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Abstract: “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, the novel coronavirus,
is responsible for the ongoing worldwide pandemic. “World Health Organization (WHO)” assigned
an “International Classification of Diseases (ICD)” code—“COVID-19”-as the name of the new
disease. Coronaviruses are generally transferred by people and many diverse species of animals,
including birds and mammals such as cattle, camels, cats, and bats. Infrequently, the coronavirus can
be transferred from animals to humans, and then propagate among people, such as with “Middle East
Respiratory Syndrome (MERS-CoV)”, “Severe Acute Respiratory Syndrome (SARS-CoV)”, and now
with this new virus, namely “SARS-CoV-2”, or human coronavirus. Its rapid spreading has sent
billions of people into lockdown as health services struggle to cope up. The COVID-19 outbreak
comes along with an exponential growth of new infections, as well as a growing death count. A major
goal to limit the further exponential spreading is to slow down the transmission rate, which is
denoted by a “spread factor (f)”, and we proposed an algorithm in this study for analyzing the
same. This paper addresses the potential of data science to assess the risk factors correlated with
COVID-19, after analyzing existing datasets available in “ourworldindata.org (Oxford University
database)”, and newly simulated datasets, following the analysis of different univariate “Long Short
Term Memory (LSTM)” models for forecasting new cases and resulting deaths. The result shows that
vanilla, stacked, and bidirectional LSTM models outperformed multilayer LSTM models. Besides,
we discuss the findings related to the statistical analysis on simulated datasets. For correlation analysis,
we included features, such as external temperature, rainfall, sunshine, population, infected cases,
death, country, population, area, and population density of the past three months—January, February,
and March in 2020. For univariate timeseries forecasting using LSTM, we used datasets from
1 January 2020, to 22 April 2020.

Keywords: COVID-19; public health; ICD; community disease; transmission rate; RNN; LSTM;
spread factor; population; correlation; regression; python; hypothesis test; keras; measurable sensor
data; artificial intelligence; deep learning; machine learning; statistics; algorithm

1. Introduction

In December 2019, Chinese authorities released the first official information to the world about the
spreading of the human coronavirus in their country as a community disease [1–3]. Till 15th May 2020,
more than 4.6 million people are infected with more than 0.38 million death cases reported worldwide
by WHO [4,5].
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In frequent cases the COVID-19 disease develops serious symptoms, to older adults and those
having medical pre-conditions, such as cardiovascular diseases (CVDs), diabetes, chronic respiratory
diseases (COPDs), cerebrovascular disease, and cancer [6]. Most people infected with SARS-CoV-2
are experiencing no or just mild to moderate respiratory symptoms and recover without special
treatment. The COVID-19 disease causes primary symptoms such as fever, tiredness, dry cough,
shortness of breath, together with other secondary symptoms such as a runny nose, sore throat,
aches and pains, diarrhea, and nausea in its victims after two to fourteen days of contact. In a minority
of patients, it causes severe pneumonia that can lead to death with comorbidity. SARS-CoV-2 has a
high resemblance to the virus in the body of bats (96.2% identical) termed as “BatCoV RaTG13” and
pangolin [1,2,6,7]. But its origin is still a mystery. Once exposed to the environment through a droplet
from an infected person, it can last from a few minutes to several hours, up to a few days, depending
on the type of surfaces. If a person touches their nose or eyes or pulls it out of their breath, there is a
possibility of getting infected. Studies show that it can stay in the air for up to three hours [8], on a
copper ring up to four hours, a full day on cardboard, and on plastic and stainless steel it can last up to
2–3 days [9]. In the high phase of the epidemic outbreak, each infected person can infect in average
around 3–5 other persons [6].

The genome of SARS-CoV-2 is ribonucleic acid (RNA) [6,10]. Because of such genomic pattern,
broad diversity, and recurrent recombination of the coronavirus species, it changes its nature frequently
with a mutation to cope up with a new environment for survival [6,10]. A preliminary study has
estimated the reproductive number or transmission rate (R0) of COVID-19 to be between 1.3 and 3.5,
compared to an R0 of seasonal influenza (flu) and SARS of 1.3 and 2.0, respectively. If R0 > 1, then there
is a chance of an epidemic development, else it disappears slowly [4,11].

Each year an estimated 290,000 to 650,000 people (corresponding to 795 to 1781 per day) die
globally due to impacts from flu viruses. SARS was another coronavirus that began from Beijing,
China, and spread to 29 countries in between November 2002 to July 2003, afflicting 8096 people,
and resulting in 774 fatalities, with a fatality rate of 9.6% [4,6,11]. On 30th January 2020, the case
number of the novel coronavirus (SARS-CoV-2) outpaced SARS. Another category of coronavirus,
MERS, decimated 858 people out of the 2494 infected, with a fatality rate of 35% in 2012 [6].
COVID-19 outnumbered the fatality rates caused by the other coronavirus categories, such as, SARS [12],
and MERS [13], and forced WHO to broadcast a global emergency on 30th January 2020. As proclaimed by
WHO on 27th January 2020, the median age of COVID-19 cases diagnosed outside of China was 45 years,
ranging from 2 to 74 years, with 71% male incidents. According to China’s “National Health Commission
(NHC)”, 80% died victims were over the age of sixty years old, and 75% of them had pre-existing
health conditions, such as CVDs and diabetes. According to the “US Center for Disease Control and
Prevention”, at least 20% of affected people become so sick that they have to be hospitalized, even though
they are between the ages of 20–44, and two-thirds of them are admitted to the “Intensive Care Unit
(ICU)”. The rapid growth of COVID-19 across the world from 1 January 2020, to 22 April 2020 is depicted
in Figure 1 [4,6,11,14].
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COVID-19 is a new ICD code and appeared with multiple significant research questions,
research directions, and that is the reason, the research outcome related to COVID-19 is limited in numbers
Multiple reputed publishing agencies such as, “Springer”, “Nature”, “Wiley”, “Taylor & Francis Group”
have made all the COVID-19 related articles open access and freely available [15,16]. Different studies
have been conducted by different research groups on COVID-19 to analyze its nature, effect, spreading,
probable consequences with statistical data analysis and AI based approaches. We classified COVID-19
related studies based on two popular AI inspired approaches, such as machine learning (ML) and
deep learning (DL) as follows–(a.) machine learning-based approaches-Dong et al. [17] developed an
interactive publicly available web-based dashboard to track the outbreak by scientists, researchers,
public health authorities, and general people. It was hosted by the “Center for Systems Science and
Engineering (CSSE)” at Johns Hopkins University, Baltimore, MD, USA, to visualize and follow reported
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cases of COVID-19 in real-time. Yang et al. [18] developed a dynamic SEIR model with machine
learning (ML) to predict the COVID-19 epidemic peaks and sizes with 2003 data for training after
23 January in China. The research team guessed when the epidemic would be highest in Hubei, China,
and when it would start declining gradually, considering quarantine as a factor. Rao et al. [19] did
their research on a machine learning (ML) based framework to identify COVID-19 related cases quickly
using a phone-based survey. The framework can help to classify cases between no-risk, minimal-risk,
moderate-risk, and high-risk, so that high-risk cases can be quarantined earlier, therefore diminishing the
chance of spread. Men et al. [20] researched the incubation period of COVID-19 with a machine learning
(ML) approach, and their result showed that the incubation distribution of COVID-19 did not follow
general incubation distributions such as Lognormal, Weibull, and Gamma distributions. They estimated
that the mean and median of COVID-19 incubation were 5.84 and 5.0 days respectively, via bootstrap
and proposed “Monte Carlo” simulations. They also noticed that the incubation period of the groups
with age >= 40 years and age < 40 years exhibited a statistically significant variation. The initial
group had more extended incubation period and more significant variance than the later. The study
further indicated that separate quarantine time should be employed to the groups for their distinct
incubation periods. Pandey et al. [21] did their research on proactive management with machine
learning methods to raise the “WASH” awareness for maintaining personal hygiene. They utilized the
co-creation technique to develop the user interface solution using mHealth technologies (WashKaro app)
in the local Indian language “Hindi”. They utilized a total of 13 combinations of pre-processing
approaches and evaluated word-embeddings, similarity metrics by 8 human participants via calculation
of agreement statistics. The archived the best performance with Cohen’s Kappa of 0.54, and the
solution was deployed as “On Air”, WashKaro app’s AI-powered back end. Li et al. [22] evaluated
the risk of a pandemic for all cities and regions in China using popular machine learning classifier
‘Random Forest (RF)’ with identified factors such as accumulative and increased numbers of confirmed
cases, total population, population density, and gross domestic product (GDP). The experiment found
a risk of unnecessary economic loss due to COVID-19. Yan et al. [23] and Jia et al. [24] Worked on
the predictive model to predict the criticality of COVID-19. The first research group developed a
machine learning based (XGBoost) prognostic model with clinical data in Wuhan from 10 January
to 18 February 2020, based on 3 clinical features. The model can predict the health risk and quickly
access the risk of death. The former research group used the “Logistic model”, “Gompertz model”
and “Bertalanffy model” to predict the cumulative number of confirmed cases and the development
trend of the COVID-19 epidemic. The “Logistic model” outperformed other models in fitting all
the data in Wuhan, while the “Gompertz model” performed better in fitting the data in non-Hubei
areas. Randhawa et al. [25,26] conducted two ML-based genomic studies to analyze the genomic
signatures to provide evidence of associations between Wuhan 2019-nCoV and bat coronaviruses and
to classify novel pathogens of COVID-19 rapidly. (b.) deep learning-based approaches-Gozes et al. [27]
developed artificial intelligence-based automated 2D and 3D deep learning-based CT image analysis
tools to detect, quantify, track, and monitor corona infected patients from those who have not infected.
Zhang et al. [28] proposed a deep learning-based drug screening model “DFCNN” for novel coronavirus
2019-ncov with virus RNA sequence database “GISAID” of Coronavirus and demonstrate that they can
differentiate coronavirus patients from those who do not have the disease. Xu et al. [29] conducted
a study to establish an early screening model to distinguish COVID-19 pneumonia from Influenza-A
viral pneumonia and healthy cases with pulmonary CT images using deep learning techniques with
86.7% accuracy. Shan et al. [30] and Li et al. [31] conducted their research on CT images with deep
learning techniques to quantify lung infections in a COVID-19 patient and to distinguish COVID-19
patients from community-acquired pneumonia patients, respectively. Narin et al. [32] and Wang et al. [33]
did their research on Deep Convolutional Neural Network Design to identify the COVID-19 cases from
the chest X-ray images. Ghosal et al. [34] investigated on drop-weights based “Bayesian Convolutional
Neural Networks (BCNN)” to guesstimate uncertainty in deep learning-based solution to expand
the diagnostic performance of the human-machine team using publicly available COVID-19 chest
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X-ray dataset and exposed that the uncertainty in prediction is highly correlated with the accuracy of
prediction. Santosh et al. [35] and Hu et al. [36] did their research on the human coronavirus outbreak
forecast model with AI approaches. The former research group utilized ML algorithms to analyze data
and followed by decision making to forecast the nature of COVID-19 spread across the globe using
active learning-based cross-population train/test models that used multimodal data. The following
research group used deep learning LSTM model (modified stacked auto-encoder) to forecast and
estimate the size, lengths, and ending time of COVID-19 across China based on the data collected from
January 11 to 27 February 2020, by WHO. Maghdid et al. [37] designed an AI-enabled framework to
diagnose COVID-19 using smartphone embedded sensors. The developed low-cost solution takes input
from the camera sensor (CT scan images of lungs, human tracking video observation), inertial sensor
(30-second-sit to stand), microphone sensor (cough voice prediction), temperature fingerprint sensor
(fingerprint on the screen) to predict COVID-19 disease, based on the deep learning (RNN and
CNN) techniques.

The AI inspired approaches are a powerful tool for helping public health planning and
policymaking. Our research aims to perform statistical analysis on available COVID-19 related datasets
available in “ourworldindata.org” [5] and newly created dataset to find a set of probable risk factors
associated with the spreading of COVID-19 and we have identified it as a research gap. Once correlation
analysis was accomplished, we explored univariate LSTM models for timeseries forecasting on total
cases and deaths. LSTM is an artificial “recurrent neural network (RNN)” architecture and used in
the field of deep learning. Therefore, in this research we followed deep learning-based approach.
In addition, we proposed an algorithm to prove our assumed hypothesis that that social isolation or
social distancing might restrict the spreading of the COVID-19.

The global scientific community is looking for three possible solutions, such as virus enzyme
inhibitors [38,39], plasma therapy [40], and vaccination to give a counter fight against COVID-19.
According to the WHO director general, the safest and fastest method of corona treatment is patient
identification, separation, examination, and treatment. WHO has specified a standard on its official
website where guidelines are specified formally to slow down and prevent its further transmission.
“Worldometers.org” [11], “ourworldindata.org” [5], and WHO [4] are updating situation reports,
data tables, and a COVID-19 dashboard on regular basis. We assumed that all the available data
provided by all countries on total case numbers, total deaths, total recoveries, daily cases, daily deaths,
and daily recoveries are correct, and based on that assumption we carried out our further analysis of
the data.

The main contributions of this paper are as follows: (a) Risks associated with the human
coronavirus spreading? (b) Identification of a set of probable correlated factors associated with the
expansion of COVID-19 following statistical approaches on the fabricated datasets? (c) Analysis of the
impact of social isolation with a spread factor (“f”) to restrict the spread of the human coronavirus?
(d) Analysis of different univariate LSTM models for forecasting of total cases and total deaths caused
by COVID-19.

The remainder of the paper is structured as follows: In Section 2, risks associated with the
human coronavirus spreading is discussed with data. Section 3 describes the methodology utilized
for the data processing. In Section 4, we discuss our findings. The paper is concluded in Section 5.
Clinical trials, chemical compounds, genetic analysis, political arguments, and economic analysis
related to COVID-19, are beyond the scope of this paper.

2. Risks Associated with the Spreading of COVID-19

COVID-19 has created significant health and economic slowdown in many countries since January
2020 due to global and local lockdown to encourage social distance. It has infected more than 4.6 million
people so far, with more than 0.38 million death and more than 1.7 million recoveries reported until
15th May 2020 [4,5]. It attacked not only developed nations but also developing ones, regardless of
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the socioeconomic condition, age, and gender discrimination. COVID-19 is highly contagious and
transmissible from human to human, with an incubation period of up to 24 days [6].

WHO officials initially considered SARS-CoV-2 as non-airborne, but a recent study has discovered
that it can survive in air staying suspended as aerosol depending on factors such as heat and
humidity [41]. Therefore, the infection mediums can be classified as contact (direct or indirect), droplet
spray in short-range transmission, and aerosol in long-range transmission (airborne transmission) [41].
According to the “Center for Disease Control and Prevention (CDC)”, a social distance of about 1.8 m
is necessary to avoid large droplets of virus-laden mucus [42], but some experts suggest that 1.8 m
distance is not enough [43] due to possible air current (Table 1). Pollution caused by nitrogen dioxide
(NO2) can be one of the most critical contributors to increase the fatality rate, caused by COVID-19 [44].
Recent studies found the existence of SARS-CoV-2 in sewage water [45] and non-potable water [46].

Table 1. Propagation of human coronavirus through air [19,47–52].

No Size Transmission Distance

1 Larger respiratory droplets (>5–10 µm diameter)
Travel only short distances,

generally < 1 m, but in
extraordinary cases up to 4 m

2 Virus-laden small (<5 µm diameter) aerosolized droplets
(droplet nuclei) Travel long distances, >1 m

3

Combinations of an individual patient’s physiology and
environmental conditions, such as humidity and

temperature, the gas cloud, and its payload of
pathogen-bearing droplets of all sizes

Travel 7–8 m

4 Strong airflow from the air conditioner Distance above 1 m

Scientists are exploring how humidity, temperature, and ultraviolet lighting alters the virus as
well as how long it can survive on different surfaces. Some studies have revealed that relative humidity
affects all infectious virus droplets, independent of their source and location [41], and gravity and
airflow cause the most virus droplets to float to the ground. The temperature, along with humidity,
affects the properties of viral surface proteins and lipid membrane [41]. According to the same study,
humidity between 50% to 80% is the best for low stability in SARS-CoV-2 [41]. According to the
studies [9,53,54], The SARS-CoV-2 can exist on different objects and surfaces as follows: (a) half of
the samples from the soles of the ICU medical staff shoes tested positive, (b) surface contamination
(computer mouse, trash cans, sickbed handrails, doorknobs), (c) equipment (exercise equipment,
medical equipment including spirometer, pulse oximeter, and nasal cannula, personal computers,
iPads, and reading glasses), and (d) surfaces (cellular phones, remote controls, toilets, room floors,
bedside tables, and bed rails, and window ledges).

According to the epidemiologists, the fatality rate of COVID-19 can change as SARS-CoV-2 can
mutate. WHO claimed that social distancing is the only way to slow down COVID-19 transmission,
and that is the reason, many countries are locked down, and people are asked to stay at home.
The concept of social distancing is not to eradicate the COVID-19, but to slow down its transmission,
hence declining the pressure on the health care systems and economy and, in this manner, reduce the
fatality rate. It might infect around 90% of the global population if no mitigation measures are taken
soon, as estimated by a leading statistical modeling group at “Imperial College London (ICL)” [55].
COVID-19 took 67 days for its initial 0.1 million cases, then it took just 3 days to reach from 0.4 million
to 0.5 million cases as depicted in Figure 2. The ICL team analyzed that, if proactive measures, such as
social distancing, rigorous testing and isolation of diseased people are taken with proper planning
when fatality rate of each infected country is 0.2/100,000 victims/week, then the outcome might reduce
wide-reaching deaths to 1.9 million. Studies found that Italy hit the 0.2 threshold on 2nd–3rd March,
the United Kingdom on March 17, and the United States on March 22 [4,5].
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USA, Spain, Italy, France, Germany, UK, Turkey, Iran, China, Russia, Brazil, Belgium, Canada,
Netherlands, Switzerland, Portugal, and India are top 17 countries according to the total COVID-19
cases reported till 22 April 2020 [4,5] as depicted in Figure 3, and Figure 4 respectively.Sensors 2020, 20, x FOR PEER REVIEW 7 of 28 
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3. Methodology

We performed following three analytical studies in this paper–a. correlation analysis to identify
how human coronavirus spreading and its fatality are related to factors such as, external temperature,
sunshine, rainfall, population, area, and density. b. finding importance of social isolation factor (“f”) to
restrict the spread of COVID-19, and c. development of univariate LSTM models to forecast total death
and total cases globally or country-wise (choice-based) and their performance comparison.

The overall process (methodology) includes [56–58]–a. data collection/data simulation, b. data
pre-processing, c. statistical analysis and data visualization, d. algorithm selection for LSTM model
development, e. model training and testing, f. model evaluation, and g. model reusability.

3.1. Data Collection

In this study, we used two types of datasets—a. real datasets available in “ourworldindata.org”
for timeseries forecasting and data visualization, and b. simulated dataset. For univariate timeseries
forecasting, we used “ourworldindata.org” datasets (total cases and total death) from 1 January 2020 to
22 April 2020 for the whole world and afflicted specific countries separately for individual processing.

In contrast, we used two categories of simulated data–one for correlation analysis
(“simulated_data_1”) and another (“simulated_data_2”) for the proposed algorithm in Section 3.8.
The former simulated dataset (“simulated_data_1”) consisted of 18 features, such as “Temp-Jan”,
“Temp-Feb”, “Temp-Mar”, “Rainfall-Jan”, “Rainfall-Feb”, “Rainfall-Mar”, “Sunshine-Jan”,
“Sunshine-Feb”, “Sunshine-Mar”, “Population”, “Area”, “Population Density”, “Case-Jan”, “Case-Feb”,
“Case-Mar”, “Death-Jan”, “Death-Feb”, “Death-Mar”, and “Country”. The measurable sensor data
related to average external temperature (◦C), average rainfall (ins) and daily sunshine (hrs.) were
collected from “weather2visit.com” [59]. The approximated data related to the area, population, and
population density (km2) were collected from “wikipedia” [60]. The simulated data was formed
integrating facts from the following countries–China, Italy, Spain, Germany, Iran, Switzerland,
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South Korea, Belgium, Netherlands, Austria, Singapore, Malaysia, France, Australia, United States,
United Kingdom, and Portugal as during January, 2020-March, 2020 mentioned countries were among
the topmost risk zone. The features of the “simulated_data_1” has been described in Table 2.

Table 2. Feature description of “simulated_data_1”.

No. Features Description

1 Temp-Jan Average temperature of the country in January 2020 [59]
2 Temp-Feb Average temperature of the country in February 2020 [59]
3 Temp-Mar Average temperature of the country in March 2020 [59]
4 Rainfall-Jan Average rainfall of the country in January 2020 [59]
5 Rainfall-Feb Average rainfall of the country in February 2020 [59]
6 Rainfall-Mar Average rainfall of the country in March 2020 [59]
7 Sunshine-Jan Average sunshine of the country in January 2020 [59]
8 Sunshine-Feb Average sunshine of the country in February 2020 [59]
9 Sunshine-Mar Average sunshine of the country in March 2020 [59]
10 Population Total population of the country [60]
11 Area Total area of the country [60]
12 Population Density Population density of the country [60]
13 Case-Jan Total infected cases of the country in January 2020 [5]
14 Case-Feb Total infected cases of the country in February 2020 [5]
15 Case-Mar Total infected cases of the country in March 2020 [5]
16 Death-Jan Total deceased of the country in January 2020 [5]
17 Death-Feb Total deceased of the country in February 2020 [5]
18 Death-Mar Total deceased of the country in March 2020 [5]
19 Country Name of the country selected for analysis

We did a statistical analysis of other simulated data (“simulated_data_2”) with the following five
features—a. count of days to run the simulation (“days”), b. assumed population (“population”),
c. spreading factor (“spread_factor”), d. initial afflicted people (“initial_afflicted”), and e. total number
of days to recover (“days_to_recover”) from COVID-19 to visualize the importance of social distancing
by flattening the curve of afflicted population over days as described in Section 4.

The datasets are as described in Table 3. All the simulated datasets are available in the repository
as mentioned in the “Supplementary Materials” along with python codebase to reproduce the results.

Table 3. Description of selected datasets.

No Name External Source Purpose Description

1 COVID-19 datasets www.ourworldindata.org [5] Univariate LSTM
forecasting

It is containing world-wide and
country specific data, such as total

cases, death, recoveries.

2 Simulated_data_1 www.weather2visit.com [59],
www.wikipedia.com [60] For correlation analysis

It is containing features, such as
external temperature, rainfall,

sunshine, population, infected cases,
death, country, population, area,

and population density of the past
three months-January, February,

and March

3 Simulated_data_2 Not available For analyzing our
proposed algorithm

Key variables used in the algorithm
are as follows:

days = 100, population = 200,000,
days_to_recover = 10,

inital_afflicted_people = 5, and
spread_factor = [0.25, 0.5, 0.75, 1.0,

2.0, 3.0, 4.0, 5.0]

3.2. Data Processing

Collected data are categorized among two groups–continuous and categorical. Accumulated data
in this research are labeled. Downloaded data from “ourworldindata.org” are inconsistent with missing

www.ourworldindata.org
www.weather2visit.com
www.wikipedia.com
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values. We utilized data mining techniques to filter data samples from the dataset, discard samples
containing outliers, pattern discovery, calculation of feature correlation, feature selection, and noise
removal. Data processing combines three steps as stated below [56–58]:

• Data preprocessing includes-data integration, removal of noisy data that are incomplete and
inconsistent, data normalization and feature scaling, encoding of categorical data, feature selection
after correlation analysis, and split data for training and testing an LSTM model.

• Training of a LSTM model and test its accuracy with loss functions as described in Section 3.5.
• Data postprocessing includes-pattern evaluation, pattern selection, pattern interpretation,

and pattern visualization.

In this experiment, we have used “Python 3.x” language libraries for data processing, as described
in Table 4. We established a python environment using anaconda distribution and “Spyder IDE”
for developing python-based deep learning application. We used traditional “Keras” library with
“TensorFlow” backend for LSTM model development, training, and testing.

Table 4. Python libraries for data processing [61].

No. Libraries Purpose

1 Pandas Data importing, structuring and analysis
2 NumPy Computing with multidimensional array object
3 Matplotlib Python 2-D plotting
4 SciPy Statistical analysis
5 Seaborn, plotly Plotting of high-level statistical graphs
7 Keras with TensorFlow LSTM model development, training, and testing

3.3. Statistical Analysis

In this study, we performed following two statistical approaches–hypothesis testing and correlation
analysis. Hypothesis testing is a statistical method that is used in achieving statistical decisions using
trial data. The critical parameter of hypothesis testing is the null hypothesis (H0), that tells there is
nothing different or unique about the data. On the contrary, the alternative hypothesis (Ha) directly
contradicts H0. The confidence factor or value of significance (α) is used to decide whether to accept
or reject an H0. The value of α is usually kept as 0.05 or 5%, as 100% accuracy is impossible to
achieve whether to accept or reject an H0. Popular, widely used hypothesis testing method, and a short
description is demonstrated in Table 5. For the testing method, resultant probability value (P-value) is
compared with “α” to accept or reject a null-hypothesis [56–58].

Example:

Hypothesis (H0). Time series has a unit root (non-stationary). It has some time dependent structure.

Hypothesis (Ha). The null hypothesis is rejected. It suggests that the time series does not have a unit root
(stationary). It does not have time-dependent structure, and α = 5% or 0.05.

Table 5. Hypothesis testing method [62].

Method Description

Augmented Dickey-Fuller test To test if a timeseries is stationary or non-stationary

Covariance (COV(x,y)) is a property of a function to retain its form when its variables are linearly
transformed. It helps to measure correlation (rxy) that measures the strength of the linear relationship
between two variables.
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corr(x, y) = COV(x, y)/(σx ∗ σy), where− 1 < r < +1

The “sign” shows the direction of the relationship among two variables x and y. Table 6 shows
the meaning of different |r| values. If two variables are strongly correlated, it is recommended to
select any one of them during feature selection. Pearson’s correlation coefficient is used to summarize
the strength of the linear relationship between two variables in normal distribution and spearman’s
correlation is used to calculate the non-linear relationship between two variables. The used statistical
methods are described in Table 7 [56–58,61].

Table 6. Significance of regression coefficient (r).

|r| Value Meaning

0.00–0.2 Very weak
0.2–0.4 Weak to moderate
0.4–0.6 Medium to substantial
0.6–0.8 Very strong
0.8–1 Extremely strong

Table 7. Statistical analysis methods on the selected datasets.

No. Methods Purpose

1 Mean, standard deviation Distribution test
2 Covariance, correlation Association test
3 Histogram, line, bar, Scatter Distribution plot
4 Quantile analysis Outlier detection

3.4. LSTM Modelling

The long short-term memory networks (LSTM) [63] are applied in long term dependencies,
such as timeseries forecasting, handwriting recognition, speech detection, and anomaly detection in
network traffic. LSTMs are a special kind of RNN and used in the field of deep learning. An LSTM
model has a chain-like structure (a cell, an input gate, an output gate and a forget gate), but the
repeating module has a different structure. Unlike standard feedforward neural networks, LSTM
has feedback connections. LSTM networks are well-suited to classify, process, and make predictions
based on timeseries data. They are used to overcome following two problems associated with the
RNN–exploding gradients, and vanishing gradients. There are different types of LSTM models
(univariate, multivariate, multi-step, and multivariate multi-step) which can be used for each specific
type of timeseries forecasting problem. In this study, we have used univariate LSTM models, such as
vanilla, stacked, bidirectional, and multilayer, for timeseries forecasting. The sates of a vanilla LSTM
model are summarized below and illustrated in Figure 5.

Step#1: What we need to forget? Identify that information which are not required and must
be thrown away from the cell state. This decision is made by a sigmoid layer called as forget gate
layer (“ft”).

Step#2: What new information we are going to add to our cell state? A sigmoid gate called the
“input gate layer” decides which values will be updated (“ot”). Next, a “tanh” layer creates a vector of
new candidate values, that could be added to the state.

Step#3: Combine step#1 and step#2 to achieve a new cell state (“ct”), and
Step#4: Finally, receive the output (“ht”).
In this study, we have selected below six LSTM models for timeseries analysis and forecasting:
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a. Vanilla LSTM Modelling in Keras:

model = Sequential ()
model.add (LSTM (50, activation =‘relu’, input_shape = (3, 1)))
model.add (Dense (1))
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b. Stacked LSTM Modelling in Keras:

model = Sequential ()
model.add (LSTM (100, activation =‘relu’, return_sequences =True, input_shape = (3, 1)))
model.add (LSTM (100, activation =‘relu’))
model.add (Dense (1))

c. Bidirectional LSTM Modelling in Keras:

model = Sequential ()
model.add (Bidirectional (LSTM (100, activation =‘relu’), input_shape = (3, 1)))
model.add (Dense (1))

d. Multilayer LSTM 1 Modelling in Keras:

model = Sequential ()
model.add (LSTM (units = 92, return_sequences = True, input_shape = (3, 1)))
model.add (Dropout (0.2))
model.add (LSTM (units = 92, return_sequences = True))
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model.add (Dropout (0.2))
model.add (LSTM (units = 92, return_sequences = True))
model.add (Dropout (0.2))
model.add (LSTM (units = 92, return_sequences = False))
model.add (Dropout (0.2))
model.add (Dense (units = 1))

e. Multilayer LSTM 2 Modelling in Keras:

model = Sequential()
model.add(LSTM(units = 100, return_sequences = True, input_shape = (3, 1)))
model.add(Dropout(0.2))
model.add(LSTM(units = 100, return_sequences = True))
model.add(Dropout(0.2))
model.add(LSTM(units = 100, return_sequences = True))
model.add(Dropout(0.2))
model.add(LSTM(units = 100, return_sequences = True))
model.add(Dropout(0.2))
model.add(Dense(units = 1))

f . Multilayer LSTM 3 Modelling in Keras:

model = Sequential()
model.add(LSTM(units = 50, return_sequences = True, input_shape = (3, 1)))
model.add(Dropout(0.2))
model.add(LSTM(units = 50, return_sequences = True))
model.add(Dropout(0.2))
model.add(LSTM(units = 50, return_sequences = True))
model.add(Dropout(0.2))
model.add(LSTM(units = 50, return_sequences = False))
model.add(Dropout(0.2))
model.add(Dense(units = 1))

Note:

a. The “Dropout layer” refers to dropping out units (both hidden and visible neuron) in a
neural network.

b. There are three deep learning model optimizers for hyperparameter tuning and cross validation–
a. Adaptive gradient (ADAGARD), b. RMSProp (adds exponential decay), and c. ADAM. In this
study, we used “ADAM” optimizer.

c. Mean square error (MSE), mean absolute error (MAE), “categorical_crossentropy”,
“binary_crossentropy”, residual forecast error/forecast error, forecast bias/mean forecast error,
root mean square error (RMSE), and “R2-score” are different determining methods for model
loss, but we used “MSE”, “MAE”, “RMSE”, forecast bias, and “R2-score”.

d. “Dense layer” is the regular deeply connected neural network layer.
e. “ReLU” stands for rectified linear unit. It is a type of activation function. Mathematically, it can

be defined as y = max (0, x), where x > 0. Its convergence is faster. It is fast to compute. It is
sparsely activated.

f. LSTM units can be trained in a supervised fashion, on a set of training sequences, using an
optimization algorithm, such as gradient descent, combined with backpropagation through time
to compute the gradients needed during the optimization process, to change every weight of
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the LSTM network in proportion to the derivative of the error (at the output layer of the LSTM
network) with respect to corresponding weight.

3.5. Model Training and Testing

The steps applied to train and test an LSTM model in this study, are described as below:

• Importing of python libraries
• Load data from repository
• Data pre-processing:

# remove missing value from the loaded data
# encode categorical features
# check distribution of data and features
# correlation analysis among features and feature scaling if required

• Feature scaling with “MinMaxScaler (feature_range = (0, 1))”
• Split the univariate sequence into samples
• Split data for training (97%) and testing (3%)
• Create LSTM models as described in Section 3.4.
• Compile the model with optimizer = “adam”, loss =“mse”, metrics = [“acc”]
• Train the model with epochs = 100, batch_size = 10, validation_split = 0.05
• Use “ADAM” optimizer for model tuning
• Evaluate model performance with accuracy and loss function after inverse transformation of the

predicted feature.
• Execute the model for five times and then calculate the average of performance metrics as described

in Section 3.5, and predicted value. It helps prove the testing rate and increase the validity of
timeseries analysis.

Note:

a. Univariate sequences are timeseries data of total cases, and total death for the world or
individual countries. In this study, we have considered univariate timeseries data of the world
for both training and testing of LSTM models, but the same model can be extended to use for
individual countries.

b. The “acc” refers to accuracy in metrics = [“acc”] of the corresponding LSTM model.

3.6. Model Performance Evaluation

Developed univariate LSTM models for timeseries forecasting are evaluated with below metrices:

• Regression metrices: mean absolute error (MAE), mean squared error (MSE), root mean square
error (RMSE), forecast bias, and R2 regression metric.

MAE is the easiest error metric used in the regression problem following the formula:

MAE =
1
n

∑∣∣∣∣∣Y − Ŷ
∣∣∣∣∣, where Y = actual value and Ŷ = predicted value (1)

MSE squares the difference of actual and predicted output before adding them all instead of using
the absolute value following the formula:

MSE =
1
n

∑
(Y − Ŷ)2

, where Y = actual value and Ŷ = predicted value (2)
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RMSE is the square root of the calculated mean squared error (MSE).
Forecast bias can be wither positive or negative. The forecast bias is calculated directly as the mean

of the forecast error. A mean forecast error value other than zero suggests a tendency of the model to
over forecast (negative error) or under forecast (positive error). As such, the mean forecast error is also
called the forecast bias. If forecast error = 0, then no error, or perfect skill for that forecast. If forecast
bias < 0, then over forecast and if forecast bias = 0 or close to zero, then the model is unbiased.

forecast_error = (expected_value − predicted_value)
forecast_bias = mean (forecast_error)

(3)

R2 regression metric has been used for the explanatory purpose to provides an indication of
the fitness in predicted output values to the actual output values. It is calculated with a formula
having numerator as MSE and the denominator as the variance in Y values. The R2 signifies how much
variance of the data is explained by the model. The R2 = 0.90 means that 0.10 of the variances cannot
justify by the model, when the logical case is R2 = 1, then the model completely fit and explained all
variance. The calculation of R2 > 1 represents an abnormal case that has no logical meaning, and it may
result from the small sample size.

R2 = 1−
1
n
∑n

i=1 (Y − Ŷ)2(
1
n
∑n

i=1(Y −Y
2
) , where = actual value, Ŷ = predicted value, and Y = mean value (4)

3.7. Model Store and Reuse

We saved our final trained LSTM model in a file and restored it to reuse, either by comparing the
model with other models or by testing the model on a new or updated data. The process of storing the
model is called serialization, and restoring the model is called deserialization. It can be done in two
ways, as described in Table 8. The pickled model can be stored in the database for distributed access.

Table 8. LSTM model store [61,64].

Method Implementation

Pickle string Import pickle library
Pickled model Import joblib from sklearn.externals library

3.8. Algorithm Design to Find the Importance of Social Distancing

In this research, we studied the importance of social distancing by flattening the curve of afflicted
population over specific days, with a spreading factor (“f”) of 0 < f ≤ 5 [6]. The spread factor is used to
determine the transmission rate of a virus [6].

If “f” = 0 then no spreading, else one infected person can infect up to 3–5 people daily,
in maximum [6]. The recovery from COVID-19 takes a maximum of 7–10 days [6]. Therefore,
we have selected the value of “days_to_recover” as 10. In the proposed algorithm, we assumed that no
patient has died. The “days” feature can be contemplated as a “lockdown” period. The Algorithm 1
we used for analysis is described below –
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Algorithm 1. Importance of social distancing by flattening the curve of afflicted population over specific days

Step 1: Initialize necessary parameters as follows to create a simulated town infected with COVID-19 –
days = 100/*lockdown days*/
population = 200,000/*population of the town*/
spread_factor = 0.25/*COVID-19 transmission rate (0 < f ≤ 5) */
days_to_recover = 10/*maximum recovery days from COVID-19*/
inital_afflicted_people = 5/*initial infected people of the town with COVID-19*/

Step 2: Initialize a data frame (“town”) for the simulated town with the following four features –
id = range(population)/* id € (0- population) */
infected = false
recovery_day = none
recovered = false

Step 3: Initialize the initial cases (“initialCases”) with inital_afflicted_people variable,
update corresponding infected feature as true, and
update recovery_day feature with days_to_recover variable

Step 4: Initialize the initial active cases (“active_cases”) with initally_afflicted variable and
initial recovered cases (“recovery”) with 0.

Step 5:
for day = 1 to days do

Step 5.1: Mark the people of town data frame, who have recovered on current day
- update the feature recovery_day as True and infected feature as False
if they have crossed days_to_recover else ignore.

Step 5.2: Calculate the number of people who are afflicted today with spread_factor
- calculate number of people infected in the town data frame based on
feature infected = True
-multiply the count of total infected people with spread_factor to
calculate total possible cases of infected people on current day

Step 5.3: Forget people who were already infected in cases of current day
Step 5.4: Mark the new cases as afflicted, and their recovery day by updating

active_cases and recovery lists of the town data frame.
Step 6: Repeat the step 5 for spread_factor = 0.25 to 5.0 and plot every distribution graph of active_cases
over days.

Note:

a. We plotted distribution graph of active cases over days for the following set of “f” values: [0.25,
0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0] with the initialized parameters at Step 1.

b. The algorithm was implemented with “simulated_data_2”.
c. The worst-case time complexity of the algorithm is O(N2), where N = problem size.

4. Results and Discussion

The correlation analysis of the simulated data (“simulated_data_1”) is depicted in Figure 6.
The resultant correlation heatmap of simulated data is a well-accepted data visualization method
among machine learning communities, and it illustrates the magnitude of a phenomenon as color
in two dimensions. Here, the variation in color is the value of correlation factor “r” which is giving
understandable visual cues about how the phenomenon is clustered or varies over space. The code of
the color is changing according to the values of “r”, from a weak correlation to the strong correlation.
The color bar beside the correlation matrix is signifying that color change following “r” values,
where −1 < r < +1 as described in Section 3.3.

We excluded the feature “country” from correlation study. The correlation study was conducted to
investigate how infected cases and death are related to external temperature, sunshine, and precipitation!
Correlation factor |r| > 0.6 represents a strong correlation according to Table 5.
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In this study, we represented the relation between total population (p), cases (c), and death (d)
with the following functions (“f”) –

c = f(p), and d = f(c), where p > 0, c > 0, d > 0, and p, c, d are natural numbers (N). Hence, d = f(f(p)).
Generally, dc/dt ≥ 0, dd/dt ≥ 0, and dp/dt > 0, where “t” is the time and t > 0.
Let, p’ is the total infected population, where p’€ p.
Let, c = f(p’) is a function defined on an interval [a, a + h], where “a” is the initial infected population,

“h” is the newly infected population, {a, h} € p’, a ≥ 0, and h < p’.
Therefore, the instantaneous rate of change of “c” at “a” is its derivative –

f ′(a) = lim
h→0

f (a + h) − f (a)
h

Hence, for small change in “h”, f’(a) approximates to (f (a + h) − f (a))/h. Subsequently, it can be
derived that –

dc/dt = dp′/dt ≥ 0Sensors 2020, 20, x FOR PEER REVIEW 18 of 28 
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The correlation analysis, as depicted in Figure 6, is exhibiting that COVID-19 does not have any
dependency on external temperature, sunshine, and precipitation. It is genuinely a community disease.
Death is highly correlated (|r| > 0.8) to the number of cases rather than the weather (external temperature,
sunshine, and precipitation), as depicted in Figure 7. We performed exponential regression analysis
to plot increase in death (Y-axis) with an increase in the number of cases (X-axis) as depicted in
Figure 7, and the obtained equation of an approximated exponential curve is: Y = e∧(5.95734475e+00) *
e∧(1.25996126e-05*X).

The total cases are highly related (|r| > 0.7) to the population, as depicted in Figure 6. If the number
of populations increases, the number of new deaths also increases due to the high correlation value of
|r|, as depicted in Figure 6. Therefore, social distancing or social isolation is one of the primary keys to
stop its spreading. Countries with high population density, such as Bangladesh, Singapore, Pakistan,
and India, have a high chance of getting afflicted by COVID-19 very drastically until controlled from
the beginning. Hence, social isolation, lockdown, social distancing are significant in this regard to stop
the spreading of COVID-19 at the community level.

That is why, many countries have been locked down, and people are being asked to stay at home.
It might have a chance to slow down the spread of the COVID-19 by flattening the curve of afflicted
population over days and relaxing pressure on the healthcare system. It is one of the essential measures
to restrict the fatality rate of COVID-19. Besides the decision of lockdown, ordinary people should
understand its importance as the human coronavirus is highly contagious.
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We hypothesized that social isolation or social distancing might restrict the spreading of the human
coronavirus as it may slow down the spread factor (“f”). To prove the assumed hypothesis, we proposed
an algorithm in Section 3.8. After executing the algorithm with simulated data (“simulated_data_2”),
we plotted different distribution graphs of “active cases” (Y-axis) over the number of lockdown “days”
(X-axis), for the following set of spread factor (“f”) values: [0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0] as
depicted in Figure 8. The spread factor (“f”) with the lowest value of 0.25 has produced a nice gaussian
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distribution in Figure 8. With increasing spread factor (“f”), active cases are growing high as compared
to lockdown period, as described in Table 9. If the average load of active cases goes high in short span
of days as described in Table 9, the healthcare sector may collapse to cope up and unable to provide
adequate treatment to infected patients. Therefore, the recovery rate may become very low and death
rate may increase. The figures (Figure 8) are illustrating that social isolation or social distancing has a
significant impact on flattening the curve of afflicted population over days to alleviate sudden pressure
on the existing capacity of the healthcare system.

Sensors 2020, 20, x FOR PEER REVIEW 20 of 28 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Cont.



Sensors 2020, 20, 3089 20 of 27
Sensors 2020, 20, x FOR PEER REVIEW 21 of 28 

 

  
(g) (h) 

Figure 8. Flattening the distribution graphs of active cases over days by reducing human coronavirus 
spreading with different “f” values, such as (a) f = 0.25; (b) f = 0.50; (c) f = 0.75; (d) f = 1.00; (e) f = 2.00; 
(f) f = 3.00; (g) f = 4.00; and (h) f = 5.00. 

Table 9. Effect of spreading factor (“f”) to flatten the curve of active cases. 

“f” 
Peak Active 

Cases 
Span of Active 

Cases (days) 

Treatment 
Duration 

(Days) 

Maximum 
Load (Week) 

Avg Load 
(Patient/day) 

0.25 70,000–80,000 1–100 100 7–10 Moderate 
0.50 140,000–160,000 1–50 50 4–5 Medium 
0.75 175,000–190,000 1–40  40 3–4 High 
1.00 175,000–200,000 1–36 36 2–4 High 
2.00 200,000 1–23 23 2–3 Very High 
3.00 200,000 1–19 19 2–3 Very High 
4.00 200,000 1–17 17 1–2 Very High 
5.00 200,000 1–18 18 1–2 Very High 

 

Figure 8. Flattening the distribution graphs of active cases over days by reducing human coronavirus
spreading with different “f” values, such as (a) f = 0.25; (b) f = 0.50; (c) f = 0.75; (d) f = 1.00; (e) f = 2.00;
(f) f = 3.00; (g) f = 4.00; and (h) f = 5.00.

Table 9. Effect of spreading factor (“f”) to flatten the curve of active cases.

“f” Peak Active
Cases

Span of Active
Cases (Days)

Treatment
Duration (Days)

Maximum
Load (Week)

Avg Load
(Patient/day)

0.25 70,000–80,000 1–100 100 7–10 Moderate
0.50 140,000–160,000 1–50 50 4–5 Medium
0.75 175,000–190,000 1–40 40 3–4 High
1.00 175,000–200,000 1–36 36 2–4 High
2.00 200,000 1–23 23 2–3 Very High
3.00 200,000 1–19 19 2–3 Very High
4.00 200,000 1–17 17 1–2 Very High
5.00 200,000 1–18 18 1–2 Very High

India implemented its first lockdown on 23 March 2020 to 13 April 2020 (21 days) and the second
lockdown until 3 May 2020. The trend of total reported cases has been compared between four Asian
countries, such as India, Singapore, Iran, and Turkey, till 22 April 2020 as depicted in Figure 9. The trend
is showing that successful lockdown might have a chance to slow down the spreading of the human
coronavirus in India and Singapore. As per the study at “John Hopkins University”, the human
coronavirus growth rate in India is declining consistently by flattening the curve of case doubling due
to the first phase of lockdown [14].

We downloaded four types of timeseries data from “ourworldindata.org” as follows–a. the total
number of cases, b. total deaths, c. new confirmed cases, and d. new deaths. We performed hypothesis
testing on the timeseries data to check whether they are stationary or not, following Table 5. The result
is described in Table 10.

We analyzed the performance of six LSTM models as described in Section 3.4 on the following
two datasets—a. the total number of cases, and b. total deaths, available in “ourworldindata.org”
to forecast probable total infected cases and death in advance. The designed models can be used
to forecast total infected cases and total deaths of any selected countries individually, available in
“ourworldindata.org”. We processed data from 1 January 2020, to 22 April 2020 as described in
Section 3.5. Total 97% of the data utilized to train the models and the remaining 3% data used for
testing (total 110 future predictions) the performance of the models.
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Table 10. Result of hypothesis testing of timeseries data.

Timeseries Data Test Result Nature of Data

Total_deaths

ADF Statistic: −4.763,824
p-value: 0.000,064

Critical Values:
1%: −3.498
5%: −2.891

10%: −2.582

Rejecting null hypothesis; no unit
root and timeseries is stationary

New_deaths

ADF Statistic: −2.814,703
p-value: 0.056,204

Critical Values:
1%: −3.498
5%: −2.891

10%: −2.582

Fail to reject null hypothesis;
the data has a unit root and data

is non-stationary

Total_cases

ADF Statistic: 5.989,246
p-value: 1.000,000

Critical Values:
1%: −3.496
5%: −2.890

10%: −2.582

Fail to reject null hypothesis;
the data has a unit root and data

is non-stationary

New_cases

ADF Statistic: 2.771,519
p-value: 1.000000

Critical Values:
1%: −3.498
5%: −2.891

10%: −2.582

Fail to reject null hypothesis;
the data has a unit root and data

is non-stationary

We executed training and testing of individual models for 5 times, then took the average of
corresponding performance metrics, and predicted values. The average performance results of different
LSTM models are described in Tables 11 and 12 respectively, and corresponding model calibrations are
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depicted in Figures 10 and 11, respectively. According to the result, no single model is 100% accurate,
and they tend to either over-forecast or lower forecast. The vanilla, stacked, and bidirectional LSTM
models performed better than multilayer LSTM models. In this study, we focused only on the general
trend of data, and that might be the reason to over-forecast. The forecasting may help us to be aware of
upcoming unwanted situations and take necessary actions in advance to mitigate it.

Table 11. Average performance analysis of LSTM models to forecast total cases of the “World”.

LSTM
Model(s) MAE MSE RMSE Forecast

Error |R2|
Compilation

Time (ms)

Vanilla 8,968.244 98,168,777.193 9,908.016 121.883 1.0 110.0
Stacked 6,597.784 82,779,520.484 9,098.325 1,120.341 1.0 192.0

Bidirectional 7,130.149 74,807,857.322 8,649.154 1,454.284 1.0 194.0
Multi-Layer 1 37,438.048 2,338,577,178.93 48,358.838 −37,075.648 0.995 520.0
Multi-Layer 2 45,038.733 4,110,861,091.40 64,115.997 15,340.520 0.992 762.0
Multi-Layer 3 51,890.187 10,545,625,824.0 102,691.898 −45,213.395 0.970 680.0

Table 12. Average performance analysis of LSTM models to forecast total death of the “World”.

LSTM
Model(s) MAE MSE RMSE Forecast

Error |R2|
Compilation

Time (ms)

Vanilla 735.039 2,300,815.114 1,516.844 −120.177 0.99 104.0
Stacked 738.703 4,637,553.996 2,153.498 341.605 0.98 190.0

Bidirectional 660.818 1,114,423.658 1,055.663 394.884 0.99 191.0
Multi-Layer 1 3,573.872 30,177,345.174 5,493.391 −3,573.872 0.983 400.0
Multi-Layer 2 1,290.960 4,069,047.834 2,017.188 −708.400 0.998 407.0
Multi-Layer 3 3,108.016 52,959,914.784 7,277.356 −3,033.915 0.966 400.0
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For verification, we trained our vanilla, stacked, and bidirectional LSTM models with Indian
dataset available in “ourworldindata.org” from 1 January 2020 to 23 March 2020. The focus was
to forecast an approximate total number of cases after 21 days starting 23 March 2020, as the first
lock-down period of India ended on 13 April 2020. We executed individual models for 5 times,
then took the average of total predicted cases. Once forecasting was completed, we verified whether
lock-down (social distancing/social isolation) had any impact on lowering the spread of the human
coronavirus. The result showed that without lock-down, India could cross 0.2 million of total corona
cases on 14 April 2020. Therefore, it supports our assumed hypothesis that social isolation/social
distancing is one of the main criteria to fight against COVID-19.

5. Conclusions

The statistical correlation study proved that COVID-19 does not depend on external weather
factors, such as external temperature, sunshine, and precipitation. It depends on the population and its
density mostly. Therefore, it is considered as a community disease. This research verified our assumed
hypothesis that social isolation/social distancing might restrict the spreading of the human coronavirus
by diminishing its spread factor. The forecasting of probable new corona cases and death count with
proposed LSTM models in this study may help to take necessary actions in advance to control the
upcoming undesirable health crisis. SARS-CoV-2 can infect people of all ages, but people who have
pre-existing medical conditions such as COPD, CVDs, diabetes, hypertension, cerebrovascular disease,
and cancer are more susceptible to become severely sick with the viral infection. Complete data related
to different health factors, age, sex, health history of COVID-19 infected patients are still not available
in public to conduct more detailed research.

In the future, the accuracy of the LSTM forecasting can be improved after considering
additional needed parameters rather than relying on univariate trend of timeseries data. eHealth with
information and communication technologies (ICT) [65], may open a new direction in COVID-19
research and remote patient monitoring after collecting necessary health and wellness data through
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standard sensors, questionnaires and followed by, train a decision support system (DSS) for tailored
recommendation generation.
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