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Simple Summary: Ubiquitin and ubiquitin-like proteins are conjugated to many other proteins
within the cell, to regulate their stability, localization, and activity. These modifications are essential
for normal cellular function and the disruption of these processes contributes to numerous cancer
types. In this review, we discuss how ubiquitin and ubiquitin-like proteins regulate the specialized
replication pathways of DNA damage bypass, as well as how the disruption of these processes can
contribute to cancer development. We also discuss how cancer cell survival relies on DNA damage
bypass, and how targeting the regulation of these pathways by ubiquitin and ubiquitin-like proteins
might be an effective strategy in anti-cancer therapies.

Abstract: Many endogenous and exogenous factors can induce genomic instability in human cells,
in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells
rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching
(TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal
double-strand breaks (DSBs). However, due to the lower fidelity of the specialized polymerases
involved in TLS, the activation and suppression of these pathways must be tightly regulated by
post-translational modifications such as ubiquitination in order to limit the risk of mutagenesis.
Many cancer cells rely on the deregulation of DNA damage bypass to promote carcinogenesis and
tumor formation, often giving them heightened resistance to DNA damage from chemotherapeutic
agents. In this review, we discuss the key functions of ubiquitin and ubiquitin-like proteins in
regulating DNA damage bypass in human cells, and highlight ways in which these processes are
both deregulated in cancer progression and might be targeted in cancer therapy.

Keywords: mutagenesis; carcinogenesis; DNA damage bypass; DNA damage tolerance; translesion
synthesis; template switching; ubiquitination; SUMOylation; NEDDylation; ISGylation

1. Introduction

Carcinogenesis is a multi-step process predominantly driven by DNA mutations. These driver
mutations provide cancer cells with a selective growth advantage, facilitating tumorigenesis and the
eventual progression to malignancy. Mistakes during DNA replication, as well as during the repair
of damaged DNA, can result in DNA mutations [1]. DNA can be damaged when cells are exposed
to chemical mutagens, such as carcinogenic nitroaromatics and aflatoxins, as well as physical agents
like ultraviolet (UV) radiation [1]. In addition, DNA is constantly damaged by free radicals and other
metabolic byproducts that result from normal cellular metabolism [2]. In cancers, the rate at which
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DNA damage causes mutations is often accelerated by the somatic or acquired mutation of DNA
replication and repair proteins.

One of the ways DNA damage causes mutations is by acting as a physical barrier to replication.
The resulting ‘replication stress’ can lead to a state of genomic instability and is a hallmark of
many pre-cancerous and cancerous cells [3,4]. DNA damage bypass is one approach cells use to
prevent the replication stress caused by persistent DNA lesions and can be accomplished by three
pathways: (1) translesion DNA synthesis (TLS), (2) template switching (TS) and (3) repriming by the
primase-polymerase, PrimPol. While mechanistically dissimilar, each pathway allows replication to
bypass DNA lesions, leaving the damage to be repaired at a later time.

Ubiquitin and ubiquitin-like proteins are essential post-translational modifiers that regulate the
stability, localization, and activity of proteins that function in a diverse range of cellular processes.
The important roles of these modifiers are highlighted by the identification of many cancers, resulting from
the deregulated metabolism of ubiquitin and ubiquitin-like proteins. The prevalence of such cancers has
indeed been increasingly discussed in recent years [5–7]. In this review, we provide a unique perspective,
where we discuss the essential roles of these modifiers in regulating DNA damage bypass, as well as
how the disruption of these processes can contribute to cancer development. In addition, we discuss how
targeting these processes may be an effective strategy in cancer therapy.

2. Ubiquitin and Ubiquitin-Like Modifiers

Ubiquitin is a highly conserved 76 amino acid protein expressed by all eukaryotic organisms [8].
The addition of ubiquitin to a target protein is predominantly catalyzed by a three-enzyme cascade [9].
In the first step, an E1 ubiquitin activating enzyme binds to ubiquitin and adenosine triphosphate
(ATP), and catalyzes adenylation of the ubiquitin C-terminal acyl group. The E1 catalytic cysteine
residue then attacks the ubiquitin adenylate, displacing the adenosine monophosphate (AMP) molecule
to form a thioester-linked E1-ubiquitin conjugate [10]. In the second step, the ubiquitin moiety is
then transferred to an E2 conjugating enzyme via a transthiolation reaction [11]. The third step is
then catalyzed by an E3 ubiquitin ligase, which binds to and facilitates ubiquitination of a substrate
protein. This results in formation of an isopeptide bond between the ubiquitin C-terminal glycine
(G76) and the ε-amino group of a substrate lysine residue [12]. Although E3 ubiquitin ligases have an
important role in substrate recognition and facilitate most ubiquitination reactions, as we will discuss
in Section 4.5, some instances of E3-independent ubiquitination have also been described involving
ubiquitin-binding substrates [13]. In addition, an instance of E1 and E2-independent ubiquitination
was recently described, mediated by the sidE ubiquitinating enzyme of Legionella pneumophila [14].
For the most part, however, the three-enzyme cascade remains a central tenet of ubiquitin conjugation.
Ubiquitination is also further regulated by the opposing function of deubiquitination enzymes (DUBs),
a class of specialized proteases that catalyze the deconjugation of ubiquitin from a modified protein [15].

Although some protein substrates are modified by monoubiquitination, many others are instead
regulated by polyubiquitination, where one of the seven lysine residues on ubiquitin, or the N-terminal
methionine residue, is further modified to form ubiquitin chains (Figure 1a–c). Ubiquitin chains
can be either homotypic, where ubiquitin moieties are all linked via the same residues (e.g., K48),
or heterotypic, where different linkage types occur within the same chain (e.g., a combination of K48
and K63 linkages). In addition, chains can be either homogenous, where each ubiquitin is further
ubiquitinated by only one other ubiquitin moiety, or branched, where ubiquitin groups within the
chain are ubiquitinated on more than one lysine residue. The effect of these ubiquitin chains on the
substrate protein varies depending on the lysine linkages used [16]. For instance, while K48-linked
chains typically target proteins for degradation by the proteasome [17], other linkages mostly regulate
non-proteolytic functions such as protein trafficking [16,18]. The diverse functionality of ubiquitin
modifications is largely dictated by specific interactions with proteins containing ubiquitin-binding
domains (UBDs) [17,19]. The adaptor proteins Rad23A and Rad23B, for instance, preferentially bind
K48-linked polyubiquitin chains and shuttle substrate proteins to the proteasome for degradation [20].
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In DNA damage bypass, mono- and polyubiquitination also plays an important non-proteolytic role in
recruiting ubiquitin-binding proteins to sites of replication.
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Figure 1. Polyubiquitin chains are constituted by specific lysine linkages. (a) Cartoon structure of
ubiquitin (PDB 1ubq) with lysine residues illustrated in blue, the N-terminal methionine (M1) in green,
and the C-terminal glycine residue (G76) in purple. (b) Schematics exemplifying different polyubiquitin
chain types. (c) Schematic of the ubiquitination cycle, illustrating the proteolytic degradation of a
K48-linked polyubiquitinated substrate and ubiquitin recycling.

Aside from ubiquitin, a number of other small ubiquitin-like proteins also have essential roles
as post-translational regulators of DNA damage bypass [21]. These proteins include the SUMO
(small ubiquitin-like modifier) protein family (SUMO-1, 2, and 3), NEDD8 (neuronal precursor
cell-expressed developmentally down-regulated protein 8), and ISG15 (interferon-stimulated gene
15). While these proteins share only limited primary sequence similarity with ubiquitin, each protein
forms one or two structurally near-identical ubiquitin-like fold(s) (Figure 2). Each of these modifiers
can also be conjugated to substrate proteins via three-enzyme reactions analogous to ubiquitination,
where they mediate a range of (mostly) non-proteolytic functions.
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Figure 2. All ubiquitin-like proteins contain one or more structurally near-identical ubiquitin-like
folds. The figure represents the individual and aligned structures of ubiquitin (PDB 1ubq), NEDD8
(PDB 2ko3), SUMO-1 (PDB 2n1v), SUMO-2 (PDB 1WM3), SUMO-3 (PDB 1u4a), and ISG15 (PDB 1Z2M).
The dashed circles indicate the two ubiquitin-like domains (UBL1 and UBL2) of ISG15.

3. DNA Damage Bypass

In eukaryotic cells, DNA is predominantly replicated by the three B-family DNA polymerases,
Pol α (alpha), Pol δ (delta), and Pol ε (epsilon) [22]. Each of these ‘replicative’ polymerases feature
highly selective active sites that enable them to synthesize new DNA with high fidelity [23]. However,
these restrictive active sites also prevent these polymerases from replicating damaged templates, causing
them to stall upstream of DNA lesions [24]. These barriers must be overcome to ensure the complete
duplication of the DNA prior to cell division, as well as to prevent formation of lethal double-strand
breaks (DSBs) due to the collapse of replication forks following their prolonged stalling [25].

Translesion synthesis (TLS) and template switching (TS) are two pathways that cells use to relieve
the replication stress caused by persistent DNA lesions. During TLS, the stalled replicative polymerase
is temporarily replaced by a specialized translesion polymerase, which is able to incorporate nucleotides
across from bulky lesions due to their open and flexible active sites [26] (Figure 3). Eukaryotic TLS
polymerases include Pol η (eta), Pol ι (iota), Pol κ (kappa), and Rev1 within the Y-family, as well as
Pol ζ (zeta) of the B-family DNA polymerases. Although each TLS polymerase can bypass a range of
different lesions, it is generally believed that each is specialized to accurately bypass a specific type of
DNA damage, referred to as their ‘cognate lesion’ [27]. Pol η, for instance, has an important role in
accurately bypassing thymidine dimers caused by ultraviolet light [28,29], while Pol κ is mainly used
to replicate passed DNA lesions on the N2 position of guanine [30,31].

While TLS alleviates much of the genome instability risk caused by replication stalling, it comes
at the cost of lower replication fidelity—a consequence of the more accommodating active sites of TLS
polymerases—and an increased risk of mutagenesis [32]. By contrast, TS is considered an error-free
mechanism of DNA damage bypass as the synthesis of new nucleotides is still mediated by standard
replicative polymerases. In this pathway, rather than switching polymerases, the stalled replisome
instead switches templates and bypasses the lesion by replicating the newly synthesized nascent strand
of its sister chromatid (Figure 3). This occurs via a Rad51-dependent strand invasion mechanism,
akin to that employed during homologous recombination (HR) [33].
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Figure 3. DNA damage bypass allows cells to evade lesions that stall replicative polymerases.
During translesion synthesis, the replicative polymerase is replaced by a specialized translesion
polymerase that can replicate past the lesion. In template switching, the replisome bypasses the lesion
by temporarily replicating the nascent strand of a sister chromatid.

A third mechanism of DNA damage bypass has also recently been suggested, mediated by the
primase-polymerase, PrimPol. Although PrimPol possesses some TLS-like activity, its main role in
damage bypass seems to come from its ability to reprime and restart replication downstream of a
DNA damage lesion [34]. Unlike TLS and TS, which are both intricately regulated by ubiquitin and
ubiquitin-like proteins, no such regulatory network has been described to date for DNA damage
bypass by PrimPol repriming. We will therefore primarily focus on TLS and TS for the remainder
of this review, as we discuss the roles of ubiquitin and ubiquitin-like proteins in regulating DNA
damage bypass.

While our discussion above illustrates DNA damage bypass as a co-replicative process that occurs
in concert with an ongoing replication fork, there is evidence that each mode of bypass can also occur
post-replicatively, during late S and G2 of the cell cycle. In this scenario, TLS and TS are thought to
function in sealing ssDNA gaps that arise when a stalled replisome is disassembled and reassembled
downstream of a lesion, leaving an unreplicated stretch behind it [35]. Such post-replicative repair is
essential to ensure the completion of DNA replication prior to cell division.

4. Ubiquitin and Ubiquitin-Like Modifiers in DNA Damage Bypass

4.1. PCNA Ubiquitination Is a Central Regulator of Translesion Synthesis and Template Switching

Ubiquitin is added to and removed from many proteins directly involved in DNA damage
bypass. The proliferating cell nuclear antigen (PCNA) sliding clamp is one such substrate that has
essential roles in normal replication as well as in TLS and TS [36]. Eukaryotic PCNA functions
as a heterotrimeric protein, forming a ring-like structure through which dsDNA at the replication
fork is encircled [37]. During normal DNA replication, Pol δ associates with PCNA through its
PCNA-Interacting Protein (PIP) motifs to form a holoenzyme that replicates the lagging strand [38].
In a similar way, TLS polymerases also associate with PCNA through PIP box motifs. Unlike the
conserved PIP box of Pol δ and other PCNA-binding proteins, however, most TLS polymerases contain
‘non-canonical’ PIP box sequences which mediate a comparatively transient interaction with PCNA [39].
This effectively limits the ability of TLS polymerases to compete with Pol δ for access to PCNA during
normal DNA replication.

The monoubiquitination of PCNA is an important step in the exchange between Pol δ and TLS
polymerases [32] (Figure 4). Following replication fork stalling, the accumulation of replication protein
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A (RPA) acts to recruit the Rad6 (E2)/Rad18 (E3) complex to sites of damage, which sequentially
transfers a single ubiquitin moiety to PCNA lysine residue 164 (K164) [40,41]. This modification forms
a binding platform for Y-family TLS polymerases, which contain ubiquitin-binding domains (UBDs)
in their C-terminal regions. These domains can be one of two types: ubiquitin-binding zinc finger
domains (UBZs) or ubiquitin-binding motifs (UBMs). While Rev1 and Pol ι both have two UBMs,
Pol η and Pol κ have one or two UBZs, respectively [27]. Although there has been some debate as
to whether PCNA monoubiquitination is strictly essential for initiating translesion synthesis [42],
numerous groups have nevertheless demonstrated that PCNA monoubiquitination strongly promotes
TLS polymerase recruitment to the replication fork by providing an additional means through which
these polymerases can compete for PCNA binding [43–47].
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Figure 4. Mono- and polyubiquitination of proliferating cell nuclear antigen (PCNA) tightly regulates the
initiation of translesion synthesis and template switching. In humans, PCNA is monoubiquitinated by
the Rad6/Rad18 complex and can be subsequently polyubiquitinated by the Ubc13/Mms2/HLTF complex.

Although each Y-family polymerase is recruited via a similar mechanism—by binding to
monoubiquitinated PCNA—selection of the most appropriate polymerase is additionally influenced
by (1) the precise DNA lesion, (2) the stabilization/degradation of the individual TLS polymerases,
(3) additional protein-protein interactions with other TLS/replication proteins [48]. As we discuss
in Section 5.1, this common means of TLS polymerase recruitment does, however, mean that the
downregulation or mutation of the “correct” polymerase, or the upregulation of another TLS polymerase,
can result in an “incorrect” polymerase being employed for lesion bypass. This can lead to an increase
in the rate of mutagenesis within the cell.

While TLS is largely coordinated by PCNA monoubiquitination, TS is instead initiated following
the further ubiquitination of these monoubiquitin moieties to form K63-linked ubiquitin chains [49,50]
(Figure 4). This extension is mediated by the E2 and E2 variant enzymes Ubc13 and Mms2, in concert
with one of two human orthologues of Saccharomyces cerevisiae Rad5, HLTF (helicase-like transcription
factor), or SHPRH (SNF2 histone-linker PHD-finger RING-finger helicase) [51–53]. While it remains
unclear how the switch from PCNA mono- to polyubiquitination is regulated, it is likely to involve the
specific recruitment and activation of the Rad5 orthologues. For instance, in response to MMS-induced
DNA damage, PCNA polyubiquitination seems to be dependent on SHPRH recruitment by TonEBP
(tonicity-responsive enhancer-binding protein), a protein which itself binds to and encircles DNA
following alkylation damage [54]. Recruitment of the Rad5 orthologues is, however, unlikely to be
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sufficient on its own for driving the switch to PCNA polyubiquitination, especially given findings
that both of these proteins can also function in TLS to promote the binding of Y-family polymerases to
monoubiquitinated PCNA. Indeed, SHPRH has been suggested to promote Pol κ recruitment following
MMS-induced damage, while HLTF can promote recruitment of Pol η in response to UV exposure [55].
How exactly these paralogues are prompted to catalyze PCNA polyubiquitination, will therefore
require further investigation.

Nevertheless, once formed, these chains create binding platforms for the ZRANB3 translocase,
which directly associates with polyubiquitinated PCNA and promotes replication fork restart as well
as suppression of unwanted sister chromatid exchange (SCE) following replication stress [56]. As with
the role of PCNA monoubiquitination in TLS, the absolute requirement of PCNA polyubiquitination
for activating TS has, however, also been called into question [57]. Such findings shed a different light
on mammalian DNA damage bypass and could imply the subsequent involvement of other regulatory
modifications. For instance, SUMO has been suggested to play a role in promoting TS in mammalian
cells where PIAS1 and PIAS4 appear to mediate PCNA SUMOylation of residue K164 to preferentially
promote TS [58].

4.2. PCNA Can Also Be Modified by SUMOylation

Several studies conducted in yeast have provided insight into the SUMOylation of PCNA involved
in DNA damage bypass. SUMO-1 is preferentially conjugated to PCNA by the complex of E2/E3
enzymes, Ubc9, and Siz1 (PIASI in humans), at the same K164 residue as ubiquitin [59,60]. A second
lysine residue K127 on yeast PCNA was also found to be a SUMO conjugation site, but only the K164
site of conjugation is highly conserved from yeast to humans [59]. The fact that ubiquitin and SUMO
bind to the same site on PCNA leaves much speculation as to whether competition or collaboration
exist between the two modifiers.

In the yeast model, the SUMOylation of PCNA is thought to stabilize the interaction between
the helicase Srs2 and PCNA at the stalled replication fork, to suppress unwanted Rad51-dependent
HR and divert toward a ubiquitin-dependent DNA damage response [61–63]. More specifically, it has
been suggested that PCNA SUMOylation prevents formation of sister chromatid junctions produced
by the Rad51 pathway, reinforcing its potentially impactful role in ensuring efficient functionality of
Rad18/Rad5-dependent TLS/TS [64]. Only relatively recently was the SUMOylation of PCNA first
observed in human cells, facilitating the enhanced binding of a potential Srs2 human homologue,
PAR1 (PCNA-associated recombination inhibitor), and resulting in a similar response as in yeast,
of preventing DSBs and unwarranted recombination (Figure 5) [65,66]. Although other functional
human homologues of yeast Srs2 have been investigated—including FBH1 (F-box DNA helicase),
RECQL5 (RECQ like helicase 5), and RTEL1 (regulator of telomere elongation helicase 1)—PAR1 is
unique as it is the only one with a SUMO-interacting motif (SIM) [67–70].
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4.3. PCNA Monoubiquitination Is Negatively Regulated by NEDDylation and ISGylation

Two other ubiquitin-like modifiers, NEDD8 and ISG15, are also thought to play a modulatory role
in TLS. Recently, PCNA was found to be dynamically NEDDylated at K164 by the conjugating activity
of Ubc12 and Rad18, in opposition to the deNEDDylating enzyme, NEDP1 [71]. Based on findings
that enhanced PCNA NEDDylation increases cellular sensitivity to oxidative stress, it was proposed
this modifier acts as an antagonist to ubiquitin, inhibiting Pol η recruitment. As levels of PCNA
NEDDylation seem to increase following ubiquitination, this modification might serve to regulate the
duration of TLS activity, in order to avoid additional risk of mutagenesis [71]. Similar to NEDDylation,
ISGylation of PCNA in response to UV and other DNA damage-inducing agents has been suggested
to function as a signal for timely TLS termination. In the proposed model, the monoubiquitination
of PCNA recruits the E3 ligase, EFP, to conjugate ISG15 to PCNA at one of two sites, including the
conserved K164 residue. The ISGylation of PCNA is then thought to recruit USP10 (ubiquitin-specific
protease 10) to deubiquitinate PCNA, resulting in dissociation of Pol η and TLS completion [72]
(Figure 6).
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Figure 6. Schematics indicating the negative regulation of PCNA monoubiquitination by NEDDylation
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4.4. PCNA Monoubiquitination Is Opposed by Deubiquitinating Enzymes

In addition to USP10, other DUBs have been implicated in the regulation of PCNA
monoubiquitination and TLS. USP1 is also responsible for deubiquitinating PCNA, and its degradation
following UV exposure may play an important role in the subsequent accumulation of PCNA
monoubiquitination [73]. Indeed, an increase in mutagenesis has been seen in both UV-treated and
untreated USP1-depleted cells, supporting a role for this enzyme in the proper regulation of TLS [73].
USP7 is another key DUB that regulates multiple proteins involved in TLS, making it a versatile
target candidate for cancer therapies. These include monoubiquitinated PCNA, as well as K48-linked
polyubiquitinated Pol η [74] and Rad18 [75,76].
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4.5. TLS Polymerases Are also Regulated by Ubiquitin and Ubiquitin-Like Proteins

In addition to binding ubiquitin, the TLS polymerases Pol η and Pol ι can themselves also be
monoubiquitinated [45,77,78]. Interestingly, this seems to be dependent on the protein’s own ability to
bind ubiquitin, as mutating the UBZ and UBM domains of Pol η and Pol ι, respectively, effectively
inhibits these modifications [45]. One theory for why this might be is that the UBD domains of these
proteins may allow them to interact with ubiquitin-charged E2 conjugating enzymes, to mediate a
form of E3-independent ubiquitination. Indeed, the C-terminal half of Pol ι (containing UBM1 and
UBM2) could be monoubiquitinated in vitro, when incubated with ubiquitin and an array of purified
E2 enzymes [13]. This model has, however, been called into doubt by findings that Pol η interacts
with and is monoubiquitinated by the E3 ligase, Pirh2 [79,80]. As Pirh2 depletion in these studies
largely prevented Pol ηmonoubiquitination, it is unclear how these findings can be reconciled with
an E3-independent mode of ubiquitination. The specific roles of the Pol η and Pol ι UBD domains in
regulating monoubiquitination of these proteins may therefore need revisiting.

While Pol η is primarily monoubiquitinated at one of four C-terminal lysine residues [77,79], Pol ι
contains a multitude of lysine residues dispersed along its length that can be monoubiquitinated in a
mutually exclusive manner; a preference, however, exists for monoubiquitination of Pol ι C-terminal
lysine residue K715 [78]. The monoubiquitination of Pol η seems to be inhibitory, as this modification
occurs adjacent to the PIP box, sterically disrupting the proteins ability to interact with PCNA [77].
In addition, it has been suggested this modification might further disrupt Pol η function by mediating
an intramolecular association with the Pol η UBZ domain. Consistent with such an inhibitory role,
Pol η is deubiquitinated following cellular exposure to ultraviolet light [77]. By contrast, Pol ι
monoubiquitination seems to be impervious to numerous forms of DNA damage [78]. An inhibitory
role for this modification, however, also seems plausible, as monoubiquitination of K715 would likely
be well-positioned to intramolecularly interact with the Pol ι UBM2 domain [78], reflecting the similar
regulation of Pol η. Another possible explanation for the function of Pol ι monoubiquitination comes
from findings that Pol η and Pol ι can form a ubiquitin-dependent complex [81], and that Pol ι expressed
in frame with ubiquitin may be bound by Pol η [78]. The accuracy and compatibility of these models
will, however, also require further study.

The ubiquitin-like modification, SUMO, has also recently been found to take part in regulating TLS
polymerases. Conjugation of a single SUMO moiety to human Pol η at K163, thought to be mediated by
Rad18 and PIAS1, has been suggested to help retain Pol η at replication forks in unchallenged cells [82]
(Figure 7). Following DNA damage and the recruitment of Pol η to monoubiquitinated PCNA, PIAS1
is then thought to further SUMOylate Pol η to form polySUMO chains at multiple lysine residues.
Unlike monoSUMOylation, these chains seem to be part of a negative feedback mechanism, marking
Pol η for extraction from the replication fork by the SUMO-targeted ubiquitin ligase, RNF111 [83].
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5. DNA Damage Bypass and Cancer

5.1. Deregulation of DNA Damage Bypass in Cancer

The proper regulation of DNA damage bypass is essential in preventing the accumulation of
DNA mutations that may drive carcinogenesis. This is especially important given the relatively low
fidelity of TLS polymerases, which if inappropriately employed, can mediate the misincorporation
of dNTPs and potentially introduce somatic mutations. Indeed, while properly coordinated TLS can
prevent mutagenesis by helping to ensure genomic duplication and by preventing replication fork
collapse, imbalances that result in the use of an inappropriate TLS enzyme can substantially increase
rates of nucleotide misincorporation. This is exemplified by the mutagenic participation of Pol ι and
Pol κ in bypassing thymidine dimers in Xeroderma Pigmentosum Variant (XP-V) patients lacking a
functional Pol η [28,29]. Consistent with this idea, the up- or down regulation of each of the Y-family
DNA polymerases, as well as of Pol ζ, has been implicated in mutagenesis in multiple cancer types,
presumably by inducing an imbalance that results in a TLS polymerase replicating past an adduct
other than its cognate lesion [21,84]. Two cancer-related SNPs have also been detected in the UBM
domains of Pol ι, representing one way through which ubiquitin-mediated regulation of TLS may be
disrupted. While mutation of phenylalanine 507 to serine in UBM1 correlates with increased risk of
prostate cancer development [85], mutation of threonine 706 to alanine in UBM2 has been observed
with increased frequency in lung adenocarcinoma and squamous cell carcinomas [86].

Aside from the up/down regulation or mutation of individual TLS polymerases, deregulation of
DNA damage bypass by ubiquitin and ubiquitin-like proteins may also play a significant role in driving
carcinogenesis. This includes the altered expression of ubiquitin and ubiquitin-like proteins themselves;
NEDD8 and ISG15, for example, are overexpressed in many cancers [87–89]. In addition, numerous
ubiquitin and ubiquitin-like metabolism proteins directly associated with DNA damage bypass are
deregulated in various cancers (Table 1). This includes Rad18, responsible for PCNA monoubiquitination,
which is overexpressed in colorectal cancer, melanoma, and glioma cells [90]. This overexpression likely
results in the increased monoubiquitination of PCNA, inappropriately activating TLS to drive cancer
mutagenesis. Rad18 overexpression is commonly coupled with overexpression of its binding partner
Melanoma Antigen-A4 (MAGE-A4) [91]. MAGE-A4 overexpression stabilizes Rad18 by protecting it
from ubiquitin-mediated degradation, allowing for its continued over-activation in cancer cells [92].

Aside from Rad18, several other PCNA-interacting proteins have also been implicated in
carcinogenesis. One such protein is ATAD5, which helps to unload PCNA from the DNA strand
as well as to facilitate the deubiquitination of PCNA by interacting with USP1 [93]. Studies have
designated ATAD5 as a key biomarker for ovarian cancer; deficient ATAD5 activity is linked to
impaired PCNA unloading from the DNA strand and increased genomic instability [93]. SPRTN is
another such protein involved in regulating the DNA damage response. SPRTN is believed to be
recruited to ubiquitinated PCNA in order to prevent its deubiquitination by inhibiting USP1 activity
(opposing the action of ATAD5) [93]. Mutations in SPRTN are often associated with development of
hepatocellular carcinoma [94]. Another predominant E3 ligase frequently deregulated in cancer is
HLTF [95]. As HLTF stimulates DNA damage bypass by template switching, the reduced activity of
this protein instead likely functions to channel repair by translesion synthesis, again increasing the
mutagenetic load of these cells [21].
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Table 1. Many proteins that bind to and metabolize ubiquitin and ubiquitin-like proteins in the DNA
damage response are deregulated or mutated in cancers.

Protein Role in DNA Damage Response Associated Cancers

Pol η Y family TLS polymerase

Mutations/defects implicated in XP-V syndrome (high cancer
susceptibility) [96]

Upregulated in: bladder, non-small cell lung cancer, head and neck
squamous cell carcinoma, ovarian cancer stem cells [97–99]

Pol ι Y family TLS polymerase

Upregulated in: bladder cancer, breast cancer, basal cell carcinoma,
esophageal squamous cell carcinoma, glioma (correlated with lymph

node metastasis) [100–104]
SNPs associated with prostate cancer, adenocarcinoma, squamous cell

carcinoma [85,86]

Pol κ Y family TLS polymerase Mutations/defects implicated in prostate cancer, breast cancer [105,106]
Upregulated in: glioma, non-small cell lung cancer [104,107]

Rev1 Y family TLS polymerase Upregulated in: prostate cancer [108]
SNPs associated with cervical squamous cell carcinoma [109]

PCNA DNA sliding clamp Upregulated in: prostate cancer, ovarian cancer (especially with lymph
node metastasis) [110,111]

Rad18 E3 ubiquitin ligase Upregulated in: colorectal cancer, primary and metastatic melanoma,
glioma [90,112,113]

HLTF E3 ubiquitin ligase Downregulated in: colorectal, colon, stomach cancer, esophageal
squamous cell carcinoma [114–117]

ATAD5 Unloading of PCNA from DNA
strand

Mutations/defects associated with endometrial carcinoma [118]
Upregulated in: epithelial ovarian carcinoma [119]

SPRTN Stabilizing PCNA, resolving fork
stalling DNA-protein crosslinks Mutations/defects implicated in hepatocellular carcinoma [120]

USP1 Deubiquitinating enzyme Upregulated in: cervical, stomach cancer, melanoma, sarcoma,
osteosarcoma [121,122]

USP7 Deubiquitinating enzyme Upregulated in: hepatocellular carcinoma, non-small cell lung cancer,
epithelial ovarian cancer, myeloma [123–126]

USP10 Deubiquitinating enzyme Upregulated in: prostate cancer, hepatocellular carcinoma [127,128]

NEDP1 De-NEDDylating enzyme Downregulated in: hepatocellular carcinoma [129]

ISG15 Ubiquitin-like protein Upregulated in: bladder, breast, endometrium, prostate cancer,
hepatocellular carcinoma [130–133]

NEDD8 Ubiquitin-like protein Upregulated in: hepatocellular carcinoma, nasopharyngeal carcinoma
(correlated with lymph node metastasis) [134,135]

5.2. Targeting DNA Damage Bypass in Cancer Therapies

While the deregulation of DNA damage bypass has an increasingly clear role in driving cancer
mutations, once established, these as well as other replication stress pathways become critical for
cancer cells to survive. This is due to the heightened levels of replication stress in cancer cells, resulting
from increased oncogene expression that drives cell proliferation, while simultaneously disrupting
cell cycle regulation and increasing the accumulation of reactive oxygen species [3]. Furthermore,
cancer cells may rely on DNA damage bypass as a means of evading the replication stress caused
by DNA-targeting anti-cancer agents. Pol η, for example, seems to be involved in bypassing lesions
caused by platinum-based chemotherapeutics such as cisplatin [97,136]. Targeting DNA damage
bypass may therefore prove to be a useful strategy in cancer therapy.

A number of promising therapeutic approaches have been developed in the past decade, that target
the regulation of DNA damage bypass by ubiquitin and ubiquitin-like proteins. While compounds that
target these processes have thus far only been tested in preclinical settings, many have demonstrated
anti-cancer properties both in vitro and in vivo. T2AA (T2 amino alcohol), for instance, is a small
molecule inhibitor that sensitizes cancer cells to cisplatin by binding to PCNA and interfering with
TLS, resulting in DSB formation and the inability to replicate past inter-strand crosslinks (ICLs) [137].
PCNA can still be monoubiquitinated; however, T2AA binds to PCNA’s PIP-box binding cavity and
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disrupts the subsequent recruitment of Pol η and Rev1 during the TLS response to DNA damage [137].
Another class of PCNA inhibitors (PCNA-Is) has been discovered to bind directly to PCNA trimers
thought to exist in the nucleoplasm and reduce their chromatin association, preventing them from
being used during TLS [138]. Of the nine compounds, PCNA-I1 is the most potent and has been
effective in retarding growth of human prostate tumor cells modeled in mice and upregulating the
expression of Chk2 and p53 leading to apoptosis [139].

Logically, the opposite approach would be to target the TLS polymerases themselves to affect their
PCNA-binding functionality in cancer cells. One study found that in both yeast and chicken DT40 cells,
mutating the Rev1 UBM domains led to increased sensitivity to UV-light as well as other DNA-damaging
agents, leading others to focus on Rev1 as a therapeutic target [47]. However, it is interesting to
note that while both of Rev1′s UBM domains are essential for its association to damage-induced
replication foci, only the UBM2 domain binds to ubiquitin in vitro [140]. Some promise has been seen
in small molecule inhibitors, which bind to the Rev1 UBM2 domain and disrupt its association with
monoubiquitinated PCNA. However, specifically targeting Rev1 seems to have more limitations in this
case than directly targeting PCNA, as it calls for a greater degree of selectivity to distinguish the UBM
domains of Rev1 from that of Pol ι [141].

Furthermore, Rev1 is significant because it acts as a scaffolding protein during TLS and is thought
to mediate polymerase switching at stalled replication forks [27,142]. Compounds that bind to the
C-terminal domain of Rev1 (Rev1-CT) interfere with its ability to interact with the Rev1-interacting
regions (RIR) of other TLS polymerases and have been correlated with a decrease in the survival
of human cancer cells when treated with UV-light or cisplatin [143]. A small molecule inhibitor,
JH-RE-06, has recently been identified that binds to Rev1-CT and subsequently disrupts the Rev1-Rev7
(Pol ζ subunit) interaction by inducing Rev1 dimerization. JH-RE-06 is the first highly specific small
molecule inhibitor that has been effective in obstructing mutagenic TLS and sensitizing tumors to
chemotherapeutic treatments in vivo [144].

Another recent study has found that microRNA-145 (miR-145) can suppress expression of Rad18
in colorectal cancer (CRC) cells resulting in increased levels of DNA damage after 5-FU (5-fluorouracil)
treatment [145]. Based on the observation that Rad18 is actually highly expressed in 5-FU-resistant
CRC cells, miR-145 could play a significant role in debilitating the DNA damage response through its
inhibitory effect on Rad18 and counteracting drug resistance in cancer cells [145]. Investigating methods
to disrupt the function of DNA damage bypass proteins regulated by ubiquitin and ubiquitin-like
modifiers in cancer cells could suppress their use of mutagenic TLS and make other chemotherapeutic
agents more lethal and effective.

6. Conclusions

The DNA damage bypass pathways are essential for ensuring the completion of replication in
the presence of DNA damage. The accuracy of these pathways is, however, dependent on the strict
regulation of the participant proteins, such as through post-translational modifications. In this review,
we have discussed the central roles of ubiquitin and ubiquitin-like proteins in regulating TLS and
TS. These modifiers are critical for preventing DNA mutagenesis and cancer development. Indeed,
the deregulation of these processes is associated with the development of many different cancer
types (Figure 8a,b). Ironically, however, while the deregulation of these pathways can drive cancer
formation, DNA damage bypass is also an essential pathway used in many cancers to avoid replication
stress. Targeting TLS and TS, such as through the disruption of ubiquitin and ubiquitin-like protein
metabolism, is therefore a promising strategy for anti-cancer therapy. With the continued identification
of roles that ubiquitin and ubiquitin-like proteins play in regulating DNA damage bypass, as well as
the concurrent identification of regulatory enzymes that coordinate these modifications, the prospects
for such therapies can only increase in coming years.
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