
Lou et al. Stem Cell Research & Therapy          (2025) 16:278  
https://doi.org/10.1186/s13287-025-04389-0

REVIEW
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cell‑derived extracellular vesicles as natural 
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Abstract 

Background  Erectile dysfunction (ED), a prevalent male sexual disorder, severely impacts quality of life. Extracellular 
vesicles (EVs), natural nanoparticles (30–200 nm) secreted by stem cells, represent a novel nanomedicine platform 
for ED treatment due to their ability to encapsulate bioactive cargo (e.g., miRNAs, proteins) and target damaged tis-
sues. Stem cell-derived extracellular vesicles (SC-EVs) have emerged as a promising therapeutic strategy for multiple 
diseases. This meta-analysis evaluates the therapeutic efficacy of SC-EVs in rat ED models and explores their transla-
tional potential.

Methods  We systematically searched PubMed, Embase, Cochrane Library, and Web of Science for studies published 
up to December 2024. Randomized controlled trials (RCTs) assessing EVs in ED treatment were included. A random-
effects model was applied to account for between-study heterogeneity, with standardized mean differences (SMDs) 
and 95% confidence intervals (CIs) calculated for continuous outcomes.

Results  Twenty studies involving 324 rats were included. EVs significantly improved erectile function (SMD = 4.19, 
95% CI: 3.31–5.08, P < 0.00001). Subgroup analyses revealed no significant differences between EV sources (e.g., mes-
enchymal stem cells [MSCs] vs. adipose-derived stem cells [ADSCs], P > 0.05) or disease models (diabetes mellitus [DM] 
vs. cavernous nerve injury [CNI], P > 0.05). EVs upregulated the expression of nitric oxide synthase isoforms (nNOS 
and eNOS), increased smooth muscle content (α-SMA), and improved smooth muscle-to-collagen ratios (P < 0.00001 
for all). Funnel plot asymmetry and Egger’s test (P < 0.05) indicated publication bias, but trim-and-fill analysis con-
firmed robust results post-adjustment.

Conclusion  SC-EVs demonstrate significant therapeutic potential for ED in rat models, particularly in restoring vascu-
lar and neural integrity. However, limitations include small sample sizes and short follow-up periods. Future research 
should prioritize clinical translation, mechanistic exploration, and standardized EV production protocols.

Keywords  Stem cells, Extracellular vesicles (EVs), Erectile dysfunction (ED), Meta-analysis, Diabetic complications

Introduction
Erectile dysfunction (ED), documented since ancient 
times, is defined as the persistent inability to achieve 
or maintain an erection sufficient for sexual intercourse 
[1]. Reports indicate that ED is prevalent among men 
over 40 years of age, with its incidence increasing with 
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age. By the age of 70, the prevalence of ED ranges from 
50 to 100% [2]. It is projected that the global population 
affected by ED will rise to 322 million by 2025, making 
it a significant health concern in aging societies [3, 4].

Current treatment strategies for ED include lifestyle 
modifications, psychological therapy, and pharmaco-
logical interventions. Lifestyle improvements, such as 
dietary changes and exercise, can alleviate symptoms in 
some cases [5–10]. Psychological therapy is particularly 
effective for psychogenic ED, as it helps reduce anxi-
ety and stress [11]. However, for patients with comor-
bid chronic conditions such as DM or cardiovascular 
disease, the efficacy of lifestyle interventions is limited 
[12–14]. Pharmacological treatments like sildenafil 
enhance erectile function by potentiating nitric oxide 
(NO) signaling, but their effectiveness depends on the 
integrity of neural and vascular function. These drugs 
are less effective in patients with organic ED and may 
lead to tolerance and dependence with long-term use 
[15–21].

Mesenchymal stem cell secretome has been shown to 
have great therapeutic potential in the treatment of ED 
[22], and SC-EVs, which are part of the secretome, have 
also shown great therapeutic potential. EVs exhibit anti-
inflammatory, pro-angiogenic, and tissue-repair proper-
ties, making them particularly promising for neurogenic 
and vasculogenic ED. They promote tissue regeneration 
and functional recovery, addressing the limitations of 
current therapies [23–26]. Additionally, as natural inter-
cellular signaling carriers, EVs avoid issues related to 
immune rejection and ethical concerns, offering a high 
safety profile [27]. Consequently, SC-EVs represent a 
novel therapeutic approach for ED with complex etiolo-
gies, particularly in repairing neural and vascular damage 
[28, 29].

Methods
Search strategy and selection criteria
A comprehensive search was conducted across multi-
ple databases, including PubMed (https://​pubmed.​ncbi.​
nlm.​nih.​gov/), Embase (https://​www.​embase.​com/), 
Cochrane Library (https://​www.​cochr​aneli​brary.​com/), 
and Web of Science (http://​webof​scien​ce.​com), for stud-
ies published up to December 2024. The search strategy 
employed the following key terms:  ("Dysfunction"OR"
erectile dysfunction"OR"impotence") AND ("stem cells") 
AND ("extracellular vesicles"OR"extracellular particles"O
R"exosomes"OR"ectosome"OR"microvesicle"). No language 
restrictions were applied to ensure the inclusivity of the 
search. Some studies, such as those by Song J [30] and Li 
M et  al. [31], analyzed multiple EV groups, resulting in 
their inclusion more than once in certain analyses.

Inclusion and exclusion criteria
Studies were included if they met the following criteria: 
(1) Evaluated the role of SC-EVs in treating ED; (2) The 
objects of the study were ED rats; (3) Assessed erectile 
function via electrical stimulation of the cavernous nerve, 
with outcomes measured by intracavernosal pressure/
mean arterial pressure ratio (ICP/MAP), neuronal nitric 
oxide synthase (nNOS), endothelial nitric oxide synthase 
(eNOS), alpha-smooth muscle actin (α-SMA), or smooth 
muscle-to-collagen ratios. In cases of duplicate data, 
only the most recent study was included. Studies were 
excluded if they: (1) Lacked sufficient data for further 
analysis; (2) Were duplicates or redundant publications; 
(3) Were expert opinions, conference abstracts, editori-
als, case reports, letters, reviews, or meta-analyses.

Data extraction
Data from included studies were extracted from all 
available sources, including tables and figures. For data 
presented only graphically, WebPlotDigitizer software 
(AutoFEM Technologies, USA) was used to extract 
numerical values. Two independent researchers per-
formed data extraction, with discrepancies resolved 
through third-party arbitration.

Quality assessment
The methodological quality of included studies was 
assessed by two authors, with disagreements resolved 
through consensus. Studies were evaluated based on nine 
criteria:(1) Blinded outcome assessment; (2) Randomi-
zation of experiments; (3) Sufficient follow-up duration 
(≥ 2 weeks); (4) Compliance with animal welfare regula-
tions; (5) Characterization of stem cell phenotypes; (6) 
Identification of SC-EVs (EVs were characterized using 
nanoparticle tracking analysis [NTA] for size distribution 
and transmission electron microscopy [TEM] for mor-
phological validation, consistent with MISEV2023 guide-
lines); (7) Pre-injection assessment of erectile function; 
(8) Sample size calculation; (9) Detection of structural 
changes in the corpus cavernosum. Each criterion was 
scored as 1 point, and studies were categorized into three 
quality tiers: high quality (7–9 points), medium quality 
(4–6 points), and low quality (0–3 points).

Statistical analysis
Data were analyzed using Review Manager 5.3 (The 
Nordic Cochrane Center). Primary outcomes were 
expressed as standardized mean differences (SMDs) 
with 95% confidence intervals (CIs), representing dif-
ferences in erectile function and corpus cavernosum 
structural changes between treatment and control 
groups. Each trial included one control group and one 
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or more treatment groups. For studies with multiple 
treatment groups, the control group sample size was 
divided equally among the treatment groups. If multi-
ple measurements were taken over time, the last meas-
urement was used for analysis.

Subgroup analyses were performed to compare EV 
types (MSCs and ADSCs) and disease models (DM or 
CNI). A random-effects model was applied to account 
for heterogeneity. Results were presented as forest 
plots, with studies arranged by publication year. Addi-
tionally, funnel plots were used to assess potential 
publication bias.

Result
Search results and characteristics of included studies
The electronic search identified a total of 232 studies, of 
which 20 met our inclusion criteria and were included 
in the meta-analysis (Fig.  1). These studies collectively 
involved 324 rats. The characteristics of the included 
studies are summarized in Table 1.

Characteristics of included studies
A total of 20 studies (324 rats) were included (Table 1). 
7 studies used MSC-EVs, 7 studies used ADSC-EVs, 
3 studies used BMSC, 2 studies used USC-EVs, 1 
study used corpus cavernosum smooth muscle cells-
derived EVs (CCSMC-EVs), 1 study used muscle stem 

Fig. 1  Flowchart of study selection
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cells-derived EVs (MDSC-EVs), 1 study used pericyte-
derived EVs (PC-EVs), and 1 study used mouse corpus 
cavernous pericyte-derived EVs (MCP-EVs). 8 studies 
constructed rat diabetic model, 7 studies constructed a 
rat CNI model, 2 studies constructed a rat aged model, 
1 study constructed a rat Aterial Injury model, 1 study 
constructed a rat chronic intermittent hypoxia (CIH) 
model, and 1 study constructed a rat Peyronie’s disease 
(PD) model. In the different studies, the follow-up time 
after injection ranged from 2 to 8 weeks. In all studies, 
erectile function was assessed by electrical stimulation 
of the cavernous nerve after anesthesia, and the results 
were presented as ICP/MAP. In addition to erectile 
function, 20 studies measured histologic changes and 
molecular changes, including smooth muscle cell con-
tent, nNOS, eNOS, α-SMA, and the ratio of smooth 
muscle to collagen in the corpus cavernosum.

Quality of included studies
The quality of the included studies was at a high level 
as shown by the quality assessment results. Thirteen 
of the studies were of high quality and seven were of 
moderate quality (Table 2).

Effects of SC‑EVs on structural and molecular changes 
in rat corpus cavernosum.
A pooled analysis of all included studies showed that 
SC-EVs therapy significantly improved ED compared to 
controls (SMD 4.19, 95% CI = 3.31 to 5.08, P < 0.00001, I2 
= 77%: Fig. 2a).

In order to elucidate the intrinsic mechanisms of stem 
cell therapy, we also analyzed the changes in the structure 
of the corpus cavernosum between the two groups. The 
expression of both nNOS and eNOS was higher in the 
stem cell group than in the control group(nNOS: SMD 
4.18, 95% CI = 2.63 to 5.73, P < 0.00001, I2 = 86%; Fig. 2b; 
eNOS: SMD 2.83, 95% CI = 1.57 to 4.10, P < 0.0001, I2 
= 79%; Fig. 2c). In addition, the smooth muscle (labeled 
with anti-α-SMA antibody) content was much higher in 
both stem cell groups than in the control group (SMD 
5.33, 95% CI = 4.12 to 6.54, P < 0.00001, I2 = 74%: Fig. 3d). 
In addition, we performed a meta-analysis of the Smooth 
muscle/Collagen results, which showed an increased 
smooth muscle-to-collagen ratio in the stem cell-treated 
group compared with the control group SMD 3.40, 95% 
CI = 2.57 to 4.23, P < 0.00001, I2 = 74%: Fig. 3e). Despite 
some heterogeneity among studies (I2 = 74–86%), the 
results remained stable after excluding individual studies 

Table 1  Characteristics of the studies included in the meta-analysis

Sprague–Dawley rats

Year First author Species Age (weeks) Sample size Cell type Injection dose Disease type Follow-up 
(weeks)

Ref

2018 Ouyang X SD rats 10 16 MSC 100ug CNI 4 [32]

2019 Liu Y SD rats 12 12 MSC 100ug AI 4 [33]

2020 Song J SD rats 8 24 BMSC, ADSC and CCSMC 100ug DM 4 [30]

2023 Li K SD rats 96 and 10 16 MSC 100ug Aged 4 [34]

2018 Zhu L SD rats 10 16 ADSC 100ug DM 4 [35]

2018 Li M SD rats 12 36 BMSC and ADSC 100ug CNI 3 [31]

2020 Wang J SD rats 8 12 ADSC 200ug DM 2 [36]

2017 Chen F SD rats / 16 ADSC / DM 4 [37]

2021 Liang L SD rats / 12 ADSC 400ug CIH 8 [38]

2020 Yang Q SD rats / 8 USC 100ug PD 4 [39]

2019 Ouyang B SD rats / 16 USC 100ug DM 4 [40]

2020 Guo N SD rats 12 8 PC 5ug CNI 2 [41]

2023 Ock J SD rats 8 8 MCP 5ug DM 2 [42]

2023 Chen Z SD rats 8 10 MSC 100ug CNI 4 [43]

2019 Liu Q SD rats 96 30 BMSC 1 × 10 6 Aged 2 [44]

2021 Kim J SD rats 8 12 MSC 1 × 10 6 CNI 4 [45]

2024 Zhang J SD rats 8 20 MSC 100ug DM 4 [46]

2021 Zou Z SD rats / 20 MDSC 1 × 10 6 CNI 4 [47]

2020 Huo W SD rats 8 20 MSC 100ug DM 4 [48]

2023 Liu S SD rats 12 12 ADSC 100ug CNI 4 [49]
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Fig. 2  a Effect of the SC-EVs on ICP/MAP in ED. b Effect of the SC-EVs on nNOS in ED. c Effect of the SC-EVs on eNOS in ED. d Effect of the SC-EVs 
on α-SMA in ED. e Effect of the SC-EVs on Smooth muscle/Collagen in ED



Page 7 of 13Lou et al. Stem Cell Research & Therapy          (2025) 16:278 	

Fig. 3  a Effects of MSC-EVs and ADSC-EVs on ICP/MAP in the ED. b Effects of MSC-EVs and ADSC-EVs on nNOS in the ED. c Effects of MSC-EVs 
and ADSC-EVs on α-SMA in the ED. d Effects of MSC-EVs and ADSC-EVs on Smooth muscle/Collagen in the ED
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one by one, as confirmed by sensitivity analysis, which 
fully validated the reliability of our findings. Together, 
these findings confirm the restorative effect of stem cell 
therapy on ED at the molecular level and at the tissue 
structure level.

The impact of different subgroups on the structural 
and molecular changes in the rat corpus cavernosum.
The influence of different EVs on the structural and molecular 
changes in the corpus cavernosum of ED rats.
Subgroup analysis results indicate that for ICP/MAP, 
there is no significant difference between MSC-EVs and 
ADSC-EVs in improving erectile function (P = 0.39, 
Fig.  3a). For nNOS, there is no significant difference 
between MSC-EVs and ADSC-EVs in improving erec-
tile function (P = 0.49, Fig.  3b). For a-SMA, there is no 
significant difference between MSC-EVs and ADSC-EVs 
in improving erectile function (P = 0.24, Fig.  3c). For 
Smooth muscle/Collagen, there is no significant differ-
ence between MSC-EVs and ADSC-EVs in improving 
erectile function (P = 0.25, Fig. 3d).

The influence of SC‑EVs on the structural and molecular 
changes in the corpus cavernosum of ED rats caused 
by different diseases.
Subgroup analysis results indicate that for ICP/MAP, 
there is no significant difference in the improvement of 
erectile function by SC-EVs between DM and CNI (P = 
0.74, Fig.  4a). For nNOS, there is no significant differ-
ence in the improvement of erectile function by SC-EVs 
between DM and CNI (P = 0.46, Fig.  4b). For a-SMA, 
there is no significant difference in the improvement 
of erectile function by SC-EVs between DM and CNI 
(P = 0.34, Fig.  4c). For Smooth muscle/Collagen, there 
is no significant difference in the improvement of erec-
tile function by SC-EVs between DM and CNI (P = 0.28, 
Fig. 4d).

Publication bias
The funnel plot (Fig S1) exhibited noticeable asymme-
try, suggesting the potential presence of publication bias. 
Disappointingly, the Egger’s test also indicated a certain 
degree of publication bias (all p < 0.05). Therefore, we 
employed the trim-and-fill method to examine the asym-
metry of the funnel plot by hypothesizing unpublished 
studies. The recalculated results demonstrated that SC-
EVs play a significant role in ED, with a post-trim-and-fill 
P-value < 0.05, indicating statistical significance. Further-
more, the combined results before and after trimming 
and filling showed P-values < 0.05, confirming the stabil-
ity of the findings (Fig S2).

Discussion
ED is a common male health issue associated with vari-
ous factors, including age, chronic diseases, and psycho-
logical conditions. It not only affects the quality of sexual 
life but may also have negative impacts on mental health, 
social relationships, and overall quality of life.

Stem cells are undifferentiated cells with self-renewal 
capabilities and the potential to differentiate into vari-
ous cell types under specific conditions. They hold broad 
application potential in tissue repair, regenerative medi-
cine, and clinical therapy. SC-EVs are small membrane 
vesicles secreted by stem cells, containing a variety of 
biomolecules such as proteins, lipids, and RNAs. These 
EVs play important roles in intercellular communication, 
immune regulation, and cellular repair. Figure 5.

SC-EVs (including MSC-EVs, ADSC-EVs, USC-EVs, 
PC-EVs, and MCP-EVs) exert therapeutic effects on ED 
through their bioactive cargo of miRNAs and proteins. 
Regarding vascular endothelium, MSC-EVs improve 
endothelial function by delivering miR-21-5p and miR-
296-5p [48], with the latter enhancing eNOS/NO sign-
aling via PTEN-PI3 K-Akt regulation [34]. In smooth 
muscle modulation, miR-301a-3p and circPIP5 K1 C in 
ADSC-EVs suppress fibrosis by targeting TGF-β/Smad 
and glycolytic pathways [38], while MSC-EVs upregu-
late Bcl-2 to inhibit apoptosis [37]. In nerve regenera-
tion, ESC-NVs and PC-NVs promote axonal growth by 
delivering neurotrophic factors such as NGF and NT-3, 
while activating the PI3 K-Akt and HGF/c-Met pathways, 
as well as the GDNF pathway, which collectively stimu-
late neuronal sprouting and Schwann cell migration [41]. 
Additionally, SC-EVs contribute to functional recov-
ery by mitigating oxidative stress through antioxidant 
enzymes (SOD/CAT) and miR-337-3p-mediated NOX4 
inhibition, thereby restoring erectile function via multi-
ple mechanisms [34].

Furthermore, specific small molecules in SC-EVs dem-
onstrate therapeutic efficacy by regulating key pathways. 
In endothelial repair, miRNAs including the miR-10 
family and let-7 enhance NO bioavailability [40], while 
corin and eNOS proteins improve vascular function [36]. 
Fibrosis is counteracted by USC-Exos through MMP/
TIMP balance restoration and CCSMC-Exos via NO-
cGMP signaling [39], shows a trend of reduced collagen 
deposition. These findings highlight the ability of SC-EVs 
to simultaneously target endothelial dysfunction, fibrosis, 
and nerve damage, addressing the multifactorial nature 
of ED.

Notably, SC-EVs exhibit distinct therapeutic effects 
depending on ED etiology. In diabetic ED, MSC-EVs 
and ADSC-EVs primarily improve endothelial dysfunc-
tion and exert antifibrotic effects, restoring smooth mus-
cle/collagen ratios and NO signaling, with CCSMC-EVs 
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Fig. 4  a Effect of SC-EVs on ICP/MAP in DM and CNI-induced EDs. b Effect of SC-EVs on nNOS in DM and CNI-induced EDs. c Effect of SC-EVs 
on α-SMA in DM and CNI-induced EDs. d Effect of SC-EVs on Smooth muscle/Collagen in DM and CNI-induced EDs
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demonstrating superior cellular uptake and prolonged 
efficacy. In contrast, neurogenic ED benefits more from 
ESC-EVs and MSC-EVs, which promote neural repair 
through neurotrophic factor delivery and vascular-neu-
ral crosstalk. These differential effects underscore the 
importance of selecting EV subtypes based on underlying 
pathology—employing antifibrotic EVs for diabetic ED 
and proneurogenic EVs for nerve injury-related ED—to 
optimize therapeutic outcomes. This tailored approach 
highlights the potential of SC-EVs as precision medicine 
for ED subtypes.

In ED research, stem cells and SC-EVs are considered 
to play significant roles. Stem cells can directly repair 
tissue damage related to ED by differentiating into vas-
cular endothelial cells, smooth muscle cells, and others. 
SC-EVs, on the other hand, indirectly improve ED symp-
toms by carrying biomolecules that facilitate cell repair, 
anti-inflammatory responses, and angiogenesis. Unlike 
synthetic nanoparticles, SC-EVs inherently possess tar-
geting moieties (e.g., tetraspanins) that enhance homing 
to ischemic or inflamed cavernous tissues, minimizing 
off-target effects—a critical advantage in nanomedicine 

design [50]. In addition, due to their low immunogenic-
ity, ease of acquisition, and tunable biological functions, 
SC-EVs demonstrate promising clinical applications, par-
ticularly in tissue repair and disease treatment. This stem 
cell- and EV-based therapeutic strategy provides new 
insights for the clinical treatment of ED, especially for 
patients who respond poorly to or experience side effects 
from traditional treatments.

This study evaluated the therapeutic effects of SC-EVs 
on rat ED through meta-analysis. Our findings were 
highly consistent with previous findings [51], which 
showed that SC-EVs significantly improved erectile func-
tion in rats, demonstrating their potential in ED treat-
ment. This further supports the importance of SC-EVs 
in the treatment of ED. This finding not only provides 
experimental evidence for stem cell-based ED therapy 
but also offers theoretical support for future clinical 
applications.

Mechanistically, SC-EVs improve ED through multi-
ple mechanisms, including specific cellular and tissue 
responses (e.g., tissue regeneration, anti-inflammation, 
anti-apoptosis, immune modulation, and antioxidant 

Fig. 5  SC-EVs ameliorate ED through multi-target mechanisms. In endothelial repair, MSC-EVs enhance NO production by upregulating eNOS/
nNOS expression and activating the PTEN-PI3 K-AKT pathway via miR-296-5p. Concurrently, USC-EVs promote CD31 +/eNOS + endothelial 
proliferation and significantly improve the ICP/MAP ratio through miR-21-5p and the let-7 family. For smooth muscle modulation, MSC-EVs increase 
α-SMA expression and inhibit caspase-3-dependent apoptosis, while ADSC-EVs suppress fibrosis and glycolysis via the miR-301a-3p-mediated 
targeting of PTEN-TLR4 and the circPIP5 K1 C-miR-153-3p-SMURF1 axis, respectively. In antifibrotic processes, USC-EVs reduce collagen deposition 
by regulating the MMP/TIMP balance, whereas ADSC-EVs improve endothelial function through corin gene activity. Neural regeneration is primarily 
driven by ESC/PC-EVs, which facilitate neuronal sprouting via neurotrophin-3 and enhance Schwann cell migration through Akt/eNOS signaling. 
Additionally, MSC-EVs alleviate oxidative stress by suppressing NOX4 via miR-337-3p, and ADSC-EVs inhibit apoptosis by elevating Bcl-2 levels 
and reducing caspase-3 activity
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stress) and specific molecular signaling pathways (e.g., 
NO-cGMP, miR-10a-3p-PKIA-RhoA-ROCK, and Akt 
pathways)[30, 41, 43]. These mechanisms ultimately 
promote vascular endothelial cell repair, improve neu-
ral function, and inhibit inflammatory responses. For 
example, EVs enhance erectile responses via smooth 
muscle cell proliferation and repair, improving penile 
vascular function. Additionally, EVs may carry anti-
inflammatory molecules to suppress local inflamma-
tion, further facilitating tissue repair and regeneration.

Moreover, compared to traditional single-target 
drugs (e.g., sildenafil), SC-EVs demonstrate signifi-
cant advantages in vascular and neural repair through 
multi-target mechanisms. EVs carry bioactive mol-
ecules (e.g., miRNAs, growth factors) that simulta-
neously promote angiogenesis, endothelial repair, 
anti-inflammatory responses, neural regeneration, 
and oxidative stress reduction, thereby fundamen-
tally restoring vascular and neural function. In con-
trast, drugs like sildenafil improve blood flow through 
a single mechanism (e.g., PDE5 inhibition) without 
repairing damaged tissues. The multi-target effects 
of EVs make them particularly suitable for ED caused 
by complex etiologies (e.g., diabetes mellitus, neural 
injury, vascular diseases), offering not only symptom 
relief but also long-term efficacy through tissue repair 
and regeneration. Furthermore, as natural intercellu-
lar communication carriers, EVs exhibit low immuno-
genicity and high biocompatibility, reducing the risk 
of side effects. Future research should further clarify 
the key mechanisms of EVs, optimize delivery proto-
cols, and validate their long-term efficacy and safety 
through large-scale clinical trials, providing new 
breakthroughs in ED treatment.

Limitations of the study
Although this study demonstrates the positive thera-
peutic effects of SC-EVs on rat ED, several limitations 
remain. First, most included studies were small-scale, 
short-term experiments lacking long-term follow-up 
data, necessitating further validation of the long-term 
efficacy and safety of EVs. Second, the specific mecha-
nisms of EVs in ED treatment are not fully understood, 
and many details require further exploration through 
basic research. Finally, despite the therapeutic potential 
of EVs, While SC-EVs show promise, nanomedicine-
specific challenges include batch-to-batch variability 
in EVs size/composition and the lack of standardized 
protocols for large-scale EV production under Good 
Manufacturing Practice (GMP) conditions. Future work 
should integrate microfluidic-based EV isolation and 
lyophilization techniques to enhance clinical feasibility.

Clinical application prospects
SC-EVs represent a novel therapeutic approach with 
broad application prospects. Future clinical stud-
ies should further explore optimal delivery protocols, 
including administration routes, frequency, and dos-
age. Additionally, larger-scale clinical trials are needed 
to evaluate the efficacy and safety of EVs in ED treat-
ment. With a deeper understanding of EV mechanisms 
and continuous technological advancements, SC-EVs 
are expected to become a new generation of biological 
therapies for ED.

Conclusion
This study underscores the potential of SC-EVs as a 
next-generation nanomedicine for ED. Their natural 
nanoarchitecture enables multifunctional therapeutic 
effects, bridging the gap between cellular therapies and 
synthetic nanoparticle systems. Future research should 
focus on engineering EVs for enhanced targeting (e.g., 
surface modification with ligands) and combinato-
rial cargo loading (e.g., miRNAs + small molecules), 
advancing personalized nanomedicine for sexual 
health.

In summary, the results of this study indicate that SC-
EVs significantly improve ED in rats, demonstrating sub-
stantial clinical potential. Future research should further 
investigate their mechanisms, optimize treatment pro-
tocols, and conduct large-scale clinical trials to validate 
their feasibility and efficacy in clinical therapy.
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