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Soft rot pectobacteria are devastating plant pathogens with a global distribution and a 
broad host range. Pectobacterium aroidearum L6, previously isolated from leaves of 
Syngonium podophyllum, is a pectolytic bacterial pathogen that causes typical soft rot 
on S. podophyllum. There is a shortage for genome data of P. aroidearum, which seriously 
hinders research on classification and pathogenesis of Pectobacterium. We present here 
the complete genome sequence of P. aroidearum L6. The L6 strain carries a single 
4,995,896-bp chromosome with 53.10% G + C content and harbors 4,306 predicted 
protein-coding genes. We estimated in silico DNA–DNA hybridization and average 
nucleotide identity values in combination with the whole-genome-based phylogeny from 
19 Pectobacterium strains including P. aroidearum L6. The results showed that L6 and 
PC1 formed a population distinct from other populations of the Pectobacterium genus. 
Phylogenetic analysis based on 16S rRNA and genome sequences showed a close 
evolutionary relationship among Pectobacterium species. Overall, evolutionary analysis 
showed that L6 was in the same branch with PC1. In comparison with 18 Pectobacterium 
spp. reference pathogens, strain L6 had 2,712 gene families, among which 1,632 gene 
families were identified as orthologous to those strains, as well as 1 putative unique gene 
family. We discovered 478 genes, 10.4% of the total of predicted genes, that were 
potentially related to pathogenesis using the Virulence Factors of Pathogenic Bacteria 
database. A total of 25 genes were related to toxins, 35 encoded plant cell-wall degrading 
enzymes, and 122 were involved in secretion systems. This study provides a foundation 
for a better understanding of the genomic structure of P. aroidearum and particularly offers 
information for the discovery of potential pathogenic factors and the development of more 
effective strategies against this pathogen.
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INTRODUCTION

Soft rot Pectobacteriaceae are considered to be  one of the top 
ten most important agricultural phytopathogens (Mansfield et al., 
2012). The family Pectobacteriaceae consisted of Pectobacterium 
spp. and Dickeya spp., formerly characterized as pectinolytic 
Erwinia spp. (Pérombelon, 2002; Charkowski et al., 2012; Adeolu 
et  al., 2016). They cause destructive soft rot on a variety of 
field crops, fruits, ornamentals, and vegetables, including the 
staple food crop potato (Toth et  al., 2003, 2011; Ma et  al., 
2007). Pectobacterium was first established in 1945 (Waldee, 
1945; Ma et al., 2007). However, the classification of Pectobacterium 
spp. is not clear. Hauben et  al. (1998) established the genus 
Pectobacterium that included three species and five subspecies: 
P. cacticidum, P. chrysanthemi, P. cypripedii, P. carotovorum subsp. 
atrosepticum, P. carotovorum subsp. betavasculorum, P. carotovorum 
subsp. carotovorum, P. carotovorum subsp. odoriferum, and 
P.  carotovorum subsp. wasabiae. Subsequently, three subspecies 
of P. carotovorum were elevated into the species level, namely 
P. atrosepticum, P. odoriferum, and P. wasabiae (Gardan et  al., 
2003; Duarte et  al., 2004; Nykyri et  al., 2012). The classification 
of the genus Pectobacterium has been subjected to wide revision 
over the last decade, and it is likely that some of the genome-
sequenced strains have been incorrectly assigned to P. carotovorum 
(Gardan et  al., 2003; Khayi et  al., 2016; Pritchard et  al., 2016; 
Zhang et al., 2016). For instance, P. carotovorum subsp. carotovorum 
tends to serve as a catchall for pectobacteria isolates differing 
from the specific descriptions of the other pectobacteria taxa, 
and P. aroidearum was classified as a novel species in 2013 
(Nabhan et al., 2013). The genome-sequenced strain PC1 (formerly 
classified as P. carotovorum subsp. carotovorum) is actually 
P. aroidearum under the new classification (Nabhan et al., 2013).

In the age of genomics, the Pectobacterium genus has been 
subjected to revision based on the development of bioinformatics. 
Several pectolytic bacterial strains were thought to belong to 
a novel Pectobacterium species after several taxonomic analyses 
including 16S rRNA gene sequence, DNA–DNA hybridization 
(DDH), genomics, and comparative genomics. These include 
P. actinidiae (Koh et  al., 2012), P. polaris (Dees et  al., 2017), 
P. peruviense (Waleron et  al., 2018), P. zantedeschiae (Waleron 
et  al., 2019), P. punjabense (Sarfraz et  al., 2018, 2020), and 
P.  aroidearum (Nabhan et  al., 2013). The species of the genus 
Pectobacterium has 18 of child taxa with a validly published 
with correct name and four proposed species not yet validated 
based on The List of Prokaryotic names with Standing in 
Nomenclature1 (Table 1; Adeolu et al., 2016; Parte et al., 2020). 
Eleven species had complete genome data, and 7 had not 
complete assembly based on the National Center for 
Biotechnology Information (NCBI) genome database2 (Table 1). 
Only strain PC1 of P. aroidearum has its whole genome 
sequenced. Thus, there is a shortage of whole-genome data 
for P. aroidearum.

Currently, no methods and chemicals are effective in controlling 
Pectobacterium disease or preventing the spread of these 
pathogens  (Zhang et al., 2017). In addition, planting patterns and 
storage conditions are not applicable for control of the disease 
(Yaganza et al., 2014). Bacterial strain L6, isolated from Syngonium 
podophyllum soft rot samples in Hainan Province, was recognized 
as P. aroidearum (Xu et  al., 2020). There is a shortage for whole-
genome data of P. aroidearum, which seriously hinders research 
on classification and pathogenesis of Pectobacterium. Genome 

1 https://www.bacterio.net/genus/pectobacterium
2 https://www.ncbi.nlm.nih.gov/genome/?term=Pectobacterium

TABLE 1 | Nomenclatural status and type strain of genome data of the Pectobacterium genus.

Name Nomenclatural status Origin Type strain of genome data

Pectobacterium actinidiae Validly published Portier et al. (2019) KKH3
Pectobacterium aquaticum Validly published Pédron et al. (2019) No complete assembly

Pectobacterium aroidearum Validly published Nabhan et al. (2013)
PC1(formerly classified as P. carotovorum, 
not corrected in the NCBI database)

Pectobacterium atrosepticum Validly published Gardan et al. (2003) JG1008, 21A
Pectobacterium betavasculorum Validly published Gardan et al. (2003) No complete assembly
Pectobacterium brasiliense Validly published Portier et al. (2019) SX309, 1,692
Pectobacterium cacticida Validly published Hauben et al. (1998) No complete assembly
Pectobacterium carnegieana Validly published Brenner et al. (1973) No complete assembly
Pectobacterium carotovorum Validly published Waldee (1945) JR1.1, 67
Pectobacterium fontis Validly published Oulghazi et al. (2019) No complete assembly
Pectobacterium odoriferum Validly published Portier et al. (2019) JK2.1, BC S7
Pectobacterium parmentieri Validly published Khayi et al. (2016) HC, RNS 08–42-1A
Pectobacterium parvum Validly published Pasanen et al. (2020) No complete assembly
Pectobacterium polaris Validly published Dees et al. (2017) PZ1, NIBIO1006
Pectobacterium polonicum Validly published Waleron et al. (2019) No complete assembly
Pectobacterium punjabense Validly published Sarfraz et al. (2018) SS95
Pectobacterium versatile Validly published Portier et al. (2019) 14A, 3–2
Pectobacterium wasabiae Validly published Gardan et al. (2003) CFBP 3304
Pectobacterium delphinii Not validly published Waldee (1945)
Pectobacterium melonis Not validly published Waldee (1945)
Pectobacterium peruviense Not validly published Waleron et al. (2018)
Pectobacterium zantedeschiae Not validly published Waleron et al. (2019)
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comparison revealed that most virulence genes are highly conserved 
in the Pectobacterium strains, especially for the key virulence 
determinants involved in the biosynthesis of extracellular enzymes 
and secretion systems (Li et  al., 2019). The functional genomics 
methods are the effective ways to elucidate that this pathogen 
interacts with plants and causes disease (Toth et  al., 2015). In 
this study, we  sequenced the whole genome of P. aroidearum L6. 
Then, we compared it with genome analyses of 18 Pectobacterium 
reference strains. Furthermore, the genome annotation and 
comparative genomics analysis provided a foundation for a better 
understanding of the genomic structure of P. aroidearum and 
particularly offered information for the discovery of potential 
pathogenic factors and the development of more effective strategies 
against this pathogen.

MATERIALS AND METHODS

Strain and Type Strain Genome Sequences
Strain L6 was previously isolated from S. podophyllum soft rot 
samples in a plant nursery in the Haidian campus of Hainan 
University, Haikou, Hainan Province, China, in July 2019. 
Samples were collected from symptomatic S. podophyllum for 
bacterial isolation. Internal fragments containing symptomatic 
tissues were transferred to 1  mL of sterile distilled water, after 
20  min, rinsed with 70% alcohol and sterile distilled water, 
and cultured onto Luria-Bertani (LB) medium for 48  h at 
28°C to differentiate and characterize the bacterial pathogen. 
A total of 10 bacterial colonies were isolated from infected 
tissues. The isolated colonies were subcultured until the pure 
culture of the suspected bacterium was obtained. Two 
representative isolates (L5 and L6) were selected for further 
tests and one isolate preserved in Key Laboratory of Green 
Prevention and Control of Tropical Plant Diseases and Pests 
(Hainan University), Ministry of Education as P. aroidearum L6.

The pathogenicity of P. aroidearum L6 was previously reported 
(Xu et  al., 2020). The putative pathogen was re-inoculated to 
confirm its pathogenicity in the incubator and field on the 
leaves  of  S. podophyllum. Typical symptoms of soft rot were 
observed 12–24  h after inoculation. P. aroidearum was re-isolated 
from a diseased leaf, fulfilling Koch’s postulates. L6 was grown 
on LB broth for 12–24  h at 28°C. And genomic DNA of L6 
was extracted by the Bacteria Genomic DNA Extraction Kit 
(Tiangen Biotech Co. Ltd., Beijing, China). Successful extraction 
of genomic DNA was confirmed by 0.8% agarose gels and quantified 
by Nanodrop ND-2000 (Thermo Fisher Scientific, United States). 
All complete genome sequences of Pectobacterium were retrieved 
from NCBI. Type strain genome sequences of 11 species which 
had complete assembly genome data were used, including P. 
aroidearum PC1 (GCF_000023605.1), P. carotovorum subsp. 
carotovorum JR1.1 (NZ_CP034237.1), P. carotovorum subsp. 
carotovorum 67 (NZ_CP034211.1), P. atrosepticum JG10-08 (NZ_
CP007744.1), P. atrosepticum 21A (NZ_CP009125.1), P. brasiliense 
SX309 (NZ_CP020350.1), P. brasiliense 1,692 (NZ_CP047495.1), 
P.  odoriferum JK2.1 (NZ_CP034938.1), P. odoriferum  
BC S7 (NZ_CP009678.1), P. polaris PZ1 (NZ_CP046377.1),  
P.  polaris NIBIO1006 (NZ_CP017481.1), P. actinidiae KKH3 

(NZ_JRMH01000001.1), P. wasabiae CFBP 3304 (NZ_CP015750.1), 
P. parmentieri HC (NZ_CP046376.1), P. parmentieri RNS 08–42-1A 
(NZ_CP015749.1), P. versatile 14A (NZ_CP034276.1), P. versatile 
3–2 (NZ_CP024842.1), and P. punjabense SS95 (NZ_CP03 
8498.1).

Genome Sequencing and Assembly
The P. aroidearum L6 genome was sequenced using a PacBio 
RS II platform and Illumina HiSeq 4,000 platform. For Illumina 
HiSeq sequencing, the fragments of 470 bp (with the approximate 
insert size of 350 bp) from adaptor-ligated DNA were recovered 
according to standard protocols. The libraries with different 
indices were multiplexed and loaded on an Illumina HiSeq 
instrument. Cutadapt (v1.9.1; Martin, 2011) was employed for 
quality control, and reads whose base groups have quality value 
below 20 at both ends, sequences containing more than 10% 
N base, or less than 75 bp in length were removed. The Illumina 
data were used for estimate and correction. Four SMRT cells 
zero-mode waveguide (a nano-optical device used to confine 
light to a small observation volume) arrays of sequencing were 
used in the PacBio platform to generate the subreads set. 
PacBio subreads (length  <  1  kb) were removed. The program 
pbdagcon3 was used for self-correction. Draft genomic unitigs, 
which are uncontested groups of fragments, were assembled 
using the Celera Assembler (Myers et al., 2000) against a high-
quality corrected circular consensus sequence subreads set. To 
improve accuracy of the genome sequences, the Genome Analysis 
Toolkit4 (Mckenna et al., 2010) and SOAP tool packages (SOAP2, 
SOAPsnp, SOAPindel; Li et  al., 2013) were used to make 
single-base corrections. To trace the presence of any plasmid, 
the filtered Illumina reads were mapped using SOAP to the 
bacterial plasmid database.5

Genome Component Prediction
Gene prediction was performed on the L6 genome assembly 
using NCBI Prokaryotic Genome Annotation Pipeline6 (Tatusova 
et  al., 2016; Haft et  al., 2018; Li et  al., 2021). The tRNA, 
rRNA, and sRNA recognition made use of tRNAscan-SE (Lowe 
and Eddy, 1997), RNAmmer (Lagesen et  al., 2007), and the 
Rfam database (Gardner et al., 2009). Tandem repeats annotation 
was obtained using the Tandem Repeat Finder7 (Wirawan et al., 
2010), and the minisatellite DNA and microsatellite DNA were 
selected based on the number and length of repeat units. The 
Genomic Island Suite of Tools GIST v1.0 was used for genomic 
island analysis with Island Path-DIOMB, SIGI-HMM, and Island 
Picker method (Hasan et  al., 2012). Prophage regions were 
predicted using the PHAge Search Tool web server8 (Zhou 
et  al., 2011) and CRISPR identification using CRISPR Finder 
(Grissa et  al., 2007).

3 https://github.com/PacificBiosciences/pbdagcon
4 https://www.broadinstitute.org/gatk/
5 http://www.ebi.ac.uk/genomes/plasmid.html; last accessed July 8, 2016
6 https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
7 http://tandem.bu.edu/trf/trf.html
8 http://phast.wishartlab.com/
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Phylogenetic Analysis
The maximum-likelihood (ML) phylogenetic analysis was inferred 
with FastME 2.1.6.1 including SPR postprocessing (Lefort et al., 
2015) from the Genome BLAST Distance Phylogeny approach 
(GBDP) distances calculated using default settings from 16S 
rRNA gene sequences and genome sequences. Branch support 
was inferred from 1,000 pseudo-bootstrap replicates each. The 
trees were rooted at the midpoint (Farris, 1972) and visualized 
with PhyD3 (Kreft et  al., 2017).

Average Nucleotide Identity and in silico 
DNA–DNA Hybridization Analysis
Pairwise comparison of their Average Nucleotide Identity (ANI) 
was based on BLAST+ (ANIb) from JSpeciesWS9 (Richter 
et al., 2015), while in silico DNA–DNA Hybridization (isDDH) 
was conducted using GBDP by the Type (Strain) Genome 
Server10 (Meier-Kolthoff and Göker, 2019). One-hundred distance 
replicates were calculated each. The DDH values and confidence 
intervals were calculated using the recommended settings of 
the Genome-to-Genome Distance Calculator (GGDC 2.1) for 
GGDC formula 2 (Meier-Kolthoff et  al., 2013).

Comparative Genomics
Pectobacterium aroidearum L6 was compared with reference 
18 Pectobacterium strains by using their genome sequence and 
gene sequence. BLAST core/pan genes of the six strains were 
clustered using CD-HIT (Fu et  al., 2012) rapid clustering of 
similar proteins software with a threshold of 50% pairwise 
identity and 0.7 length difference cutoff in amino acids. Gene 
families were constructed using genes of L6 and reference 
strains. We carried out gene family TreeFam clustering treatment 
for the alignment results by Hcluster_sg software (Maqbool 
and Babri, 2007) and multiple sequence alignment with the 
clustered gene family using Muscle software (Edgar, 2004a,b). 
The phylogenetic tree was constructed using multiple sequence 
alignment results based on Muscle by the TreeBeST (Nandi 
et  al., 2010) using the ML method.

Gene Annotation and Protein 
Classification
The function annotation is accomplished by analysis of protein 
sequences. We align genes with databases to obtain the highest 
quality corresponding annotations. Seven databases were used 
for general function annotation: Kyoto Encyclopedia of Genes 
and Genomes (KEGG; Kanehisa et  al., 2016), Clusters of 
Orthologous Groups (COG; Galperin et  al., 2015; Makarova 
et  al., 2015), Non-Redundant Protein Database (NR), Swiss-
Prot (UniProt Consortium, 2015), Gene Ontology (GO; 
Ashburner et al., 2000; Philip et al., 2014), TrEMBL (Apweiler 
et al., 2004), and Evolutionary Genealogy of Genes (EggNOG: 
Non-supervised Orthologous Groups; Huerta-Cepas et  al., 
2016) databases. Four databases were used for pathogenicity 
and drug resistance analysis. Virulence factors and resistance 

9 http://jspecies.ribohost.com/jspeciesws/
10 http://tygs.dsmz.de/

genes were identified based on the core dataset in Virulence 
Factors of Pathogenic Bacteria (VFDB; Chen et  al., 2016) 
and the Antibiotic Resistance Genes Database (Liu and Pop, 
2009); the other two databases were Pathogen Host Interactions 
(PHI; Winnenburg et  al., 2006) and Carbohydrate-Active 
enZYmes Database (CAZy; Levasseur et  al., 2013). Type III 
secretion system (T3SS) effector proteins were detected using 
EffectiveT3 (Vargas et  al., 2012).

RESULTS

Genomic Features Among P. aroidearum 
L6 and Reference Strains
The P. aroidearum L6 genome was sequenced using a PacBio 
RS II platform and Illumina HiSeq  4,000 platform. The raw 
data were filtered, and this generated 1, 274  Mb of clean 
data. The reads were assembled into a genome and then 
assessed. We  obtained a genome size of 4,995,896  bp, which 
consisted of a circular chromosome with no plasmid (Figure 1). 
GC-Depth analysis was performed on the assembly results 
to show the assembly length (4,995,896  bp), coverage length 
(4,995,089), coverage (99.98%), reads usage percent (95.3%), 
and depth (260) of P. aroidearum L6. The average G + C 
content of the genome was 53.10%. A total of 4,306 putative 
protein-coding sequences, with total length of 4,298,622  bp 
(86.04% of total genome length; Table  2) and average length 
of 998.29 bp, were annotated on the P. aroidearum L6 genome. 
The genome encoded 77 tRNA operons and 40 sRNA genes. 
In addition, a total of 22 rRNA operons were present on 
the chromosome: eight 5S rRNAs, seven 16S rRNAs, and 
seven 23S rRNAs.

Phylogenetic Analysis of P. aroidearum L6
The 16S rRNA is the most useful and is commonly used as a 
molecular clock in the systematic classification of bacteria. Its 
evolution has good clock properties, being highly conserved in 
structure and function, and can well reflect the differences 
between different bacteria (Coenye and Vandamme, 2010). Thus, 
the accessibility of a large quantity of completely sequenced 
bacterial genomes allows the speedy and reliable determination 
of intragenomic sequence heterogeneity of 16S rRNA genes. 
The phylogenetic tree was inferred with FastME 2.1.6.1 from 
GBDP distances calculated from Pectobacterium species 16S 
rRNA and genome sequences. The branch lengths were scaled 
in terms of GBDP distance formula d5. The numbers on branches 
are GBDP pseudo-bootstrap support values >60% from 1,000 
replications, with an average branch support of 91.1%. The delta 
value was 0.315 based on 16S rRNA and 0.156 based on genome 
sequences. A phylogram based on computing of the 16S rRNA 
suggested a close relationship between both P. aroidearum L6 
and PC1 genomes (Figure  2A). The phylogenetic relationships 
among P. aroidearum L6 and reference strains were determined 
based on genome sequence results (Figure  2B). The whole-
genome-based phylogenetic tree showed that L6 was most closely 
related to P. aroidearum PC1.
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Assessment of Taxonomy  
of Pectobacterium Species Using isDDH 
and ANI
We used isDDH and ANI to determine species delineation of 
Pectobacterium spp. Using empirical evidence based on classified 
species and their comparisons with DDH and ANI values, the 
same species were set at ≥70% identity in isDDH and ≥95% 
identity in ANI. The isDDH and ANI values (Figure  3) were 
consistent with their phylogenetic relationships (Figure  2), and 
members of the same phylogenetic clade also showed high isDDH 
and ANI values. The ranges of isDDH and ANI values for 18 
Pectobacterium strains were 88–100 and 36–100. The P. aroidearum 

L6 and PC1 were evaluated to species level with isDDH  =  83 
and ANI  =  98; furthermore, P. carotovorum subsp. carotovorum 
JR1.1 and 67 were not the same species with isDDH  =  51 and 
ANI  =  93, indicating that these two strains were misidentified.

Analysis of the Core Genome Among 
Pectobacterium Species and Reference 
Strains
The genomes of 18 Pectobacterium strains with P. aroidearum L6 
were compared. The dispensable gene heatmap showed percentage 
of dispensable genes among strains. The identity matrix was 

FIGURE 1 | Circular representation of the Pectobacterium aroidearum L6 genome. From outer to inner: first circle is genome size; second and third circles are 
forward and reverse strand gene, respectively, colored according to cluster of COG classification (A, RNA processing and modification; B, chromatin structure and 
dynamics; C, energy production and conversion; D, cell cycle control, cell division, and chromosome partitioning; E, amino acid transport and metabolism; F, 
nucleotide transport and metabolism; G, carbohydrate transport and metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; J, 
translation, ribosomal structure, and biogenesis; K, transcription; L, replication, recombination, and repair; M, cell wall/membrane/envelope biogenesis; N, cell motility; 
O, posttranslational modification, protein turnover, and chaperones; P, inorganic ion transport and metabolism; Q, secondary metabolites biosynthesis, transport, and 
catabolism; R, general function prediction only; S, function unknown; T, signal transduction mechanisms; U, intracellular trafficking, secretion, and vesicular transport; 
V, defense mechanisms; W, extracellular structures; X, mobilome: prophages, transposons; Y, nuclear structure; Z, cytoskeleton); fourth and fifth circles are ncRNA 
(yellow indicates tRNA, orange indicates rRNA, and green indicates sRNA) and repeat, respectively; seventh circle is GC content (green indicates greater than average 
value, and orange indicates less than average value); and eighth circle is GC-SKEW (GC-SKEW = (G − C)/(G + C), purple indicates >0, and green indicates <0).
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calculated based on BLASTP. The strains L6 and PC1 had the 
highest genetic similarity. Otherwise, P. punjabense SS95 also 
grouped together with P. aroidearum L6 and PC1 based on the 
dispensable gene heat map (Figure  4A). Analysis of pan genes 
among L6 strain and reference strains was carried out. There 
were 1944 genes shared by all of the bacteria. Among them, 132 
genes were unique to L6 and 100 genes were unique to PC1 
(Figure 4B). Research on special genes and core genes is important 
for the detection of functional differences and similarities between 
samples and provides molecular evidence for phenotype differences 
and similarities. A gene family is a group of genes that have the 
same ancestor and comprises more than two gene copies. The 
members of a gene family have similarity in structure and function, 
and the proteins produced are also similar. Gene families can 
be  used to detect evolutionary history and gene differentiation. 
The gene family statistics showed that the final core genome was 
1,632 gene families. One gene family was unique to L6, and one 
gene family was unique to PC1 (Figures  4C,D).

Analysis of Gene Function Annotation of  
P. aroidearum L6
To further determine the difference in functions encoded by 
4,306 genes of P. aroidearum L6, we  analyzed the data using 
GO, COG, and KEGG. A total of 3,013 (65.59%) genes could 
be  annotated to one or more of the GO definitions. In our 
study, 6,763 genes were annotated to biological processes, 2,441 
to cellular components, and 3,691 to molecular functions in 
GO analysis (Figure 5A). Most gene functions focused on cellular 
process (1,640), metabolic process (1,678), single-organism process 

(1,411), membrane (772), binding (1,231), and catalytic activity 
(1,601). There were 3,625 (78.92%) predicted genes assigned to 
COG categories (Figure  5B): 43.78% (1,871) of the genes were 
related to metabolism, 26.11% (1,116) to cellular processes, 
17.92% (766) to information, and 12.19% (521) to poorly. A 
total of 3,081 genes were annotated using the KEGG database 
(Figure  5C). Among the categories, metabolism was the largest 
group, containing metabolic pathway (690 genes, 22.40%), 
biosynthesis of secondary metabolites (321 genes, 10.42%), 
biosynthesis of antibiotics (234 genes, 7.59%), microbial 
metabolism in diverse environments (229 genes, 7.43%), and 
others. The cluster of environmental information processing 
primarily consisted of ABC transporters (279 genes, 9.06%) and 
two-component system (173 genes, 5.62%).

Pathogenic Candidate Genes Obtained 
Through Gene Annotation Screening
We predicted genes associated with pathogenicity using GO, 
COG, KEGG, and especially VFDB, PHI, and T3SS, which 
are important databases for predicting bacterial pathogenicity. 
The VFDB database mainly focuses on the infectious agents 
among bacteria, mycoplasma, and chlamydia. A total of 478 
(10.40%) genes were annotated to the VFDB definitions. The 
PHI database contains relationships between pathogens and 
hosts, and it predicted 432 (9.40%) genes. The T3SS has close 
relationship with Gram-negative pathogens and aids in 
determining infection mechanisms and toxicity at the molecular 
level. There were 723 (15.74%) predicted genes assigned to 
T3SS categories. Moreover, we  screened the relevant genes 

TABLE 2 | Genomic features of the P. aroidearum L6 genome and comparison with genomes of reference strains.

Genome size 
(bp)

G+C content 
(mol%)

Gene number Clustered 
gene number

Number of 
rRNAs

Number of 
tRNAs

Family

number

Unique

family

number

P. aroidearum L6 4,995,896 53.1 4,306 4,209 22 77 2,712 1
P. aroidearum PC1 4,862,913 51.9 4,201 4,132 22 78 2,670 1
P. carotovorum subsp. 
carotovorum JR1.1

4,872,902 52.0 4,086 4,019 22 76 2,667 0

P. carotovorum subsp. 
carotovorum 67

4,909,824 51.3 3,532 3,436 22 75 2,361 8

P. atrosepticum JG10-08 5,004,926 51.1 4,245 4,215 22 76 2,805 0
P. atrosepticum 21A 4,991,806 51.1 4,323 4,296 22 77 2,850 0
P. brasiliense SX309 4,966,299 52.2 4,209 4,137 22 76 2,733 1
P. brasiliense 1,692 4,851,982 52.2 4,145 4,044 22 77 2,649 0
P. odoriferum JK2.1 4,997,932 51.5 4,356 4,158 22 77 2,786 4
P. odoriferum BC S7 4,933,575 51.8 3,912 3,830 22 77 2,570 2
P. polaris PZ1 4,994,870 51.0 4,115 3,923 22 77 2,621 8
P. polaris NIBIO1006 4,826,824 52.0 4,088 4,010 22 77 2,645 1
P. actinidiae KKH3 4,068,673 51.5 4,152 4,079 21 76 2,624 1
P. wasabiae CFBP 3304 5,043,228 50.6 4,369 4,203 22 78 2,805 2
P. parmentieri HC 5,208,618 50.4 4,494 4,366 22 77 2,935 1
P. parmentieri RNS 08–42-1A 5,030,841 50.4 4,423 4,343 22 77 2,922 4
P. versatile 14A 4,997,114 51.8 4,304 4,250 22 77 2,778 2
P. versatile 3–2 4,975,878 51.8 4,266 4,191 22 78 2,737 1
P. punjabense SS95 4,793,778 50.7 4,152 4,036 22 76 2,639 0

The genes were taken from reference genome as gene pool. The blast results were filtered by their length and identity. Gene number, the gene number in each strain; Clustered gene 
number, the gene number that can be clustered in gene family; Family number, the gene family number in strain; Unique family number, the unique gene family number in strain.
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A

B

FIGURE 2 | ML phylogenetic analysis for P. aroidearum L6 and reference strains. (A) Phylogenetic tree drawn using the 16S rRNA of Pectobacterium spp. 
(B) Phylogenetic tree drawn using the genomes of Pectobacterium spp. Bootstrap values are indicated in % of repetitions.
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encoding plant cell-wall degrading enzymes (PCWDEs), toxins, 
and secretion systems for P. aroidearum L6 (Table  3). There 
were 25 genes related to toxins, and 35 genes encoded PCWDEs, 
including 28 encoding pectinases, three encoding cellulases, 
and four encoding proteinases. In addition, 122 genes were 
involved in six types of secretion systems: 14 genes in Type I 
(T1SS), 23  in Type II (T2SS), 29  in Type III (T3SS), 25  in 
Type IV (T4SS), none in Type V (T5SS), and 31  in Type VI 
(T6SS) secretion systems.

DISCUSSION

Plant bacterial soft rot is one of the destructive diseases of 
cabbage, tomato, and potato (Meng et  al., 2017; Wang et  al., 
2017; Cui et  al., 2019). And it always can cause more serious 
losses than any other bacterial disease (Qi et  al., 2021). Most 
of the soft rot disease of vegetables is caused by Pectobacterium 
spp., one of the top ten bacterial plant pathogens. Pectobacterium 
spp. has attracted more attention about its wide distribution 

and diversity (He et  al., 2021). Pectobacterium usually exists 
in soils with a broad range of hosts; thus, Pectobacterium 
species cause soft rot disease in plants of at least 16 dicotyledonous 
and 11 monocotyledonous angiosperm families (Ma et al., 2007; 
Nabhan et  al., 2013). Pectobacterium aroidearum was classified 
as a novel species in 2013 (Nabhan et  al., 2013). In previous 
studies, bacterial soft rot disease was caused by P. aroidearum 
in calla (Zantedeschia aethiopica; Nabhan et  al., 2013), potato 
(Solanum tuberosum; Moretti et  al., 2016), Chinese cabbage 
(Brassica rapa; Xie et  al., 2017), zucchini (Cucurbita pepo; 
Moraes et al., 2017), konjac (Amorphophallus konjac; Sun et al., 
2019), pepper (Capsicum annuum; Moraes et  al., 2020), and 
carrot (Daucus carota; Tang et  al., 2021). In our previous 
research, P. aroidearum as a pathogen on S. podophyllum was 
found in China (Xu et  al., 2020). It is important to prevent 
the spread of this pathogen because many ornamental and 
edible plant species are susceptible to P. aroidearum.

The classification of the genus Pectobacterium has been 
subject to wide revision over the last decade. Pectobacterium 
spp. are highly phenotypically, genetically, and pathogenically 

FIGURE 3 | Pairwise comparisons of isDDH and ANI values of Pectobacterium species. The upper triangle (yellow portion) displays isDDH values (%), and the 
lower triangle (green portion) displays ANI values (%). Boxes with isDDH ≥ 70% or ANI ≥ 95% are colored red.
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particularly heterogeneous, indicating a need for re-evaluation 
and a better classification of these species (Dees et al., 2017). 
Three subspecies of P. carotovorum were reclassified as 
one  subspecies (P. carotovorum subsp. carotovorum), and 
P.  carotovorum subsp. odoriferum and P. carotovorum subsp. 
brasiliense were reclassified as P. odoriferum and P. brasiliense, 
respectively, based on genomics (Liu and Filiatrault, 2020; 
Liu et  al., 2020). A lot of genomes of Pectobacterium 
have  been  sequenced, annotated, and analyzed previously 

(Oulghazi  et  al., 2020; Pedersen et  al., 2020; Jonkheer et  al., 
2021). But there was no information about the whole genome 
of P. aroidearum-type strain SCRI 109. At present, only strain 
PC1 of P. aroidearum has sequenced its whole genome (PC1 
formerly classified as P. carotovorum subsp. carotovorum, the 
classification has not been corrected in the NCBI database; 
He et  al., 2021). To understand the molecular mechanisms 
of taxonomy and pathogenic factors in P. aroidearum, the 
whole genome of L6 was successively sequenced in this study. 

A B

C D

FIGURE 4 | Core genes and dispensable genes and orthologs in the P. aroidearum L6 genome and reference strain genomes. (A) Dispensable gene heat map 
(left, dispensable gene cluster; top, strain cluster; red gradient bar represents the scale of similarity percentage); (B) Venn diagram of pan genes (each ellipse 
represents one strain, and the number in the ellipse is the cluster number. One cluster has genes of >50% identity and <0.3 length diversity); (C) Ortholog number 
(Single Copy Orthologs, the number of single-copy homologous genes in the species common gene families; Multiple Copy Orthologs, the number of multiple-copy 
homologous genes in the species common gene families; Unique Paralogs, genes in specific gene families; Other Orthologs, other genes; and Unclustered Genes, 
genes that have not been clustered into any families); (D) Venn diagram of orthologs in gene family (each ellipse represents one strain, and the number in the ellipse 
is the family number).
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And it will be  the first public report on the genome of 
P.   roidearum.

Comparison of genomes is an efficient method for 
classification and detection of bacterial and fungal pathogens 
(Pritchard et  al., 2012; Bühlmann et  al., 2013; Malapi-Wight 
et  al., 2016; Tang et  al., 2017; Van Dam et  al., 2018). 
Zoledowska et al. (2018) researched the comparative genomic 
of 15 P. parmentieri strains and found the high genomic 
variation among P. parmentieri strains. Pédron et  al. (2019) 
established the taxonomic status of six Pectobacterium strains 
based on phylogenetic data, ANI values, and isDDH results 
by comparative genomics and identified a novel species of 
the genus Pectobacterium named Pectobacterium aquaticum. 
He et  al. (2021) analyzed comparative genomics of four 
Pectobacterium strains and obtained three kinds of highly 
conserved key pathogenic genes related to cell-wall degrading 
enzymes in Pectobacterium strain PC1, including 19 pectinase 
genes, 25 cellulase genes, and 22 protease genes. Zhang et al. 
(2016) compared 85 genomes of the genera Dickeya and 
Pectobacterium and found that at least ten tested genomes 
from these genera were misnamed in GenBank based on 
ANI, isDDH, and whole genome. In our study, L6 and PC1 
were grouped in one population distinct from other populations 
of the Pectobacterium genus and we  also found some strains 
were misnamed in GenBank. (P. carotovorum subsp. 
carotovorum JR1.1 and 67 were not the same species.) It is 
effective for re-evaluating current prokaryotic species definition 
and establishing a unified prokaryotic species definition frame 
by using whole-genome sequences for taxonomically 
challenging genera (Zhang et  al., 2016; Qi  et  al., 2021).

Currently, once plants are infected, there is no effective 
method to control bacterial soft rot (Sun et  al., 2019). It is 
also very possible to develop new control methods. By screening 
pathogenic genes based on whole-genome sequences of 
Pectobacterium species and analyzing the pathogenic mechanism 
at the molecular level, Zhang et  al. (2017) discovered a total 
of 168 genes related to pathogenesis including nine specific 
genes encoding toxins on the genome of P. atroseptica JG10-08. 
Huang et  al. (2019) selected five putative effectors from the 
genome of P. carotovorum subsp. brasiliense BZA12 and 
discovered that candidate effector A12GL002483 was localized 
in the cell nucleus and induced cell death. We  discovered 478 
genes, 10.4% of total predicted genes, that were potentially 
related to pathogenesis according to the VFDB database. Previous 
research has shown that soft rot pathogenesis basically relies 
on toxins, PCWDEs, and the secretion system. Toxins play a 
key role in the pathogenicity of Pectobacterium species. 
We  discovered 29 genes related to toxins in P. aroidearum L6. 
Moreover, PCWDEs are crucial in three distinct pathogenic 
functions: degradation, nutrition, and feedback regulation (Franza 
et  al., 2002; Yang et  al., 2007). The pathogens benefit from 
the nutrients produced after degradation; these degradation 
products accumulate in the host and can induce bacterium 
to generate more enzymes (Zhang et  al., 2017). Therefore, the 
production of PCWDEs is characteristic of infection by 
Pectobacterium species. The PCWDEs consist of pectinases, 
cellulases, and proteinases. In this study, we  identified a total 

A

B

C

FIGURE 5 | Gene annotation by GO, COG, and KEGG for P. aroidearum L6. 
(A) GO function classification of genes in L6. GO analysis was performed for 
three main categories: cellular components, molecular function, and biological 
processes. (B) COG function classification of genes in L6, grouped into four 
main parts: metabolism, cellular processes, information, and poorly. (C) The 
KEGG pathway classification of genes in L6 contains six groups: cellular 
processes, environmental, genetic, human diseases, metabolism, and 
organismal systems.
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of 36 genes encoding PCWDEs: 29 encoding pectinases, three 
encoding cellulases, and four encoding proteinases.

In addition to toxins and PCWDEs, secretion systems play a 
critical role in plant bacterial disease development. There are six 
types of secretion systems to export extracellular enzymes and 
effector proteins in bacteria (Lory, 1998). Through secretion systems, 
effectors can be  transported inside the plant cell and promote 
rapid infection of the host plant (Holst et  al., 1996). Among 
them, the Hrp gene cluster encoding the T3SS is particular 
important in many Gram-negative pathogens; this is a multi-
protein complex bacterial structure to deliver virulence effector 
proteins directly into plant cells (Tampakaki et  al., 2004; Tam 
et al., 2007; Xie et al., 2019). In our study, there were 723 predicted 
genes assigned to T3SS categories. Furthermore, 122 genes were 
involved in the six types of secretion system in P. aroidearum 
L6 based on GO, COG, and KEGG: 14  in T1SS, 23  in T2SS, 
29  in T3SS, 25  in T4SS, and 31  in T6SS. Pasanen et  al. (2020) 
identified a novel species Pectobacterium parvum and found it 
contained SPI-1-type Type III secretion island by comparing 
between the genomes of Pectobacterium species. In the genome 
of Pseudomonas syringae, Kang et  al. (2014) researched the role 
of T3SS effectors in the disruption of actin cytoskeleton and 
inhibition of endocytosis. In the genome of Shewanella sp., Alex 
and Antunes (2019) detected the genes encoding for T3SS core 
components and four copies of homologs of T3SS effector. Currently, 
the effectors of P. aroidearum pathogenesis have not been studied. 
All these genes in P. aroidearum L6 have potential virulence 
functions. Thus, further research on the pathogenic factors in L6 
may reveal the mechanism of Pectobacterium species infection 
of plants.

CONCLUSION

The classification of the genus Pectobacterium has long been 
unclear. Pectobacterium spp. are highly phenotypically, 
genetically, and pathogenically particularly heterogeneous, 
can cause severe soft rot in plant hosts, and have a wide 
host range. Our results suggest that P. aroidearum L6 synthesizes 

and transports virulence factors. Moreover, 182 genes were 
involved in toxins, PCWDEs, and the secretion system. The 
results of this research will serve as a foundation for a better 
understanding of the genomic structure of P. aroidearum. 
The discovery of potential pathogenic factors can help in 
preventing spread and outbreak of this pathogen and providing 
effective biological measures against it.
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TABLE 3 | Pathogenic candidate genes of P. aroidearum L6 identified through gene annotation screening.

Type Number Gene

Toxins 25
higB21, relE, rhaS, symE, cvpA, prtC, y4kP, higB22, hlyC, rtxC, ortT, cbtA, abiEii, parE1, ccdB, aebG, pasT, cptA, ccdB, 
yoeB, parE3, higB23, tabA, pinD, stbE

PCWDEs
Pectinases 28

pel1, pel2, pel3, pelB, pel4, pel5, pelL, pelW, pelP, ply1, pelD, ply2, pelX, fhaB, pehK, paxE, pehX, ogl, paaE, kduI, kdgF, 
plpb, fhaB1, fhaB2, ppbH, pglR1, ssp., pmeB

Cellulases 3 bcsZ, celB, exlX
Proteinase 4 btlcP, nprE, pi38, ps53

Secretion systems
T1SS 14 lssD, lssB, lapE, cttD, hasD, hasE, hasF, aprD, prtE, prtF, tolC, lapB, lassD, mdsABC

T2SS 23
hofQ, hofC, hofB, ppdD, pilT, gspB, gspC, gspD, gspE, gspF, gspG, gspH, gspI, gspJ, gspK, gspL, gspM, gspN, gspO, 
tadC, tadB, cpaF, cpaC

T3SS 29
hrtA, ycgR, hrtB, hrpT, hrcC, hrtC, hrpF, fliH, hrtD, hrcJ, hrpB, hrpJ, hrcV, hrpQ, hrcN, hrtE, hrtF, hrcQ, hrcR, hrcS, hrcT, 
hrcU, fliH, fliI, fliN, flip, fliR, flhA, flhB

T4SS 25
rhsA, traC, rsmE, pilS, virB11, virB10, virB9, virB8, virB6, virB5, virB4, virB2, virB1, rhsB, pFL4, lysM, triB, trbD, trbE, 
trbL, ntf2, trbG, trbl, trbK, yjgA

T5SS 0

T6SS 31
rhsGE, hcpA, aec32, hcpB, vgrGA, hcpC, vgrGB, paar1, hcpD, impB, impC, iraD, vasA, vasB, vasC, vasD, vase, vasF, 
vasG, vasI, vasJ, vasK, vasL, hcp1, vgrGC, paar2, hcpE, hcpF, vgrGD, hcpG, hcpH
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