicroRNAs. Among them, the PI3K/AKT signaling pathway involved the most potential therapeutic 
targets, indicating that it may be a critical pathway for AP treatment of CC (Fig. 8C). Among the top 30 enriched pathways, targets 
CCND1, MAPK1, PIK3CA, PIK3R1, AKT1, AKT2, MAP2K1, RAF1, TP53 and BCL2 accounted for the largest proportion. 

3.10. Construction of the “C-T-P” network diagram 

To elucidate the connections between compounds, potential therapeutic targets, and the top 30 pathways, the “C-T-P” network was 
constructed. The three compounds in AP that exhibited the highest degree of association with potential therapeutic targets were 
quercetin (target number = 35), methylprednisolone (target number = 33), and caudatin (target number = 30). Fig. 9 revealed the 
interaction between 75 compounds, 125 targets, and 30 pathways. The lines are denser, representing that the interaction is more 
obvious. Which indicated the possible synergistic or antagonistic effects of AP’s multi-component and multi-target nature. 

3.11. Molecular docking 

Core receptor target proteins, including SRC (PDB ID: 7NG7) [25], STAT3 (PDB ID: 6NJS) [26], TP53 (PDB ID: 7B4N) [27], PIK3R1 
(PDB ID: 8DCP) [28], ERK1 (PDB ID: 4QTB) [29], and PIK3CA (PDB ID: 7L1C) [30], were docked with the active compounds of AP 
using AutoDock Vina. 

The results showed that except for some acidic compounds, the docking binding energy of the other active ingredients and the core 
target was less than − 5 kcal/mol, indicating good binding activity. Importantly, the core compounds quercetin, methylprednisolone, 
and caudatin have significant binding activity to the core target. Among the six core targets, quercetin exhibited the most excellent 

Table 2 
DEGs were identified from the three GSE datasets.  

DEGs GENE NAME 

Upregulated OSTF1, KIF14, FCER1A, TOPBP1, AXOT, DNA2, PLEKHM1, ZIC2, CLTB, KNTC1, DOCK9, ATAD2, UBL3, PARP2, ANXA1, KPNA1 
Downregulated TYMS, CRISP3, FLJ20311, ANO10, RFC4, PHYHIP, CDKN2A, MINDY1, RRP1B, SCNN1B, RNASEH2A, CRISP2, SPAG5, FAM3D, HOXC9, RBM20  
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docking binding energy to MAPK3 with a value of − 9.4 kcal/mol. Methylprednisolone exhibited the most excellent docking binding 
energy to PIK3R1 with a value of − 8.5 kcal/mol, while caudatin exhibited the most excellent docking binding energy to PIK3CA with a 
value of − 8.4 kcal/mol. Interestingly, Erionic acid E’s binding activity to core targets is extremely strong and deserves further 
attention. It has the lowest bonding energy to SRC at − 11.5 kcal/mol. 

The 2D and 3D graphs of binding sites of the binding sites of quercetin, methylprednisolone, caudatin, and Erionic acid E to the core 
targets that bind most strongly to them were visualized by the Discovery Studio 2021 client (Fig. 10A–D). The binding energy of all 
docking results was presented as a heat map (Fig. 10E). 

4. Discussion 

Molecular networking applications are increasingly recognized for their tremendous potential in uncovering complex secondary 
metabolites in plants, annotating known compounds, and revealing their derivatives based on secondary mass spectrometry similarity. 
In this study, through UPLC-Q-TOF-MS-based non-targeted metabolomics combined with MolNetEnhancer, we found several com-
pounds in AP, including flavonoids, alkaloids, C21 steroids, terpenes, organic acids and other compounds. Flavonoids are an important 
secondary metabolite that is widely present in plants and is essential for plant growth and development [31]. Alkaloids found plants 
employ unique mechanisms to protect the organisms from potential threats posed by predators and pathogens. The existence of 
precursor molecules, along with enzymatic reactions and chemical transformations during alkaloid conversion, leads to the devel-
opment of diverse structural alterations in alkaloids [32]. Terpenoids, alternatively referred to as isoprenoids, are abundantly present 
in various natural products. The extensive structural and stereochemical variability exhibited by terpenoids contributes to their broad 
spectrum of biological functionalities [33]. The seven flavonoids identified included flavonols, isoflavonols, and their glycosides. 

Fig. 6. Top 15 upregulated and downregulated DEGs of CC obtained by RRA analysis.  
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Thereinto, Quercetin (1) is a particular subclass of flavonoids that is crucial in facilitating diverse physiological processes in plants 
[34]. Quercetin 3-O-β-cellobioside (4) has an additional cellobiose structure based on Quercetin (1), which has been shown to have the 
effect of promoting intracellular melanin synthesis [35]. Three of the 15 alkaloids identified were isoquinoline, including (6aS)-1,2, 
10-trimethoxy-6-methyl-6-oxido-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinolin-6-ium-9-ol (14), Duguetine N-oxide (15) and Iso-
corydine (16). A previous study has shown Duguetine N-oxide (15) have strong antitumor activity against HCT-8, SF-295 and 
MDA/MB-435 cell lines [36]. Administration of Isocorydine (16) may enhance IL-6 expression in bone marrow-derived macrophages 
while attenuating phosphorylation of p65 and JNK, and contribute to the protection of mice against acute lung injury induced by 
lipopolysaccharide [37]. The remaining 12 compounds are other alkaloids, which are rare among the natural products reported in the 
literature, and we will further investigate them during isolation and purification. 

In addition, the mechanism of action of AP in the treatment of CC was also explored based on network pharmacology and bio-
informatic analysis strategies. A total of six pivotal targets including SRC, STAT3, TP53, PIK3R1, MAPK3 (ERK1), and PIK3CA were 
obtained which may play pivotal roles in the process of AP against CC through PPI analysis and CytoNCA topology. SRC is a type of 
non-receptor tyrosine kinase (NrTK) that plays a crucial role in the regulation of tumorigenesis and the advancement of cancer [38]. 
STAT3 is an important downstream target for c-Src, and c-Src activates STAT3 to promote tumor progression [39]. Downregulation of 
phosphorylated SrcY416 has been associated with growth inhibition in CC cells [40]. The signal transduction and transcriptional 
activator 3 (STAT3) is a confluence point for multiple cancer-related signaling pathways, which are strongly correlated with tumor 
progression and modulate anti-tumor immune responses [41]. Studies have shown that STAT3 was overexpressed in CC tissues and 
could increase autophagy in CC cells via the Bcl2-Beclin1 axis [42]. TP53 is a tumor suppressor gene that is mutated in more than half 
of human malignancies. Functional defects in TP53 can lead to tumor development and drug resistance [43]. Overexpression of the 
early oncoprotein E6/E7 produced by HPV in host cells contributed to CC development. The oncoprotein E6 can act on TP53 through 
the ubiquitin ligase pathway, thereby interfering with the CC cell cycle and inhibiting apoptosis [44]. Evidence has shown that the 
restoration of TP53 activity can induce CC cell cycle arrest and apoptosis, thereby inhibiting tumor growth [45]. PIK3R1 is a tumor 
suppressor encoding PI3K regulatory subunit P85α. PIK3R1 is poorly expressed in most malignancies and is associated with tumor 
progression and metastasis [46]. Overexpression of PIK3R1 reversed CC proliferation, migration, and invasion which were triggered by 
overexpression of miR-92a [47]. In addition, gene expression analysis of CC revealed that epithelial-mesenchymal transition 
(EMT)-related genes PIK3R1 and STAT3 are potential biomarkers and/or therapeutic targets for CC [48]. ERK1/2 is the only down-
stream target of MEK kinase and the most extensively studied target in the MAPK family. ERK1/2 contributes to the occurrence of 
metastasis of various types of cancer [49]. Previous research has revealed that zoledronic acid may inhibit the development of cancer 
stem cells derived from CC cells by inhibiting phosphorylated ERK1/2 [50]. In solid tumors, the mutation or amplification of PIK3CA 
(encoding the p110a subunit catalyzed by PI3K) is one of the most common alterations. In a whole-exome sequencing (WES) of CC cell 
lines, 24.6 % of tumor samples contained repeated missense mutations of activated PIK3CA exons and 42 % contained amplification of 
the PIK3CA gene [51]. This suggested that PIK3CA mutations or amplifications are prevalent in CC. In recent years, exploring the effect 
of PIK3CA mutation on the proliferation and metabolic changes of CC has become a research hotspot. For example, PIK3CA mutation 
has been reported to enhance the proliferation and glycolytic capacity of CC cells by activating the β-catenin/SIRT3 signaling pathway 

Fig. 7. (A) Venn diagram of potential therapeutic targets for AP against CC. (B) PPI networks of potential therapeutic targets. (C) hub targets of the 
PPI network. 
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[52]. In addition, PIK3CA mutation has been found to diminish radiosensitivity by modulating glutamine metabolism [53]. Such 
studies have provided new insights into treatments for CC targeting PIK3CA. 

The GO analysis revealed that the potential therapeutic targets mainly involved biological processes including gland development 
and oxidative stress. Previous studies have shown that biomarkers of oxidative stress and antioxidants could be important markers in 
the diagnosis of CC [54]. The analysis of KEGG revealed that AP mainly inhibited the occurrence and development of CC through 
PI3K/AKT and MAPK signaling pathways. The analysis of GO revealed that the molecular function of potential therapeutic targets 
mainly involved protein serine/threonine kinase activity, thereby providing additional evidence for the significance of the MAPK 
pathway. The PI3K/AKT signaling pathway is frequently activated in a wide range of cancer types, thereby facilitating the develop-
ment of tumors [55]. The Ras/Raf/MEK/ERK branch pathway is an extensively researched MAPK pathway, in which any one of the key 
protein function abnormalities may lead to tumorigenesis [56]. At present, molecular therapies targeting PI3K/AKT and MAPK 
signaling pathways are being extensively investigated for CC treatment. Preclinical studies have demonstrated that PI3K/AKT/mTOR 
pathway can be inhibited by Alpelisib, leading to the suppression of proliferation and migration of CC cells with PIK3CA mutations 
[57]. A novel polysaccharide of Rosa rugosa induced autophagy-mediated apoptosis in human CC cells primarily via the 
PI3K/AKT/mTOR pathway [58]. Delicaflavone from Selaginella doederleinii Hieron was found to induce CC HeLa cell apoptosis via the 
mitochondrial pathway by inhibiting the MAPK signaling pathway [59]. 

Active ingredients with a high degree in the C-T-P network were quercetin, methylprednisolone, and caudatin. Quercetin is a 
flavonoid widely present in natural products and has pronounced anticancer effects, especially against HPV-related cancers such as CC 
[60]. It has been reported to promote apoptosis in HeLa cells by inducing the tumor endoplasmic reticulum stress (ERS) pathway [61]. 

Fig. 8. GO enrichment analysis of potential therapeutic targets of AP against CC. The figure displays the top 10 terms of biological processes, cellar 
composition, and molecular function groups, respectively. (B) The top 30 results of KEGG pathway enrichment analysis of potential therapeutic 
targets of AP against CC. (C) PI3K/AKT signaling pathway diagram (Rank 1 in KEGG pathway enrichment analysis). Red nodes represented potential 
therapeutic targets in the PI3K/AKT signaling pathway. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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Fig. 9. Diagram of the “compound-target-pathway” network. The network consists of 198 nodes and 1380 edges, in which pink circular shapes 
represent the potential therapeutic targets, purple V-shaped nodes represent the signaling pathways, and blue diamond-shaped nodes represent 
compounds derived from AP. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 10. The 2D and 3D schematic diagrams of molecular docking sites and heat maps of molecular docking results. (A) Quercetin-MAPK3; (B) 
Methylprednisolone-PIK3R1; (C) Caudatin-PIK3CA; (D) Erionic acid E-SRC; (E) Heatmap of docking results. 
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PLGA-Quercetin inhibited CC progression by activating mitochondria-dependent Caspase-3 and 7 and mitochondria-independent 
FoxO1 and inhibiting the PI3K/AKT pathway [62]. Methylprednisolone is a class of corticosteroids with anti-inflammatory, anal-
gesic, immune system suppressant, and anti-allergic properties [63]. The development of cancer and its response to treatment is 
regulated by inflammation. Glucocorticoids can inhibit chronic inflammation in the early stages, prevent tumorigenesis, and improve 
the killing effect of other therapies on tumor cells [64]. Through the application of molecular docking techniques, methylprednisolone 
was reported to be a prospective anti-inflammatory drug for the prevention and treatment of CC [65]. Caudatin is a C21 steroid 
hormone derived from Cynanchum auriculatum and can arrest the cell cycle, induce apoptosis, and exert anti-tumor as well as 
anti-angiogenic effects. Caudatin exhibited antiproliferative and proapoptotic activity against HeLa cell lines by targeting the 
TNFAIP1/NF-κB signaling pathway [66]. 

The results of the network pharmacology analysis were further validated by conducting molecular docking experiments. The 
docking results demonstrated that the key compounds, namely quercetin, methylprednisolone, and caudatin, exhibited significant 
binding ability towards the core targets SRC, STAT3, TP53, PIK3R1, MAPK3, and PIK3CA. This suggests that the anti-CC effects of AP 
may primarily be attributed to the actions of quercetin, methylprednisolone, and caudatin. 

Although the pharmacodynamic basis and mechanism of AP on CC were elucidated through LC-MS/MS-based molecular 
networking and network pharmacological strategies, this study still has some inherent limitations. Therefore, to delve deeper into the 
targets and mechanisms of AP in treating CC, further research involving animal or cell experiments is warranted. 

5. Conclusion 

In this study, 75 compounds were qualitatively identified in AP by non-targeted plant metabolomics combined with the MolNe-
tenhancer strategy for the first time. In addition, the mechanism of action of AP in the treatment of CC was explored using network 
pharmacology, bioinformatics analysis, and molecular docking. We found that the main active ingredients of AP were quercetin, 
methylprednisolone, caudatin, among others, which can potentially regulate the signaling pathways such as PI3K/AKT and MAPK 
through SRC, STAT3, TP53, PIK3R1, MAPK3, PIK3CA and other targets to treat CC. This study lays the groundwork for further in-
vestigations into the anticancer properties of AP. The findings from UPLC-Q-TOF-MS analysis can serve as a roadmap for uncovering 
new compounds from AP, forming the basis for the search for potential antitumor lead compounds. 
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