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A B S T R A C T   

Metal artifacts produce incorrect Hounsfield units and impact treatment planning accuracy. This work evaluates 
the use of single-energy metal artifact reduction (SEMAR) algorithm for treatment planning by comparison to 
manual artifact overriding. CT datasets of in-house 3D-printed spine and pelvic phantoms with and without 
metal insert(s) and two treated patients with metal implants were analysed. CT number accuracy improved with 
the use of SEMAR filter: root mean square deviation (RMSD) from reference (without metal) reduced by 35.4 in 
spine and 98.8 in hip. The plan dose volume histograms (DVHs) and dosimetric measurements showed com-
parable results. SEMAR reconstruction improved planning efficiency.   

1. Introduction 

In external beam radiation therapy (EBRT), acquisition of computed 
tomography (CT) images of patients allows for the delineation of the 
target volumes and organs at risk[1]. CT scans of patients with metal 
implants can contain errors during reconstruction in the form of bright 
and/or dark streaking metal artifacts[2]. These artifacts affect con-
touring and CT numbers in Hounsfield units (HU), which can result in 
incorrect relative electron densities (RED) and subsequent dose calcu-
lation errors[3]. Hence, an improvement in CT numbers is expected to 
improve the dose calculation accuracy[4]. To eliminate the effect of 
metal artifacts on treatment planning, the artifact-affected areas are 
usually overridden with a suitable density. However, this traditional 
method has limitations, including the need for artifacts to be manually 
contoured on individual CT slices which is time consuming and labour 
intensive, therefore increasing the associated costs, and may introduce 
some level of subjectivity which could increase the uncertainties in dose 
calculation[5]. Forcing density to artifact-affected areas may become 
more concerning when the metal is inside or close to the planning target 

volume (PTV) due to difficulty of outlining and inaccuracies in the 
assigned CT numbers. 

Single-energy metal artifact reduction (SEMAR, Canon Medical 
Systems Corporation, Ōtawara, Japan) is one of the many commercially 
available clinically used metal artifact reduction techniques[6]. SEMAR 
has proved to reduce metal artifacts in a range of clinical sites[7–11]. 
There are reports in the literature on improvements in CT number pre-
diction and dose calculation accuracy by using SEMAR in carbon-ion 
therapy [12], brachytherapy[13], and EBRT[4]. The study on EBRT 
acknowledged two limitations of their work: the densities of regions 
with artifacts were not overridden for dose calculation, and the results 
were not compared to measured doses[4]. 

Since EBRT treatment plans are never created on raw CT sets with 
metal artifacts, this study aims to evaluate the accuracy of using SEMAR- 
corrected CT sets for EBRT planning through comparisons with the 
traditional method of artifact overrides in patients with metal implants 
in spine and pelvic regions. Various aspects have been considered, 
including CT number accuracy, retrospective planning studies on pre-
viously treated patients, and dosimetry measurements in phantoms. 
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2. Methods 

2.1. Phantom design and printing 

2.1.1. Spine phantom 
Two in-house 3D printed spine phantoms constructed by Goodall 

et al. [14] were used in this study. The phantom (Supplementary Fig. 1a) 
had eight modules, including: three polylactic acid (PLA) only “body” 
modules, four dual printed StoneFil-Concrete “spine” modules, and one 
dual ionization chamber holder. The body of the phantom was 
composed of one anterior module and two mirrored left and right 
components with areas of 0.3 mm depth on the face of each module to 
accommodate Gafchromic EBT3 film (Ashland Advanced Materials, NY, 
USA). One pair of the spine modules was designed without metal inserts, 
and another pair to hold two titanium screws bilaterally of length 50 
mm, diameter 7 mm, and head diameter 12.3 mm as shown in Supple-
mentary Fig. 1c. More information about the design and printing of this 
phantom is reported by Goodall et al. [14]. 

2.1.2. Hip phantom 
Two hip phantoms were fabricated in-house using 3D printing: one 

without metal and the other with a titanium rod of diameter 31.4 mm 
and length 110.0 mm inserted into one of its femoral head replicating a 
unilateral hip implant (brief explanation on the hip phantom construc-
tion is in the Supplementary Materials). The femoral heads were con-
structed with an attachment to hold a CC04 ionization chamber (IBA). 

2.2. Data acquisition 

All phantoms were CT scanned using a 16-slice large bore CT scanner 
(Aquilion ONE; Canon Medical Systems, Ōtawara, Japan) with 120 kVp, 
effective mAs: 312, pitch: 1.5, resolution: 1.07 mm, and slice thickness: 
2 mm. The hip phantom was scanned with a CC04 chamber inserted. 
Three datasets were obtained for each phantom: one corresponding to 
phantoms without metal, CTRef, and the other two corresponding to 
phantoms with metal which were reconstructed with and without the 
application of SEMAR filter, CTSEMAR and CTNo_SEMAR, respectively. 

Fig. 1. CT numbers for eight VOIs in (a) the spine phantom (avoiding the titanium screws) and (b) the hip phantom, as shown on the labelled schematic of 
the phantom. 
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2.3. CT number accuracy 

For each phantom, five most artifact-affected contiguous slices were 
selected and the corresponding slices to the same position on both 
phantoms were investigated on the three datasets (CTRef, CTSEMAR, and 
CTNo_SEMAR). Multiple slices were selected to reduce uncertainties in the 
average CT number to within acceptable limits. For each dataset, eight 
cylindrical volumes of interest (VOIs) were drawn on the selected slices 
avoiding the metal inserts (Fig. 1) in ImageJ software (NIH, Maryland, 
USA)[15]. The CT numbers for each VOI for all three datasets were 
recorded and differences were quantified using the root mean square 
deviation (RMSD). 

2.4. Planning studies 

For each type of phantom, dose on the CT dataset with metal was 
calculated under two different artifact reduction techniques: artifacts on 
the CTNo_SEMAR dataset were manually outlined and overridden with 
RED of soft tissue, and for the CTSEMAR dataset, artifact reduction was 
performed using the SEMAR filter function. All relevant structures 
including the PTV and OARs were then contoured. For each type of 
phantom, a clinically approved VMAT treatment plan was copied to the 
CTSEMAR and CTNo_SEMAR datasets. Dose was then calculated with the 
same number of monitor units and MLC segmentation. Dose predictions 
on CTSEMAR were compared to those on CTNo_SEMAR using DVH analysis. 

Two CT datasets from previously treated patients were selected for 
the retrospective study: Patient-1 with unilateral hip implant and 
Patient-2 with bilateral hip implants. The ethics approval for this project 
was granted by the Sir Charles Gairdner Osborne Park Hospital Group as 
a Quality Improvement Activity (44054). The original clinical plans 
were calculated with artifacts contoured and manually overridden. In 
this study, these datasets were reconstructed with SEMAR filter applied, 
and the clinically used treatment plans were recalculated on the SEMAR- 
corrected CT sets. The predicted doses on plans were compared using 
DVH analysis. 

All dose calculations were performed using Acuros XB (AXB) algo-
rithm version 15.6 with dose to medium approach on Eclipse treatment 
planning system (TPS) version 13.6.30 (Varian Medical Systems, Palo 
Alto, CA, USA). 

2.5. Dosimetry measurements 

To further investigate the dose calculation accuracy, measurements 
were made in the phantoms with metal inserts, using Gafchromic EBT3 
film in the spine phantom and ionisation chamber in the hip phantom. 
The calculated plans were delivered to the phantoms on a linear accel-
erator (TrueBeam™, Varian Medical System Inc., Palo Alto, CA, USA). 

The film measured doses in the spine phantom with titanium screws 
(CTSpine_SEMAR and CTSpine_No_SEMAR) were compared with that in the 
reference phantom (CTSpine_Ref) in the same plane. 2D Gamma analysis 
was performed using SNC Patient software (version 6.7.3; Sun Nuclear 
Corporation, FL, USA). 

On the hip phantom, point dose measurement was performed using a 
cross-calibrated CC04 chamber inserted into a holder attached to the 
titanium rod. The measurement was repeated three times and the 
average was used for comparison to the TPS-calculated doses at the same 
point on the CTHip_SEMAR and CTHip_No_SEMAR datasets. 

3. Results 

3.1. CT number accuracy 

As expected, the streaking artifacts on the CT images of phantoms 
with metal inserts were visibly reduced after applying the SEMAR filter 
(Supplementary Fig. 3), which in turn improved the CT numbers (Fig. 1). 

For the spine phantom, the mean CT number of the eight VOIs was 

53.9 ± 17.3 HU on CTSpine_Ref, 66.7 ± 34.8 HU on CTSpine_SEMAR, and 
90.2 ± 31.8 HU on CTSpine_No_SEMAR. The RMSD was 29.1 between 
CTSpine_Ref and CTSpine_SEMAR, and 64.5 between CTSpine_Ref and 
CTSpine_No_SEMAR. 

For the hip phantom, the mean CT number of the eight VOIs was 48.0 
± 18.6 HU on CTHip_Ref, 45.0 ± 25.0 HU on CTHip_SEMAR, and 24.3 ± 34.5 
HU on CTHip_No_SEMAR. The RMSD was 19.3 between CTHip_Ref and 
CTHip_SEMAR, and 118.1 between CTHip_Ref and CTHip_No_SEMAR. 

3.2. Planning studies 

Treatment plans and DVHs for the spine and hip phantoms are shown 
in Supplementary Fig. 4 and Fig. 2a, respectively. The PTV-D50 for 
CTSpine_SEMAR and CTSpine_No_SEMAR were 50.03 Gy and 49.94 Gy, 
respectively, while that for CTHip_SEMAR and CTHip_No_SEMAR were 46.12 
Gy and 46.04 Gy, respectively. 

The plans and DVHs for Patient-1 and Patient-2 are shown in Fig. 2 b 
and c, respectively. The PTV-D50 for CTPt1_SEMAR and CTPt1_No_SEMAR 
were 54.39 Gy and 54.56 Gy, respectively, while that for CTPt2_SEMAR 
and CTPt2_No_SEMAR were 79.17 Gy and 79.16 Gy, respectively. 

3.3. Dosimetry measurements 

Supplementary Fig. 5 shows the 2D gamma analysis comparing the 
film-measured dose distribution for CTSpine_SEMAR and CTSpine_No_SEMAR 
with that of CTSpine_Ref. The Gamma pass rates for CTSpine_SEMAR and 
CTSpine_No_SEMAR were 93.7% and 79.7% for the 3%/3 mm criteria. 

The measured point dose in the hip phantom was 1.92 Gy, while the 
calculated point doses on the CTHip_SEMAR and the CTHip_No_SEMAR with 
manual artifact overrides were 1.88 Gy and 1.87 Gy, respectively. 
Hence, the percentage dose differences with measured dose were − 2.0% 
and − 2.5%, respectively. 

4. Discussion 

The present study made a detailed comparison between using the 
traditional method of manually overriding metal artifacts and using 
SEMAR-corrected CT scans for EBRT treatment planning of patients with 
metal implants in spine and pelvis. 

SEMAR improved the image quality as expected, although some ar-
tifacts persisted. The CT numbers in the vicinity of metal were accurately 
recovered with SEMAR except for VOIs 5 and 6 in the spine phantom. As 
detailed in Goodall et al [14], the differences seen between the left and 
the right modules of the spine phantom with titanium can be due to the 
inherent variation in CT number of 12.0 ± 31.9 HU from phantom 
construction whereas that between the reference phantom and the one 
with metal is 25 ± 31.9 HU for the left modules and 47.3 ± 33.3 HU for 
the right modules. All CT numbers from regions far from the metal were 
acceptably restored. These findings were in line with previous studies on 
SEMAR filter [4,12]. The RMSD between CTRef and CTSEMAR for both 
phantoms were considerably lower in comparison to that between CTRef 
and CTNo_SEMAR. The results showed that reconstruction of metal 
artifact-affected images with SEMAR generated CT numbers closer to the 
corresponding metal-free CT scan and was therefore more accurate than 
the traditional method of artifact overrides. 

In the DVH analysis, near identical dose distributions with clinically 
negligible dose differences were observed between the plans on CTSEMAR 
and CTNo_SEMAR. For the spine phantom, the percentage difference in 
dose distribution between CTSpine_SEMAR and CTSpine_No_SEMAR for PTV- 
D50 was 0.18%. Similarly, for the hip phantom, the percentage differ-
ence in dose distribution between CTHip_SEMAR and CTHip_No_SEMAR for 
PTV-D50 was 0.17%. For the retrospective patient study, PTV-D50 per-
centage dose differences for CTSEMAR and CTNo_SEMAR for Patient-1 was 
− 0.31%, while that for patient-2 was 0.01%. These results indicated that 
the accuracy of dose calculation is comparable between the two 
methods. However, although DVH statistics were quite close, the 
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differences noted in CT number accuracy may have significance in 
adjacent OARs, such as spinal cord tolerance. The other possibility is 
that the DVH study may not be sufficiently sensitive to detect such 
differences. 

Dosimetric analysis of the spine phantom using film showed higher 
Gamma pass rates for CTSpine_SEMAR by 14% for the 3%/3 mm criteria. 
Similarly, for the hip phantom, the measured point dose was closer to 
the planned dose on CTHip_SEMAR by 0.5%. The difference although small 
and clinically insignificant confirmed that using SEMAR for treatment 
planning was dosimetrically comparable (if not more accurate) to the 

traditional method of overriding the density of artefact-affected areas. 
Ideally, it would have been quite useful to compare the performance 

of all the metal artefact reduction techniques used by different manu-
facturers but due to time limits and Covid-19 restrictions it became 
practically impossible to arrange with multiple radiotherapy sites. 

Results of this study showed that incorporation of SEMAR into EBRT 
treatment planning workflow can save a lot of effort and time in con-
touring and avoid subjectivity in overriding artifacts without compro-
mising dosimetric accuracy. 

Fig. 2. DVH analysis for (a) hip phantom with PTV including metal comparing CTHip_SEMAR and CTHip_No_SEMAR with manual artifact overrides; (b) Patient-1 with 
unilateral hip implant with PTV in the bladder comparing CTPt1_SEMAR and CTPt1_No_SEMAR; (c) Patient-2 with bilateral hip implants with PTV in the prostate 
comparing CTPt2_SEMAR and CTPt2_No_SEMAR. 
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