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The ability to adapt to environmental changes is an essential feature of biological

systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal

programs that allow rapid and integrated organismal responses. Reward systems play

a key role in mediating this adaptation by reinforcing behaviors that enhance immediate

survival, such as eating or drinking, or those that ensure long-term survival, such as

sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular

pathways that mediate natural rewards, which under certain circumstances can lead to

addiction. Many factors can contribute to the transition from drug use to drug addiction,

highlighting the need to discover mechanisms underlying the progression from initial drug

use to drug addiction. Since similar responses to natural and drug rewards are present

in very different animals, it is likely that the central systems that process reward stimuli

originated early in evolution, and that common ancient biological principles and genes are

involved in these processes. Thus, the neurobiology of natural and drug rewards can be

studied using simpler model organisms that have their systems stripped of some of the

immense complexity that exists in mammalian brains. In this paper we review studies in

Drosophila melanogaster that model different aspects of natural and drug rewards, with

an emphasis on how motivational states shape the value of the rewarding experience,

as an entry point to understanding the mechanisms that contribute to the vulnerability of

drug addiction.

Keywords: Drosophila melanogaster, reward, ethanol, addiction, learning and memory, natural reward, drug

reward, animal models

INTRODUCTION

From insects to humans, organisms living in complex environments need to respond quickly and
appropriately to different stimuli by choosing one action over another to increase their chances of
survival and reproduction. Reward systems play a key role in promoting this aim by motivating
animals to repeat behaviors that increase their fitness, such as eating, drinking, sexual interaction,
and parental behaviors. Drugs of abuse affect the same brain regions used for the processing of
natural rewards, creating the pleasurable feeling indicative of a fitness benefit, and with repeated
use can lead to compulsive drug abuse and addiction (Nesse and Berridge, 1997; Koob, 2009).
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The American Psychiatric Association defines addiction as
“maladaptive pattern of substance use manifested by recurrent
and significant adverse consequences related to the repeated use
of substances” (American Psychatric Association, 2013). This
is characterized by a sequence of stages: (1) initial voluntary
consumption of the drug, accompanied by an acute hedonic
drug response, (2) repeated use, leading to compulsive and
uncontrolled drug use, and finally, (3) physical and mental
dependence (Koob and Bloom, 1988; Wolffgramm and Heyne,
1995; Koob, 1997, 2009; Nesse and Berridge, 1997).

Understanding the complex nature of human addiction is
one of the greatest challenges in contemporary neuroscience,
requiring parallel efforts of many scientific disciplines. One
important approach is the use of animal systems to model certain
features of the process, such as the reinforcing properties of
drug rewards. Early studies by Karl von Frisch demonstrated
the ability of sugar reward to reinforce preference for certain
colors in honey bees (von Frisch, 1914). Subsequent studies by
Olds and Milner demonstrated that rodents can learn to press
a lever to receive intracranial self-stimulation (ICSS), facilitating
the discovery of brain areas that encode reward (Olds and
Milner, 1954). These seminal studies paved the path for the
development of complex behavioral paradigms that measure the
rewarding effects of drugs. Examples include self-administration
paradigms, in which voluntary lever pressing results in delivery
of a drug dose (Weeks, 1962; Thompson and Schuster, 1964), and
conditioned place preference, where animals learn to associate a
certain environment with receiving a drug, and the preference
for this environment is tested afterwards in the absence of the
drug (Rossi and Reid, 1976). Although the existing models do
not entirely recapitulate the complexity of human addiction, they
model important features of drug addiction (Koob, 2009; Lynch
et al., 2010). For example, the positive reinforcing actions of binge
intoxication is captured using self-administration paradigms in
rodents and monkeys (Johanson and Balster, 1978; Collins et al.,
1984), while the negative reinforcing properties of the withdrawal
phase are measured by increased anxiety-like responses (Sanchis-
Segura and Spanagel, 2006). The craving stage can be modeled by
“cue-induced reinstatement,” in which the reinstatement of drug
seeking is tested after the induction of drug cues following drug
self-administration training (Sanchis-Segura and Spanagel, 2006;
Liu et al., 2008; Mantsch et al., 2016).

Although it is more common to use mammals to study
addiction, insect behavior is no less organized and driven by
reward. Many studies over the years have established the fruit fly
Drosophila melanogaster as a non-conventional but very relevant
model to explore molecular mechanisms underlying drug
response. These have mostly focused on ethanol, modeling early
stages of ethanol exposure, including its immediate locomotor
effects (reviewed extensively in Rodan and Rothenfluh, 2010;
Kaun et al., 2012; Devineni and Heberlein, 2013; Ghezzi et al.,
2013a), its hedonic value, as reflected by voluntary consumption
(Devineni and Heberlein, 2009), and the formation of long-
lasting memories for the rewarding experience (Kaun et al., 2011;
Figure 1). This review will present recent progress in which fruit
flies were used to uncover genetic and environmental elements
that influence the likelihood of progressing from initial exposure

to repeated drug use. It will focus on drug-oriented studies and
those that are not drug oriented but share mutual mechanisms
and principles with addiction, such as learning and memory, and
neuronal mechanisms that encode and process natural rewards.
Together, the cellular pathways, neuronal circuits and newly
discovered principles that govern reward processing can serve as
a conceptual framework for understanding the mechanisms that
underlie the risk to develop addiction.

METHODS OF STUDYING ETHANOL
RELATED BEHAVIORS IN FRUIT FLIES

Flies encounter ethanol in their natural habitat, and as such,
acquired many adaptations that enable them to survive and
thrive in ethanol-rich environments (Gibson et al., 1981). Flies
exhibit natural preference for ethanol: the smell of ethanol
was shown to be an attractive cue using olfactory trap (Reed,
1938; Dudley, 2002; Devineni and Heberlein, 2009), and females
show preference to lay eggs on ethanol containing substrates
(Siegal and Hartl, 1999; Azanchi et al., 2013; Kacsoh et al.,
2013). Flies develop preference to consume ethanol-containing
food in a two-choice consumption paradigm. The kinetics of
their preference and its extent depend on genetic background
(Merçot et al., 1994; Devineni and Heberlein, 2009), prior
exposure to ethanol (Peru y Colón de Portugal et al., 2014),
sampling time (Devineni and Heberlein, 2009), and prior sexual
experience (Shohat-Ophir et al., 2012). Importantly, flies display
similar behavioral responses to acute exposure to ethanol as
mammals: increased motor response when exposed to a low
dose of ethanol, and sedation when reaching higher doses
(Singh and Heberlein, 2000). Repeated exposure to ethanol
results in functional tolerance and increases the time and dose
needed to induce sedation. This reflects neuronal plasticity that
corresponds to tolerance (Figure 1), but can also be caused by
changes in ethanol metabolism (Scholz et al., 2000).

Over the years there have been several experimental systems
to study the locomotor response to ethanol intoxication, the first
of which was the inebriometer system (Cohan and Graf, 1985;
Cohan and Hoffmann, 1986; Weber, 1988), in which flies lose
their postural control when exposed to ethanol vapor. The system
was later adapted for high throughput functional genetic screens
by the Heberelin lab (Moore et al., 1998), and was subsequently
replaced by video tracking systems that measure changes in
fly velocity during acute intoxication, and assays that measure
loss of righting response when reaching sedating levels (Wolf
et al., 2002; Maples and Rothenfluh, 2011). Many genes and
cellular pathways in neurons and glia cells have been shown
to modulate the sensitivity of flies to both the positive and
negative motor responses upon exposure to ethanol vapor, and
the development of tolerance (Moore et al., 1998; Scholz et al.,
2000, 2005; Berger et al., 2004; Ghezzi et al., 2004, 2013b; Corl
et al., 2005; Cowmeadow et al., 2006; Kong et al., 2010; King et al.,
2011, 2014; Kapfhamer et al., 2012; Krishnan et al., 2012, 2016;
Devineni et al., 2013; Li et al., 2013;McClure andHeberlein, 2013;
Pohl et al., 2013; Troutwine et al., 2016). Some of the identified fly
genes, pathways and principles paved the way for parallel studies
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FIGURE 1 | Schematic illustration of the behavioral paradigms that are used to model different features of drug addiction in Drosophila.

in mammals (Corl et al., 2009; Lasek et al., 2011a,b,c; Maiya et al.,
2012, 2015; Kapfhamer et al., 2013).

A breakthrough in modeling aspects of drug reward in flies
was the introduction of two paradigms: a conditioned response
to ethanol vapor (Kaun et al., 2011), and a two-choice assay
to measure voluntary ethanol consumption (Ja et al., 2007;
Devineni and Heberlein, 2009). In the first paradigm, flies learn
to associate cues with ethanol intoxication and develop long-
lasting attraction for an ethanol-paired cue (Kaun et al., 2011).
A demonstration for the relevance of this model as a system
to study aspects of drug reward was the finding that flies are
willing to tolerate electric shock in order to approach an odor
cue predicting ethanol reward (Kaun et al., 2011). The two-choice
ethanol consumption paradigm measures motivation to obtain
drug rewards, where flies can choose to feed from ethanol or
non-ethanol containing food in a capillary feeder system (CAFE)
(Devineni and Heberlein, 2009; Pohl et al., 2012; Shohat-Ophir
et al., 2012; Xu et al., 2012; Ojelade et al., 2015; Zer et al.,
2016). Another two-choice ethanol consumption paradigm is the
FRAPPE (Fluorometric Reading Assay of Preference Primed by
Ethanol), a novel assay based on the CAFE system, which allows
precise and high throughput measurement of consumption in
individual flies (Peru y Colón de Portugal et al., 2014; Figure 1).
Lastly, a recent study by Shao, et al. established a new reward self-
administration paradigm that is based on optogenetic stimulation
of neurons that encode positive valence (Shao et al., 2017). In
this assay, flies harboring the red shifted channel rhodopsin
CsChrimson (Inagaki et al., 2014a) in NPF neurons prefer to
be in a zone that triggers optogenetic stimulation of their NPF
expressing neurons (Shao et al., 2017; Figure 1). Although this

assay does not measure drug related responses, it facilitates the
identification of neurons that induce immediate pleasure, and
conceptually resembles the rodent intracranial self-stimulation
(ICSS) paradigm (Olds and Milner, 1954).

DRUG-UNRELATED STUDIES AND THEIR
CONTRIBUTION TO UNDERSTANDING
THE MOLECULAR BASIS OF ADDICTION:
THE CASE OF LEARNING AND MEMORY

Addiction is frequently referred to as pathological usurpation
of learning and memory mechanisms that are normally used to
predict the occurrence of natural rewards (Nestler, 2002; Hyman,
2005; Hyman et al., 2006; Kalivas and O’Brien, 2008; Duan et al.,
2016; Patrono et al., 2016). This part of the review will explore
the contribution of the field of learning and memory in flies to
understanding drug related behaviors and possibly addiction, by
covering two major directions in the field: traditional forward
genetic screens, and more recent circuitry-oriented studies.

Genes and Cellular Pathways That
Constitute the Basic Machinery Encoding
Learning and Reward
Seymour Benzer and colleagues were the first to demonstrate
that one can use a genetic scalpel to identify genes and pathways
that are necessary for the formation of memory (Quinn et al.,
1974). Learning and memory can be studied in flies using both
reward or avoidance of punishment based assays, by pairing a
neutral cue to the presence of sucrose (positive reinforcement)

Frontiers in Physiology | www.frontiersin.org 3 April 2018 | Volume 9 | Article 327

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ryvkin et al. Susceptibility to Addiction in Files

or electric shock (punishment) (Quinn et al., 1974; Tempel et al.,
1983). The memory for the experience is measured by testing
the avoidance or attraction of the flies to the odor that was
previously paired (conditioned stimulus) with the experience
(unconditioned stimulus). Many studies over the years identified
mutants in different stages of the process, some of which showed
virtually no learning during shock training, like themutant turnip
(Quinn et al., 1979), dunce (Dudai et al., 1976), and rutabaga
(Aceves-Piña and Quinn, 1979), while others learned normally
but forgot the task of shock and sucrose training faster than wild
type flies, like amnesiac (Quinn et al., 1979; Tempel et al., 1983).
The elucidation of the molecular functions of the affected genes
shed light on the biochemical mechanisms mediating learning
and memory, and indicated a pivotal function for the cAMP
pathway; rutabaga (rut) encodes for the Ca2+/CaM-sensitive
adenylyl cyclase (Livingstone et al., 1982), and Dunce has cAMP
phosphodiesterase activity (Byers et al., 1981). In addition to the
cAMP pathways, other studies identified additional players that
regulate memory related plasticity events, such as Ca2+/CaM
Kinase II (Joiner and Griffith, 1997) and Orb2, a CPEB protein
that functions in synaptic plasticity-required protein synthesis
(Keleman et al., 2007).

Studying Neuronal Circuits That Encode
Associative Learning; The Mushroom
Bodies as an Association Center
Recent technological advances in neurogenetics led to the
emergence of powerful genetic tools such as optogenetics,
in vivo Ca2+ imaging, and the ability to manipulate single
neurons in behaving animals. This resulted in an explosion of
studies on mechanisms that encode associative learning and the
processing of natural rewards (reviewed by Owald et al., 2015). A
central player in integrating the conditioned and unconditioned
stimuli of a given experience into an associative memory is
the Mushroom Body (MB), a brain region extensively studied
with classical conditioning assays and genetic manipulations
(Heisenberg et al., 1985; Connolly et al., 1996; Wolf et al., 1998;
Waddell et al., 2000; McGuire et al., 2001; Liu et al., 2007;
Thum et al., 2007; Aso et al., 2009) (reviewed by Kaun and
Rothenfluh, 2017; Cognigni et al., 2018). Below we introduce
some basic principles that govern the function of the MB, as an
introduction to the neuronal machinery that processes positive
reinforcement, which is required for reward learning. As such,
this is not intended to be a comprehensive review of the MB [for
detailed up to date reviews on the wiring and function of the MB
see (Scaplen and Kaun, 2016; Felsenberg et al., 2017; Kaun and
Rothenfluh, 2017; Cognigni et al., 2018)].

The MB is a brain area where visual (Vogt et al., 2014),
gustatory (Kirkhart and Scott, 2015), thermal (Yagi et al.,
2016), and olfactory (Stocker et al., 1990; Wong et al., 2002;
Tanaka et al., 2004; Liu et al., 2008, 2012; Caron et al.,
2013) information (conditioned stimuli) reaches a set of
intrinsic neurons called Kenyon Cells (KC). KC axons run in
parallel through MB lobes and synapse with different subsets
of Mushroom Body Output Neurons (MBON) (Takemura
et al., 2017), forming functionally segregated compartments.

MBONs integrate sensory information with the valence of the
experience (Hige et al., 2015), generating an association between
the conditioned and unconditioned stimuli, and leading to
associative memory formation. For this to happen, specific sub-
populations of Dopaminergic Neurons (DAN) that innervate
each compartment deliver information about the valence of the
experience (unconditioned stimulus) (Thum et al., 2007; Aso
et al., 2010, 2014a,b; Liu et al., 2012; Caron et al., 2013; Clowney
et al., 2015) (reviewed by Das et al., 2016).

Activation of different populations of DANs is sufficient for
aversive or appetitive memory formation when paired with a
CS (reviewed by Waddell, 2013). Further functional dissections
revealed that different subpopulations of DANs and MBONs
encode information regarding the sweet vs. caloric value of the
ingested food (Das et al., 2014), water reward (Shyu et al., 2017),
aversive taste (Masek et al., 2015), electric shock memory (Unoki
et al., 2005; Aso et al., 2010), and even specific short and long-
term memory formation (Aso et al., 2014b). Memory formation,
consolidation, retrieval, reconsolidation and/or extinction have
been shown to occur via neuronal activities in specific parts of
theMBONs and specific subsets of reinforcing DANs (Berry et al.,
2012, 2015; Shuai et al., 2015; Aso and Rubin, 2016; Ichinose and
Tanimoto, 2016) reviewed by Cognigni et al. (2018). Intriguingly,
re-evaluation of previously learned appetitive memory was
shown to be conveyed by the activity of a subset of MBONs that
is anatomically connected to both aversive and appetitive DANs,
and that extinction or re-consolidation of appetitive memories
requires activity of both during re-evaluation (Felsenberg et al.,
2017). Finally, a recent comprehensive connectome map of the
entire MB alpha lobe that was generated by electron microscopy
imaging, demonstrated that the interconnectivity between KCs,
DANs and MBONs is even more intricate than previously
thought, paving the path for further delineation of the underlying
neurobiological principles of this brain region (Takemura et al.,
2017).

Shared Molecular Machinery of Memory,
Reward, and Drug-Related Behaviors in
Model Organisms
Drug rewards converge on molecular and neural pathways
that encode memory for natural rewards, and induce similar
neuroplastic changes as natural rewards (reviewed by Hyman
et al., 2006; Kauer and Malenka, 2007; Kalivas and O’Brien,
2008; Koob and Volkow, 2010). The cAMP, CREB dependent
and 1FosB pathways play a prominent role in mediating
these long-term adaptive changes in neuronal function (Nestler,
2002; Mameli and Lüscher, 2011). An example of the crosstalk
between natural reward, drug reward and neuroplasticity is
demonstrated in studies where periods of abstinence from sexual
experience increase the sensitization of rats to amphetamine
reward (Bradley and Meisel, 2001; Pitchers et al., 2010). This
sex experience-induced plasticity, which in turn causes enhanced
drug reward, was shown to be mediated by dopamine 1 receptor
(D1R)-dependent induction of 1FosB in the nucleus accumbens
(NAc) (Pitchers et al., 2013). A similar phenomenon was also
documented inDrosophila, in which sexual deprivation increased
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the motivation to consume ethanol as a drug reward, by
regulating the brain levels of neuropeptide F (NPF) (Shohat-
Ophir et al., 2012).

As stated previously, the dopaminergic system plays a central
role in processing natural rewards, and represents one way
by which drugs of abuse induce changes in memory-related
mechanisms (Di Chiara, 1999). In mammals, dopaminergic
neurons show characteristic burst-firing activity during
mating and food consumption (Dackis and O’Brien, 2001).
Cocaine increases dopaminergic neurotransmission by blocking
dopamine transport, preventing its removal from the synaptic
cleft (Dackis and O’Brien, 2001). Reducing dopamine levels in
fruit flies, using a competitive agonist to tyrosine hydroxylase
(which converts tyrosine to L-Dopa), diminishes their sensitivity
to cocaine and nicotine (Bainton et al., 2000). Dopamine release
is also required for the expression of ethanol reward in fruit
flies, as temporal block of neurotransmission in dopaminergic
neurons prevented conditioned preference for ethanol-associated
cues (Kaun et al., 2011). In addition, artificial activation of a
certain dopamine neurons such as the protocerebral anterior
medial (PAM neurons) is rewarding per se, as it induces robust
appetitive odor memory in the absence of natural or drug reward
(Liu et al., 2012).

Shared Mechanisms for Ethanol-Related
Behaviors and Learning and Memory in
Flies
Examining the connection between neuroplasticity and drug
response, several studies tested whether established learning and
memory mutants also depict aberrant behavioral phenotypes
in acute ethanol response. The mutant cheapdate, which is
an allele of the memory mutant amnesiac, caused increased
sensitivity to the sedating effects of ethanol (Moore et al., 1998;
Wolf and Heberlein, 2003). Another mutant, rut, exhibited
increased ethanol hyperactivity and sensitivity (Wolf et al.,
2002; Heberlein et al., 2004). In addition to acute responses to
ethanol, learning andmemorymutants revealed altered rapid and
chronic tolerance responses to ethanol (for detailed list of genes
see (Berger et al., 2008). For instance, the long-term memory
mutant john displayed enhanced chronic tolerance in response
to prolonged exposure (20–28 h) to low concentration of ethanol
vapor (Berger et al., 2008).

Krasavietz (or exba), which encodes a translation initiation
factor, is an example of a gene involved in learning and memory
whose mutation affects both acute ethanol response and the
motivation to consume ethanol. Krasavietz mutant flies exhibit
decreased sensitivity to ethanol sedation (Berger et al., 2008),
defects in the development of ethanol tolerance (Berger et al.,
2008), and reduced voluntary consumption of ethanol (Devineni
and Heberlein, 2009). Moreover, the expression of the memory
gene rut in mushroom body (MB) neurons is necessary for robust
ethanol consumption (Xu et al., 2012).

Recent studies identified new players that connect
neuroplasticity and the formation of memories to the rewarding
effects of ethanol intoxication. scabrous, which encodes a
fibrinogen-related peptide that regulates Notch signaling, was

shown to be necessary for the rewarding effects of ethanol
intoxication (Kaun et al., 2011). Another study discovered that
the sirtuin gene Sir2 (Sirt1), which deacetylates histones and
transcription factors, is regulated by exposure to ethanol vapor,
and is required for normal ethanol sensitivity, tolerance, and for
ethanol preference and reward (Engel et al., 2016).

Lastly, although this review focuses on ethanol related
behaviors, it is important to mention a study that tested the role
of memory mutants in nicotine-induced motor sensitivity (Hou
et al., 2004). Using a startle-induced climbing assay, measuring
the effect of nicotine vapor on climbing ability, Hou et al.
demonstrated that duncemutant flies, which harbor higher basal
levels of cAMP, exhibited increased sensitivity to the depressing
effects of nicotine. In contrast, DCOH2 (Pka-C1H2) and DCOB3

(Pka-C1B3) mutants that are defective in PKA showed low
sensitivity to nicotine (Hou et al., 2004).

MOTIVATIONAL STATES AS AN
ORGINIZING PRINCIPLE THAT SHAPES
REWARD PROCESSING

Animals continuously integrate their internal physiological
state with environmental signals, and subsequently choose
one action over another to increase their chances of survival
and reproduction. As such, the state of the organism defines
which stimuli are positively reinforced, negatively reinforced
or considered negligible. A classic example of this is that fruit
flies have to be hungry to express appetitive memory for sugar
(Krashes and Waddell, 2008; Krashes et al., 2009; Gruber et al.,
2013), highlighting the ability of internal signals such as hunger
to modulate learned responses of cues associated with food.

An example of the interplay between states and reward
processing can also be seen in aversive conditioning in fruit flies.
Pairing a neutral odor with electric shock forms an association
that predicts the arrival of pain. Conversely, presenting the
odor following electric shock promotes appetitive behavior, and
predicts the relief of pain, implying that the end of an aversive
state can also be rewarding (Tanimoto et al., 2004). This indicates
that even in flies, reward is not an absolute experience, but is
relative to the state in which it is perceived. Repeated stressful
experiences, such as repeated exposure to heat or electric shocks,
where the fly cannot evade punishment by walking away, can
induce a depression-like state, leading to decline in walking
activity, similar to learned helplessness paradigms in rodents
(Yang et al., 2013). Uncontrollable repeated mechanical stress
in flies can induce long-lasting changes in motivational states,
exhibited by reduced motivation to seek rewards and reduced
5HT (serotonin) levels (Ries et al., 2017). This depression-like
state can be relieved by lithium treatment or artificial activation
of serotonergic neurons that project to the MB (Ries et al., 2017).

Another aspect of the interplay between motivational states
and reward is the concept that different motivational states
are associated with particular drives (reward seeking behavior)
and specific sensory sensitivity. For instance, food deprivation
and satiety affect the extent of foraging behavior and food
consumption, and modulate sensory perception of food related
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sensory stimuli (Lee and Park, 2004; Yu et al., 2004; Wu
et al., 2005; Root et al., 2011; Inagaki et al., 2012, 2014b;
Marella et al., 2012; Beshel and Zhong, 2013; Wang et al.,
2013; Ko et al., 2015; Jourjine et al., 2016). This is achieved
by coordinated regulation of several different neuropeptide
and hormonal systems that integrate nutrient signals and
metabolic inputs into regulation of homeostatic drives and
modulation of sensory systems (Lee and Park, 2004; Yu et al.,
2004; Wu et al., 2005; Inagaki et al., 2012, 2014b; Marella
et al., 2012; Gruber et al., 2013; Wang et al., 2013; Jourjine
et al., 2016) (reviewed by Landayan and Wolf, 2016). This
presumably occurs via the activation of specific DAN innervating
the MB. For example, it was recently shown that insulin
triggers the opposing functions of two neuropeptide systems:
short neuropeptide F (sNPF) and tachykinin, and this in turn
regulates the sensitivity toward appetitive and aversive odors
(Ko et al., 2015). Serotonergic neurons were also shown to
modulate motivational states that regulate feeding behavior
and sugar associated reward (Burke et al., 2012; Sitaraman
et al., 2012). Recently, a set of 15 serotonergic neurons was
identified, that when activated, induces a fed fly to eat as
if it was food deprived, and promotes the formation of
appetitive memory (Albin et al., 2015). These findings imply
that specific sub-populations of neurons act to shift motivational
states, and thus control the way by which sensory stimuli
that is associated with the experience is processed and affects
behavior.

NPF System as a Molecular Signature for
Reward States
The NPF/NPF-receptor system is emerging as a central player
in modulating and encoding motivational states associated with
sugar reward, sexual, and drug reward, and the homeostatic
regulation of motivational responses. The activity of NPF-
expressing neurons mimics a state of food deprivation, and
promotes rewarding memories in satiated flies, via a subset
of downstream NPF receptor expressing dopaminergic neurons
that innervate the MB (Krashes et al., 2009). Additional studies
revealed NPF’s role in encoding other motivational aspects
of feeding, such as promoting feeding (Wu et al., 2005),
encoding the valence/attractiveness of food related odors (Beshel
and Zhong, 2013; Beshel et al., 2017), and enhancing sugar
sensitivity in sugar-sensing sensory neurons (Inagaki et al.,
2014b). In addition, NPF serves as a homeostatic integration
point of two interconnected systems: sleep and feeding. NPF
regulates starvation, which induces sleep suppression, suggesting
that the NPF system acts to encode a hunger signal that
promotes an arousal state associated with high motivation to
seek food (Keene et al., 2010; He et al., 2013; Chung et al.,
2017).

Another example that demonstrates the interplay between
motivational states and ways by which reward stimuli are
perceived, is the role of NPF in integrating sexual deprivation and
drug related rewards. Male flies perceive bothmating interactions
and ethanol intoxication as rewarding (Kaun et al., 2011; Shohat-
Ophir et al., 2012).Matedmale flies exhibited reducedmotivation

to consume ethanol containing food and have had high levels
of NPF transcript, while sexually deprived male flies exhibited
higher motivation to consume ethanol containing food and lower
NPF transcript levels. Furthermore, activation of NPF neurons is
rewarding in itself, reduces ethanol consumption, and prevents
the formation of appetitive memory toward ethanol. This implies
that experiences that modulate motivational states, can affect the
reinforcing value of other rewarding stimuli.

The causal link between environmental stimuli, NPF levels
and modulation of motivational behaviors has been documented
in several studies. Reduction in NPF transcription and the
activity of NPF-positive neurons was observed in response to
negative environmental inputs, such as the presence of parasitic
wasps and sexual deprivation, while NPF induction occurred
in response to mating and ethanol intoxication (Shohat-Ophir
et al., 2012; Kacsoh et al., 2013; Gao et al., 2015). Altogether,
this suggests that NPF neuronal systems are central to the
interplay between states and reward processing. Still, further
studies are required to uncover the mechanism that connect NPF
neuronal activity to activity of all specific DANs that project to
the MB, and the neuronal and cellular mechanisms that allow
this system to represent and affect a general reward state in the
brain.

The different roles of NPF/R system in regulatingmotivational
and homeostatic features of behavior are conserved between flies
andmammals. A large number of studies demonstrate the central
role of NPY (the mammalian homolog of NPF) in regulating
feeding and the motivation to feed (Tatemoto et al., 1982; Clark
et al., 1984; Flood and Morley, 1991; Kalra et al., 1997; Bannon
et al., 2000; Day et al., 2005; Keen-Rhinehart and Bartness,
2007). A recent study uncovered a functional link between
firing activities of NPY/AgRP neurons and energy homeostasis,
wherein starvation induces an increase in NPY/AgRP firing rate,
which in turn promotes re-feeding (He et al., 2016). The NPY
system also functions in regulating sleep and wake homeostasis
(Szentirmai and Krueger, 2006; Wiater et al., 2011; He et al.,
2013). A study performed in zebrafish (Danio rerio) identified
NPY signaling and NPY expressing neurons as regulators of
zebrafish sleep, promoting sleep by inhibiting noradrenergic
signaling, thus linking NPY signaling to an established arousal
promoting system (Singh et al., 2017). In addition to its role
in regulating natural physiological response, NPY has long
been implicated in regulating drug addiction (for review on
its role in ethanol addiction see (Thorsell and Mathé, 2017).
NPY administration relieves the negative affective states of drug
withdrawal and depression (Stogner and Holmes, 2000; Redrobe
et al., 2002). Recently, a neuronal mechanism for the interplay
between stress and reward systems on ethanol binge drinking was
dissected in mice and monkeys, providing the first evidence for
NPY and CRF functional interaction within neurons of the BNST
(a limbic brain structure that is enriched with NPY and CRF
neurons) (Pleil et al., 2015). Activation of the NPY Y1 receptor
in the BNST led to enhanced inhibitory synaptic transmission
in CRF neurons, which reduced binge alcohol drinking (Pleil
et al., 2015). Their findings propose CRF neuronal function as
a target for future therapies aimed to prevent and treat alcohol
abuse.
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FIGURE 2 | Schematic model illustrating the genetic and motivational elements that influence the likelihood of progressing from initial exposure to repeated use. Red

spiral depicts the multistage progression from initial drug exposure to drug dependence and addiction and the behavioral features that are shaped by molecular and

neuronal mechanisms. Blue arc depicts the way by which internal state can modulate different features in reward processing via molecular and neuronal mechanisms

affecting sensory sensitivity to reward related cues, the motivation to seek and obtain rewards, and the reinforcing value of the consumed reward.

CONCLUDING REMARKS

The risk of developing addiction is determined by molecular and

neuronalmechanisms that influence the likelihood of progressing

from initial drug exposure to repeated use. These mechanisms
can shape the experience of initial consumption, the amount
consumed, and the relative value of its reinforcing properties
(Figure 2). For instance, genetic variations in bitter taste receptor
and ethanol metabolism pathway influence the risk to develop
addiction (Hinrichs et al., 2006; Yu and McClellan, 2016).
Enhanced sensitivity to bitter taste is associated with reduced
risk, and variations in ethanol metabolism lead to enhanced
negative side effects and reduce the likelihood of repeated use,
and therefore the risk to develop addiction (Figure 2). Studies
in Drosophila demonstrated the functional link between ethanol
metabolism and sensitivity to acute ethanol exposure (Ogueta
et al., 2010). Other genetic components that control sensitivity
to the hedonic and sedating effects of ethanol play a role in
determining the extent of initial consumption and likelihood of
repeated use. Upon repeated use, genetic factors that determine
the extent of tolerance to ethanol-mediated responses can also
shape the amount that is needed to reach the euphoric state
(Figure 2).

An analogy for reward states can be proposed in which high
reward state is illustrated by a full “reservoir” and low state
by an empty “reservoir.” One can speculate that vulnerability
to addiction is related to the size of “reservoir” to be filled

(Bar, 2012). According to this model, bigger reservoir will
require greater amounts of rewarding experiences in order to
be filled. In addition, individuals can possess different sensitivity
to fluctuations in the levels of reward within the reservoir,
where sensitive individuals have increased motivation to fill up
the reservoir with any type of reward, while others will be
less affected by fluctuations, corresponding to reduced reward-
seeking behavior.

Lastly, prior experience/motivational states can also enter
into this equation, modulating different aspects of drug
response. For instance, social isolation affects sensitivity to
ethanol sedation (Eddison et al., 2011), pain can modulate
the perception of reward-related cues (Tanimoto et al., 2004),
while sexual deprivation and stress modulate the motivation
to seek and obtain rewards (Shohat-Ophir et al., 2012;
Ries et al., 2017; Figure 2). It is postulated that these
different conditions shape the repertoire and function of
proteins within neurons that mediate reward processing. As a
consequence, the reward baseline is shifted, which presumably
modulates the motivation to obtain rewards, the value of the
consumed reward, and the likelihood to continue consuming
drug rewards (Figure 2). Still, the means by which different
conditions and prior experiences are encoded in the reward
system and lead to changes in motivational states are largely
unknown.

Recent advances in the ability to purify RNA from
genetically tagged neuronal populations (Henry et al., 2012;
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Abruzzi et al., 2015), coupled with improvement in RNAseq
technologies, make it now possible to bridge the gap between the
specific transcriptomic repertoire and specific experiences/states.
In this respect, it is now possible to profile the repertoire
of coding mRNA, non-coding RNAs, and RNA modifications
such as RNA editing, as well as the metabolome and proteome
of specific neurons in every state. This can facilitate studies
exploring the contributions of co-transcriptional mechanisms
such as RNA editing, post-transcriptional mechanisms such as
RNAmethylation, and post-translational mechanisms in shaping
the vulnerability to drug addiction. Further in-depth mechanistic
studies will be required to connect specific regulation events to

their functional relevance in shaping the transition from initial
drug use to addiction.
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