
Research Article
Identification of Key miRNAs in the Treatment of Dabrafenib-
Resistant Melanoma

Guangyu Gao,1 Zhen Yao,1 Jiaofeng Shen ,2 and Yulong Liu 1,3,4

1Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
2Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
3State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University,
Suzhou 215123, China
4Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China

Correspondence should be addressed to Jiaofeng Shen; jfshenzz@163.com and Yulong Liu; yulongliu2002@suda.edu.cn

Received 27 January 2021; Revised 13 February 2021; Accepted 11 March 2021; Published 7 April 2021

Academic Editor: Qiang Liu

Copyright © 2021 Guangyu Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dabrafenib resistance is a significant problem in melanoma, and its underlying molecular mechanism is still unclear. The purpose
of this study is to research the molecular mechanism of drug resistance of dabrafenib and to explore the key genes and pathways
that mediate drug resistance in melanoma. GSE117666 was downloaded from the Gene Expression Omnibus (GEO) database
and 492 melanoma statistics were also downloaded from The Cancer Genome Atlas (TCGA) database. Besides, differentially
expressed miRNAs (DEMs) were identified by taking advantage of the R software and GEO2R. The Database for Annotation,
Visualization, and Integrated Discovery (DAVID) and FunRich was used to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify potential pathways and functional
annotations linked with melanoma chemoresistance. 9 DEMs and 872 mRNAs were selected after filtering. Then, target genes
were uploaded to Metascape to construct protein-protein interaction (PPI) network. Also, 6 hub mRNAs were screened after
performing the PPI network. Furthermore, a total of 4 out of 9 miRNAs had an obvious association with the survival rate
(P < 0:05) and showed a good power of risk prediction model of over survival. The present research may provide a deeper
understanding of regulatory genes of dabrafenib resistance in melanoma.

1. Introduction

By 2018, 1,762,450 new tumor patients are been made defi-
nite diagnosed and 606,880 among them died in the United
States [1]. Of them, melanoma is the most aggressive type
of skin tumor, takes up 10% of all skin cancers, but causes
more than 80% of skin carcinoma-related deaths [2]. In
2019, approximately 96,480 individuals may be diagnosed
with melanoma, and 7230 may have died of the disease.
Although the overall incidence of cancer has declined in
men and remained stable in women, the incidence of cutane-
ous melanoma in the United States has continued to rise over
the past decade [1]. Based on conventional chemotherapy,
melanoma does not respond well to treatment, leading to a
5-year survival rate of only 15% [3]. Molecular changes asso-
ciated with sun exposure [4] or DNA methylation [5] are

thought to be related to the development of melanoma.
Besides, the mitogen-activated protein kinase (MAPK) path-
way and gene mutations in the MEK/RAS/RAF/ERK have
been found [6] and have offered new drug treatment targets.
Among the second generation of selective BRAFV600E
inhibitors, dabrafenib is the first drug authorized for the tar-
geted treatment of unresectable melanoma [7]. Although the
efficacy and tumor control effect of BRAF inhibitors are sig-
nificant, the persistence of the efficacy is limited due to drug
resistance, and signs of disease progression can be seen
within 6-8 months after the start of treatment [8, 9].

microRNA (miRNA) is a highly conserved and short
noncoding RNA molecule that occurs naturally in plant
and animal genomes. They usually bind to the untranslated
17′-mRNA by regulating the length of the utr-3 region. Stud-
ies have shown that thousands of human protein-coding
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genes are regulated by miRNAs, indicating that miRNAs are
the “main regulators” of many important biological processes
[10]. Although miRNA has only 20 nucleotides, it plays an
important role in gene expression by regulating a large num-
ber of target genes [11]. For example, Zhang et al. found that
miR-129-5p can suppress lung cancer cell viability and inva-
sion, which may occur via the modulating of MCRS1, E-cad-
herin, and vimentin expression [12]. Zhang et al. found that
low miR-133 expression was a common event and correlated
with worse clinical outcomes in acute myeloid leukemia, sug-
gesting that serum miR-133 might serve as a promising indi-
cator for the early detection and prognosis evaluation of
AML [13]. Xu et al. also reported that miRNA-100 inhibits
human bladder urothelial carcinogenesis by directly targeting
mTOR [14]. Besides, different mechanisms of BRAF inhibi-
tor resistance in melanoma have been described: epigenetic
[15], genomic [16], and phenotypic [17] transformation pro-
duces many changes leading to acquired, internal, or adap-
tive resistance. However, it still needs to be further explored.

In the current study, microarray data for GSE117666 and
melanoma sample data in the TCGA database facilitated the
investigation of differently expressed miRNAs in dabrafenib-
sensitive and dabrafenib-resistant melanoma. The functions
of the target mRNAs were assessed by using GO annotation,
KEGG, PPI network, and the relationship between
dabrafenib-resistant miRNAs and the overall survival of

patients with cancer. In summary, we performed this study
to find the key miRNAs and mRNAs of medicine resistance
and to discover potential new tumor therapy targets to
reduce dabrafenib resistance.

2. Materials and Methods

2.1. Microarray Data. The GEO (https://www.ncbi.nlm.nih
.gov/gds) database is a gene expression database created
and maintained by NCBI. It was founded in 2000 and
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Figure 1: Flow chart of this study. GO: Gene Ontology; miRNA: microRNA; mRNA: messenger RNA; PPI: protein-protein interaction;
KEGG: Enriched Kyoto Encyclopedia of Genes and Genomes.

Table 1: Key differently expressed miRNAs of joint screening from
GSE117666 and TCGA database.

ID P value Log FC

hsa-miR-509p 0.000011 -5.21303

hsa-miR-146a 0.000033 5.17469

hsa-miR-514b 0.000108 -3.48325

hsa-miR-584 0.000121 3.317673

hsa-miR-510 0.000138 -2.69851

hsa-miR-503 0.000901 -2.30348

hsa-miR-513a 0.001138 2.818463

hsa-miR-126 0.001620 -2.45363

hsa-miR-508 0.019126 -2.10383
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contains high-throughput gene expression data submitted by
research institutions around the world. In our research, gene
expression profile data (GSE117666) was obtained from
GEO. Three dabrafenib-resistant melanoma cells and three
dabrafenib-sensitive cell lines were included. The array data
were acquired from the Affymetrix Multispecies miRNA-3
Array [GPL16384; transcript (gene) version]. Besides, the
flow of this study is shown in Figure 1.

2.2. DEMs Analysis. We used the R software to compare the
two groups of samples. Furthermore, ∣log 2FC ∣ ≥2 and P <
0:05 were set up as cut-off criteria, and if the statistics accord-
ing to our criteria, obvious statistical differences will be con-
sidered [18].

2.3. Targets of miRNA Prediction. DEMs were achieved by
the method mentioned above. miRWalk1.0 (http://mirwalk
.umm.uni-heidelberg.de/) is a fully documented, freely avail-
able database that provides the largest set of predictive,
experimentally proven miRNA target interactions in a
variety of novel ways.

2.4. Functional and Pathway Enrichment Analysis. KEGG
pathway analysis and GO functional analysis of the DEGs

we identified were performed by using FunRich software. It
is a stand-alone software tool used mainly for functional
enrichment and interaction network analysis of genes and
proteins. Besides, the results of the analysis can be depicted
graphically in the form of Venn, Bar, Column, Pie, and
Doughnut charts. GO analysis was divided into the cellular
component (CC), biological process (BP), and molecular
function (MF), and a P value < 0.05 was thought that there
was a statistical difference. We also used ClueGO for KEGG
pathway analysis. It is a Cytoscape plug-in that visualizes
the nonredundant biological terms for large clusters of genes
in a functionally grouped network. The identifiers can be
uploaded from a text file or interactively from a network of
Cytoscape.

2.5. Protein-Protein Interaction Network Analysis. To analyze
the connection among proteins, target mRNAs were
uploaded to Search Tool for the Retrieval of Interacting
Genes (STRING, https://string-db.org/), a database covering
9,643,763 proteins from 2,031 organisms, and the result
whose minimum interaction score was 0.4 was visualized in
Cytoscape [19]. Furthermore, the Molecular Complex Detec-
tion (MCODE) was used to find obvious modules based on
the constructed PPI networks with the criteria of degree

Figure 2: The interactions between differentially expressed miRNAs and target mRNAs.
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cut-off=2, node density cut-off=0.1, and node score cut-
off=0.2, and hub genes were exported.

2.6. Analysis of mRNAs Expression in Melanoma. Hub gene
expression in melanoma tissues and normal tissues was
extracted from the human protein atlas (http://www
.proteinatlas.org). The Human Protein Atlas is a Swedish-
based program initiated in 2003 to map all the human pro-
teins in cells, tissues, and organs using an integration of var-
ious omics technologies, including antibody-based imaging,
mass spectrometry-based proteomics, transcriptomics, and
systems biology. Gene expressions we selected were deter-
mined through analysis of TCGA databases, which are
available through TCGAportal (http://www.tcgaportal.org).

2.7. Analysis of the miRNAs and Their Relationship with
Melanoma Prognosis. The Kaplan-Meier Plotter (http://
www.kmplot.com/) is capable to assess the effect of 54k
genes (mRNA, miRNA, protein) on survival in 21 cancer
types including breast (n = 6,234), ovarian (n = 2,190), lung
(n = 3,452), and gastric (n = 1,440) cancer. Sources for the
databases include GEO, EGA, and TCGA. The primary
purpose of the tool is a meta-analysis-based discovery
and validation of survival biomarkers. [20]. Each miRNA
that was selected would then be entered into the online
tool to evaluate the survival of patients with melanoma.
Meanwhile, we extracted HRs with 95% CI of every iden-
tified miRNA and draw a Forest plot using the Stata 14.0
software.
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Figure 3: Differentially expressed mRNAs analyzed by GO enrichment. CC: cellular component; MF: molecular function; BP: biological
process.
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Figure 4: Continued.
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2.8. Independent Prognostic Ability of the miRNA Signature.
To learn more about the association between identified miR-
NAs and the prognosis of melanoma patients, we performed
a risk prediction model. 492 melanoma statistics were also
downloaded from the TCGA database. The 3-year and 5-
year AUC dependent on the ROC curve was calculated using
the “survivalROC” software package to evaluate the predic-
tive ability of the identified miRNAs. A block diagram was
drawn to show the risk score of the model.

3. Results

3.1. Identification of the miRNAs between Dabrafenib
Sensitive and Dabrafenib Resistant Melanoma Cells. The R
software was used to research the gene expression profiles
from the GSE117666. It highlighted the DEGs between
GSM3305847, GSM3305851, GSM3305852 (dabrafenib-sen-
sitive), GSM33305848, GSM3305849, and GSM3305850
(acquired dabrafenib-resistant) melanoma cells. According
to the cut-off criteria (P < 0:05 and ∣log 2FC ∣ ≥2), 30 DEMs

were selected. After researching 492 samples of the TCGA
database, 72 DEMs were identified and 9 of them exist in
both filter results which were consisted of 6 downregulated
and 3 upregulated miRNAs. The result is shown in Table 1.

3.2. Target Prediction and GO Analysis. The target mRNAs
of those 9 DEMs were downloaded from two miRNA tar-
get prediction websites (targetscan and miRDB). 872
mRNAs were identified after filtering. The network
between miRNAs (2 upregulated miRNAs and 2 downreg-
ulated miRNAs) and target mRNAs was shown in
Figure 2. To learn more about the function of these
mRNAs, these mRNAs were uploaded into FunRich to
perform GO and KEGG analysis. In the CC ontology,
DEGs were enriched in “Cytoplasm”, “Plasma membrane”,
and “Nucleus”. In the BP ontology, DEGs were enriched
in “Transport”, “Cell growth and/or maintenance”, and
“Regulation of nucleobase, nucleoside, nucleotide, and
nucleic acid metabolism”. In the MF ontology, DEGs were
enriched in “Protein serine/threonine kinase activity”,
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Figure 4: KEGG pathway enriched by up- and downregulated mRNAs.
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“Cell adhesion molecule activity”, and “Guanyl-nucleotide
exchange factor activity” (Figure 3).

3.3. KEGG Pathways of DEMs. By using ClueGO, we identi-
fied several KEGG significant enriched pathways. DEMs
were enriched in “Pathways in cancer”, “Proteoglycans in
cancer”, “microRNAs in cancer”, “Wnt signaling pathway”,
“Central carbon metabolism in cancer, and “Cytokine-
cytokine receptor interaction” (Figure 4).

3.4. Construction of a Protein-Protein Interaction (PPI)
Network. 872 genes were inputted into the Metascape website
to get interactive data. Then, if the combined score was ≥0.7,
we would choose identified mRNAs to build a PPI network
(Figure 5). In the PPI network, 6 modules, including
PABPC4, JUN, HSPA1A, GSK3B, RNF4, and GAK were
identified. The outcomes of the KEGG pathway between
modules were related to “Separation of Sister Chromatids”,
“Osteoclast differentiation”, “Infectious disease”, “Positive
regulation of apoptotic signaling pathway”, “Clathrin-
mediated endocytosis”, and “Intracellular receptor signaling
pathway” (Table 2). Based on the 6 key mRNAs and target
miRNAs, we performed a miRNA-mRNA network
(Figure 6), and it may provide a series of promising treatment
targets and enlightened us on the further investigations of the
molecular mechanisms.

3.5. Analysis of the Expression of the Key Genes in Normal
Tissues and Melanoma Tissues. Based on the human protein
atlas, the expression of target genes was researched. PABPC4,
HSPA1A, and GSK3B were identified from 6 key mRNAs.
After entering them into the database, we found that three
mRNAs have a positive strong expression in melanoma sam-
ples and a negative weak expression in normal samples
(Figure 7).

3.6. Analysis of the miRNAs and Their Relationship with
Melanoma Prognosis. The Kaplan-Meier Plotter was utilized
to study the prognosis of patients with melanoma-related to
miRNAs we selected. After uploaded 9 miRNAs, we got 9
survival graphs. The results indicated that overexpression of
hsa-miR-510, hsa-miR-503, and hsa-miR-513a (Figure 8)
was related to improved overall survival in patients with mel-
anoma. However, the expression level of hsa-miR-509, hsa-
miR-146a, hsa-miR-514b, hsa-miR-584, hsa-miR-126, and
hsa-miR-508 may have no obvious association with the OS.
The forest plot showed in more detail the relationship
between miRNAs expression and the survival and prognosis
of patients (Figure 9). This suggested that the identified miR-
NAs may be potential targets for dabrafenib resistance in
melanoma.

3.7. Evaluation of the 9-miRNA Signature for over Survival.
The AUC of 3 years survival for the 9-miRNA signature

Table 2: KEGG enrichment analysis of hub target mRNAs.

MCODE ID Description Log10(P)

MCODE_1 hsa05165 Separation of sister chromatids -8.2

MCODE_2 hsa04722 Osteoclast differentiation -5.4

MCODE_3 hsa04919 Infectious disease -10.1

MCODE_4 hsa04218 Positive regulation of apoptotic signaling pathway -6.4

MCODE_5 hsa05163 Clathrin-mediated endocytosis -6.7

MCODE_6 hsa05205 Intracellular receptor signaling pathway -5.8

RNF4

hsa-miR-126

HSPA1A

GAK GSK3B

hsa-miR-146a

JUN

PABPC4

Figure 6: miRNA mRNA regulatory pairs from the 6 hub miRNA targets and their regulated miRNAs.
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achieved 0.809 and the AUC of 5 years survival achieved
0.981, which proved that the model has good performance
in predicting the survival risk of melanoma patients.
Besides, the box diagram also proves our conclusion
(Figure 10).

4. Discussion

In recent years, the incidence and mortality of malignant
melanoma are increasing year by year. Compared with
other solid tumors, the age of death is lower. In addition
to early surgical resection, malignant melanoma lacks spe-

cific treatment and has a poor prognosis. Therefore, the
early diagnosis and treatment of malignant melanoma
are extremely important. In this article, GSE117666 and
492 melanoma statistics from the TCGA database were
downloaded for further study. Melanoma statistics from
the TCGA database were searched from the GEO and
TCGA database. 9 DEMs (hsa-miR-510, hsa-miR-503,
hsa-miR-513a, hsa-miR-509, hsa-miR-146a, hsa-miR-
514b, hsa-miR-584, hsa-miR-126, and hsa-miR-508) were
selected by combining two screening results. Among them,
certain miRNAs have been shown to affect tumor prolifer-
ation, migration, and prognosis. For example, a previous

Normal TumorHSPA1A

Normal Tumor

Normal Tumor

GSK3B

PABPC4

Figure 7: Genes expression of in human melanoma specimens. PABPC4, HSPA1A, and GSK3B expression in normal tissue and melanoma
specimens.
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study reported miR-510 promotes thyroid cancer cell pro-
liferation, migration, and invasion through suppressing
lncRNA SNHG15 [21]; it also serves as a prognostic bio-
marker, or as a potential therapeutic target, in cutaneous
melanoma patients [22]. hsa-miR-146a controls Immune
Response in the Melanoma Microenvironment and may
provide a new therapeutic strategy to improve the current
management of patients with melanoma [23]. Another
study also reported hsa-miR-126 downregulation contrib-
utes to dabrafenib acquired resistance in melanoma by
upregulating ADAM9 and VEGF-A [24]. Besides, it may
play a tumor suppressor role by directly regulating
ADAM9 and MMP7 in melanoma [25].

To understand the regulatory mechanism of the 9
miRNAs in melanoma, we chose the intersection of two
screening results from MiRWalk. 872 mRNAs were identi-
fied after filtering. Function annotation indicated that
these miRNAs were primarily related to “Cytoplasm”,
“Plasma membrane”, “Nucleus”, “Transport”, “Cell growth
and/or maintenance”, “Regulation of nucleobase, nucleo-
side, nucleotide and nucleic acid metabolism”, “Protein
serine/threonine kinase activity”, “Cell adhesion molecule
activity”, and “Guanyl-nucleotide exchange factor activity”.
KEGG pathway analysis of DEGs revealed involvement in
“Pathways in cancer”, “Proteoglycans in cancer”, “micro-
RNAs in cancer”, “Wnt signaling pathway”, “Central
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carbon metabolism in cancer”, and “Cytokine-cytokine
receptor interaction”. According to previous studies, these
signaling pathways participate in a diverse array of impor-
tant cellular processes, including the survival, proliferation,
differentiation, and activation of different cell types [26–
28].

Besides, PPI network analysis indicated that 6 hub
genes including PABPC4 (Poly(A) Binding Protein Cyto-
plasmic 4), JUN (Jun Proto-Oncogene, AP-1 Transcription
Factor Subunit), HSPA1A (Heat Shock Protein Family A
(Hsp70) Member 1A), GSK3B (Glycogen Synthase Kinase
3 Beta), RNF4 (Ring Finger Protein 4), and GAK (cyclin
G associated kinase) may be used as new targets in
dabrafenib-resistant melanoma which had higher degrees
of interaction. PABPC4, a protein kinase, may be a valu-
able source of biomarkers for response to docetaxel-
resistance prostate cancer therapy [29]. As for HSPA1A,
a kind of inducible heat shock protein promotes tumor
cell growth and survival [30]. It also adjusts the transfer
process, including EMT and migration, and seems to be
destroyed by the Hsp70-dependent heterocomplexes of E-
cadherin/catenins, which act as an anchor between neigh-
boring cells [31]. GSK3B, glycogen synthase kinase 3, was
identified as novel tivantinib targets [32]. It is also related
to the regulation of melanogenesis, and drug inhibition
can increase melanogenesis through Wnt/beta-catenin
pathway activation [33]. As for RNF4, it is a SUMO-
targeted ubiquitin ligase that stabilizes a specific group of

oncoproteins. It enhances tumor protein activity and acts
as a positive feedback agonist for Wnt and Notch path-
ways. RNF4 is also necessary for the survival of cancer
cells, and its overexpression is related to the poor progno-
sis of some cancer patients [34]. GAK (Cyclin G Associ-
ated Kinase), a protein expressed ubiquitously in various
tissues, is identified as the off-target responsible for intra-
cellular melanin accumulation. It also represents a new
possible target for the prevention and treatment of irregu-
lar pigmentation by the melanogenic biosynthetic pathway
[35].

Furthermore, the relationship between the 9 miRNAs
and the overall survival curves for patients with melanoma
revealed that overexpression of hsa-miR-510, hsa-miR-503,
and hsa-miR-513a was related to improved overall survival.
However, the expression level of hsa-miR-509, hsa-miR-
146a, hsa-miR-514b, hsa-miR-584, hsa-miR-126, and hsa-
miR-508 may have no significant relationship with the over-
all survival of patients. Meanwhile, evaluation of the 9-
miRNA signature for overall survival by the ROC curve dis-
played better predictive ability.

At present, with the development of targeted therapy,
more and more attention has been paid to tumor drug
resistance. Therefore, it is necessary to find new bio-
markers and treatment methods for patients with drug
resistance. Our findings concluded that these miRNAs
may act as an important role in dabrafenib-resistant mel-
anoma. However, all of our data are obtained from GEO
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Figure 9: Forest plot demonstrating the association between identified miRNAs expression and the survival of humans with melanoma.
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and TCGA database through bioinformatics analysis, and
the number of relevant samples is limited; further data
analysis and clinical trials are needed to verify.

5. Conclusion

Our study not only explored certain mechanisms of
dabrafenib-resistance in melanoma but also constructed a
significant 9-miRNA risk prediction model for overall sur-
vival. Bioinformatics methods were used to select the DEMs
in dabrafenib-resistant melanoma cells. These findings sig-
nificantly improve the understanding of the cause and under-
lying molecular events in melanoma, and the candidate genes
and pathways could be used as therapeutic targets.
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