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Nanoscale therapeutics for erectile i

dysfunction: a meta-analysis of stem
cell-derived extracellular vesicles as natural
nanoparticles in diabetic rat models

Kecheng Lou', Junjie Hu', Jiayue Tong' and Zhanshi Wang®’

Abstract

Background Erectile dysfunction (ED), a prevalent male sexual disorder, severely impacts quality of life. Extracellular
vesicles (EVs), natural nanoparticles (30-200 nm) secreted by stem cells, represent a novel nanomedicine platform
for ED treatment due to their ability to encapsulate bioactive cargo (e.g., miRNAs, proteins) and target damaged tis-
sues. Stem cell-derived extracellular vesicles (SC-EVs) have emerged as a promising therapeutic strategy for multiple
diseases. This meta-analysis evaluates the therapeutic efficacy of SC-EVs in rat ED models and explores their transla-
tional potential.

Methods We systematically searched PubMed, Embase, Cochrane Library, and Web of Science for studies published
up to December 2024. Randomized controlled trials (RCTs) assessing EVs in ED treatment were included. A random-

effects model was applied to account for between-study heterogeneity, with standardized mean differences (SMDs)
and 95% confidence intervals (Cls) calculated for continuous outcomes.

Results Twenty studies involving 324 rats were included. EVs significantly improved erectile function (SMD=4.19,
95% Cl: 3.31-5.08, P<0.00001). Subgroup analyses revealed no significant differences between EV sources (e.g., mes-
enchymal stem cells [MSCs] vs. adipose-derived stem cells [ADSCs], P> 0.05) or disease models (diabetes mellitus [DM]
vs. cavernous nerve injury [CNI], P>0.05). EVs upregulated the expression of nitric oxide synthase isoforms (NNOS

and eNOS), increased smooth muscle content (a-SMA), and improved smooth muscle-to-collagen ratios (P < 0.00001
for all). Funnel plot asymmetry and Egger’s test (P <0.05) indicated publication bias, but trim-and-fill analysis con-
firmed robust results post-adjustment.

Conclusion SC-EVs demonstrate significant therapeutic potential for ED in rat models, particularly in restoring vascu-
lar and neural integrity. However, limitations include small sample sizes and short follow-up periods. Future research
should prioritize clinical translation, mechanistic exploration, and standardized EV production protocols.
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age. By the age of 70, the prevalence of ED ranges from
50 to 100% [2]. It is projected that the global population
affected by ED will rise to 322 million by 2025, making
it a significant health concern in aging societies [3, 4].

Current treatment strategies for ED include lifestyle
modifications, psychological therapy, and pharmaco-
logical interventions. Lifestyle improvements, such as
dietary changes and exercise, can alleviate symptoms in
some cases [5—10]. Psychological therapy is particularly
effective for psychogenic ED, as it helps reduce anxi-
ety and stress [11]. However, for patients with comor-
bid chronic conditions such as DM or cardiovascular
disease, the efficacy of lifestyle interventions is limited
[12-14]. Pharmacological treatments like sildenafil
enhance erectile function by potentiating nitric oxide
(NO) signaling, but their effectiveness depends on the
integrity of neural and vascular function. These drugs
are less effective in patients with organic ED and may
lead to tolerance and dependence with long-term use
[15-21].

Mesenchymal stem cell secretome has been shown to
have great therapeutic potential in the treatment of ED
[22], and SC-EVs, which are part of the secretome, have
also shown great therapeutic potential. EVs exhibit anti-
inflammatory, pro-angiogenic, and tissue-repair proper-
ties, making them particularly promising for neurogenic
and vasculogenic ED. They promote tissue regeneration
and functional recovery, addressing the limitations of
current therapies [23-26]. Additionally, as natural inter-
cellular signaling carriers, EVs avoid issues related to
immune rejection and ethical concerns, offering a high
safety profile [27]. Consequently, SC-EVs represent a
novel therapeutic approach for ED with complex etiolo-
gies, particularly in repairing neural and vascular damage
[28, 29].

Methods

Search strategy and selection criteria

A comprehensive search was conducted across multi-
ple databases, including PubMed (https://pubmed.ncbi.
nlm.nih.gov/), Embase  (https://www.embase.com/),
Cochrane Library (https://www.cochranelibrary.com/),
and Web of Science (http://webofscience.com), for stud-
ies published up to December 2024. The search strategy
employed the following key terms: ("Dysfunction”OR"
erectile dysfunction"OR"impotence”) AND (stem cells”)
AND ("extracellular vesicles"OR"extracellular particles"O
R'exosomes"OR"ectosome”"OR "microvesicle”). No language
restrictions were applied to ensure the inclusivity of the
search. Some studies, such as those by Song J [30] and Li
M et al. [31], analyzed multiple EV groups, resulting in
their inclusion more than once in certain analyses.
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Inclusion and exclusion criteria

Studies were included if they met the following criteria:
(1) Evaluated the role of SC-EVs in treating ED; (2) The
objects of the study were ED rats; (3) Assessed erectile
function via electrical stimulation of the cavernous nerve,
with outcomes measured by intracavernosal pressure/
mean arterial pressure ratio (ICP/MAP), neuronal nitric
oxide synthase (nNOS), endothelial nitric oxide synthase
(eNOS), alpha-smooth muscle actin (a-SMA), or smooth
muscle-to-collagen ratios. In cases of duplicate data,
only the most recent study was included. Studies were
excluded if they: (1) Lacked sufficient data for further
analysis; (2) Were duplicates or redundant publications;
(3) Were expert opinions, conference abstracts, editori-
als, case reports, letters, reviews, or meta-analyses.

Data extraction

Data from included studies were extracted from all
available sources, including tables and figures. For data
presented only graphically, WebPlotDigitizer software
(AutoFEM Technologies, USA) was used to extract
numerical values. Two independent researchers per-
formed data extraction, with discrepancies resolved
through third-party arbitration.

Quality assessment

The methodological quality of included studies was
assessed by two authors, with disagreements resolved
through consensus. Studies were evaluated based on nine
criteria:(1) Blinded outcome assessment; (2) Randomi-
zation of experiments; (3) Sufficient follow-up duration
(= 2 weeks); (4) Compliance with animal welfare regula-
tions; (5) Characterization of stem cell phenotypes; (6)
Identification of SC-EVs (EVs were characterized using
nanoparticle tracking analysis [NTA] for size distribution
and transmission electron microscopy [TEM] for mor-
phological validation, consistent with MISEV2023 guide-
lines); (7) Pre-injection assessment of erectile function;
(8) Sample size calculation; (9) Detection of structural
changes in the corpus cavernosum. Each criterion was
scored as 1 point, and studies were categorized into three
quality tiers: high quality (7-9 points), medium quality
(4—6 points), and low quality (0-3 points).

Statistical analysis

Data were analyzed using Review Manager 5.3 (The
Nordic Cochrane Center). Primary outcomes were
expressed as standardized mean differences (SMDs)
with 95% confidence intervals (Cls), representing dif-
ferences in erectile function and corpus cavernosum
structural changes between treatment and control
groups. Each trial included one control group and one
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or more treatment groups. For studies with multiple
treatment groups, the control group sample size was
divided equally among the treatment groups. If multi-
ple measurements were taken over time, the last meas-
urement was used for analysis.

Subgroup analyses were performed to compare EV
types (MSCs and ADSCs) and disease models (DM or
CNI). A random-effects model was applied to account
for heterogeneity. Results were presented as forest
plots, with studies arranged by publication year. Addi-
tionally, funnel plots were used to assess potential
publication bias.
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Result

Search results and characteristics of included studies

The electronic search identified a total of 232 studies, of
which 20 met our inclusion criteria and were included
in the meta-analysis (Fig. 1). These studies collectively
involved 324 rats. The characteristics of the included
studies are summarized in Table 1.

Characteristics of included studies

A total of 20 studies (324 rats) were included (Table 1).
7 studies used MSC-EVs, 7 studies used ADSC-EVs,
3 studies used BMSC, 2 studies used USC-EVs, 1
study used corpus cavernosum smooth muscle cells-
derived EVs (CCSMC-EVs), 1 study used muscle stem
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—\
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& by automation tools (n = 18)
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|
\ 4
Records screened Records excluded
—>
(n=164) (n=138)
A4
Reports sought for retrieval Reports not retrieved
> (n=26) (n=0)
s
[}
5
& v
Reports assessed for eligibility
(n=26) »
Reports excluded:
Reason: No complete data (n
= 6)
A4
3
= Studies included in review
S (n=20)
c

Fig. 1 Flowchart of study selection
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Table 1 Characteristics of the studies included in the meta-analysis
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Year Firstauthor Species Age(weeks) Samplesize Cell type Injection dose  Disease type Follow-up  Ref
(weeks)
2018  Ouyang X SD rats 10 16 MSC 100ug CNI 4 [32]
2019 LiuY SD rats 12 12 MSC 100ug Al 4 [33]
2020  SongJ SD rats 8 24 BMSC, ADSC and CCSMC ~ 100ug DM 4 [30]
2023 LiK SD rats 96 and 10 16 MSC 100ug Aged 4 [34]
2018  Zhul SDrats 10 16 ADSC 100ug DM 4 [35]
2018 LiM SD rats 12 36 BMSC and ADSC 100ug CNI 3 [31]
2020  WangJ SD rats 8 12 ADSC 200ug DM 2 [36]
2017 ChenF SD rats / 16 ADSC / DM 4 [37]
2021 Liang L SD rats / 12 ADSC 400ug CIH 8 [38]
2020 YangQ SD rats / 8 usc 100ug PD 4 [39]
2019  Ouyang B SDrats / 16 usc 100ug DM 4 [40]
2020  GuoN SDrats 12 8 pC 5ug CNI 2 [41]
2023 OckJ SD rats 8 8 MCP 5ug DM 2 [42]
2023  ChenZ SD rats 8 10 MSC 100ug CNI 4 [43]
2019  LiuQ SDrats 96 30 BMSC 1x106 Aged 2 [44]
2021 KimJ SDrats 8 12 MSC 1x106 CNI 4 [45]
2024 ZhangJ SD rats 8 20 MSC 100ug DM 4 [46]
2021 ZouZ SD rats / 20 MDSC 1x106 CNI 4 [47]
2020 HuoW SD rats 8 20 MSC 100ug DM 4 [48]
2023  LiuS SD rats 12 12 ADSC 100ug CNI 4 [49]

Sprague-Dawley rats

cells-derived EVs (MDSC-EVs), 1 study used pericyte-
derived EVs (PC-EVs), and 1 study used mouse corpus
cavernous pericyte-derived EVs (MCP-EVs). 8 studies
constructed rat diabetic model, 7 studies constructed a
rat CNI model, 2 studies constructed a rat aged model,
1 study constructed a rat Aterial Injury model, 1 study
constructed a rat chronic intermittent hypoxia (CIH)
model, and 1 study constructed a rat Peyronie’s disease
(PD) model. In the different studies, the follow-up time
after injection ranged from 2 to 8 weeks. In all studies,
erectile function was assessed by electrical stimulation
of the cavernous nerve after anesthesia, and the results
were presented as ICP/MAP. In addition to erectile
function, 20 studies measured histologic changes and
molecular changes, including smooth muscle cell con-
tent, nNOS, eNOS, a-SMA, and the ratio of smooth
muscle to collagen in the corpus cavernosum.

Quality of included studies

The quality of the included studies was at a high level
as shown by the quality assessment results. Thirteen
of the studies were of high quality and seven were of
moderate quality (Table 2).

Effects of SC-EVs on structural and molecular changes

in rat corpus cavernosum.

A pooled analysis of all included studies showed that
SC-EVs therapy significantly improved ED compared to
controls (SMD 4.19, 95% CI =3.31 to 5.08, P < 0.00001, 12
=77%: Fig. 2a).

In order to elucidate the intrinsic mechanisms of stem
cell therapy, we also analyzed the changes in the structure
of the corpus cavernosum between the two groups. The
expression of both nNOS and eNOS was higher in the
stem cell group than in the control group(nNOS: SMD
4.18, 95% CI =2.63 to 5.73, P < 0.00001, 12 =86%; Fig. 2b;
eNOS: SMD 2.83, 95% CI =1.57 to 4.10, P< 0.0001, 12
=79%; Fig. 2c). In addition, the smooth muscle (labeled
with anti-a-SMA antibody) content was much higher in
both stem cell groups than in the control group (SMD
5.33,95% CI =4.12 to 6.54, P < 0.00001, 12 =74%: Fig. 3d).
In addition, we performed a meta-analysis of the Smooth
muscle/Collagen results, which showed an increased
smooth muscle-to-collagen ratio in the stem cell-treated
group compared with the control group SMD 3.40, 95%
CI =2.57 to 4.23, P< 0.00001, 12 =74%: Fig. 3e). Despite
some heterogeneity among studies (= 74-86%), the
results remained stable after excluding individual studies
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a

EVs Control Std. Mean Difference Std. Mean Difference
Study or Subgroup _Mean _SD_Total Mean _SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
LK 2023 0.73 002 & 033002 8§ 11% 1891(11.30,26.52)
Guo N 2020 075 004 4 041 001 4  13% 10.14(3.03,17.25)
Wang J 2020 058 003 6 025002 6 L7% 11.95(6.01,17.89)
Ouyang X 2018 06 0.04 8 017 001  § 18 13.94(8.29,19.59) —
Zhu L 2018 081 003 8 045 003 8 24% 11.35(6.71,15.98) —
Song J1 2020 074 0.04 6 035006 6 32%  7.06(3.43,10.69) —
Chen Z 2023 081 0.06 S 048 0.04 5 33%  585(2.33,9.36) —
Yang Q 2020 077 0.14 4 025 006 4 3.6%  4.20(1.00,7.40) ——
Liu'Y 2019 063 008 6 034 003 6 45%  4.43(1.99,6.87) -
Liang L 2021 035 004 6 023002 6 5.0%  3.50(1.45,5.55) -
OckJ 2023 074 0.08 4 058 0.05 4 S5.0%  209(0.09,4.08) M
Song J 2020 051 002 6 035006 6 S1%  3.30(1.33,5.27) -
Chen F 2017 059 006 8 035 005 8 S52%  4.11(2.20,6.02) -
LiuQ 2019 061 006 15 0.3 004 15  53%  592(4.16,7.67) -
Huo W 2020 056 0.06 10 033 0.04 10  S54%  4.32(2.59,6.05) -
sSong J2 2020 051 006 6 035 006 6 S5%  246(0.81,4.11) ~
Zou Z 2021 054 0.04 10 041 0.02 10 55%  3.94(2.32,5.56) -~
Ouyang 8 2019 074 008 8 042 0.11 8 S5.6%  3.15(1.55 4.74) -~
Liu S 2023 045 003 6 039 002 6 S56%  217(0.62,3.72) ~
Kim ) 2021 031 005 6 022 005 6 S.8% 1.66 (0.27, 3.05) I~
Zhang J 2024 058 0.04 10 044 005 10  S.9%  2.96(1.61,4.31) -~
LiM 2018 065 0.06 12 049 0.09 12 62%  2.02(1.00,3.04) -
LiM12018 0.64 0.06 12 049 0.09 12 6.2% 1.89(0.90, 2.89) ~
Total (95% CI) 174 174 1000%  4.19(3.31,5.08) +
Heterogeneity: Tau® = 3.00; Chi® = 94.79, df = 22 (P < 0.00001); I* = 77% I o %
Test for overall effect: Z = 9.30 (P < 0.00001)
EVs Control Std. Mean Difference Std. Mean Difference
Study or Subgroup _Mean __ SD_Total Mean SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
Guo N 2020 0.79  0.04 4 0.5 0.04 4 2.1% 13.91 (4.24, 23.58)
LiK 2023 08 007 8 039007 8 83%  554(3.12,7.96) —
LiM12018 062 012 12 022 008 12 9.6%  3.79(237.5.21) ~
LiM 2018 057 009 12 022 008 12 9.6%  3.97(2.50,5.43] -
Liu S 2023 045 004 6 017 003 6 6.5%  7.31(3.57,11.05) —
Liu Y 2019 0.74 004 6 054 006 6 88%  3.62(1525.72) -
OckJ 2023 0.697 0.064 4 02004 4 43%  810(236,13.84) —_—
Ouyang 8 2019 067 013 8 042 008 & 9.7%  2.19(0.88,3.50) -
Ouyang X 2018 033 003 8 018 003 & 87%  4.73(2.60.6.85] -
Song J1 2020 041 002 6 025002 6 6.4%  7.38(3.61,11.16) —_—
song J 2020 022 003 6 025002 6 9.8% -1.09(-2.34,0.16] 1
Song J2 2020 027 003 6 025002 6 9.8%  0.72(-0.46,1.91) t-
Wang J 2020 076 007 6 032 003 6 6.4%  7.54(3.69,11.39) —
Total (95% CI) 92 92 100.0%  4.18(263,5.73) *
Heterogeneity: Tau? = 5.99 Chi’ = 87.19, df = 12 (P < 0.00001); I = 86% = ma— R
Test for overall effect: Z = $.28 (P < 0.00001)
C
EVs Control Std. Mean Difference Std. Mean Difference
Study or Subgroup _Mean _SD_Total Mean SD Total Weight IV, Random, 95% CI 1V, Random, 95% C!
LK 2023 08 007 8§ 039 007 § 108%  5.54(3.12,7.96) —
Liu Y 2019 054 005 6 036 0.04 6 119%  3.67(1.55,5.79) -
Ouyang 8 2019 067 013 8 042 0.08 8 149%  2.19(0.88,3.50) -
song J1 2020 06 003 6 025002 6 3.3% 12.67(6.38, 18.96) _—
Song ) 2020 033 003 6 025002 6 13.0%  290(1.09,4.71) -
Song J2 2020 031 003 6 025 002 6 140%  217(0.62 3.72) -
Zhang J 2024 025 006 10 013 0.06 10 15.7% 1.92 (0.82, 3.01) -
Zou Z 2021 021 006 10 017 01 10 164%  0.46(-0.43, 1.36) r
Total (95% CN) 60 60 1000%  2.83(1.57,4.10) *
Heterogeneity: Tau? = 2.33; Chi? = 34.08, df = 7 (P < 0.0001); I* = 79% = TR— %
Test for overall effect: Z = 4.40 (P < 0.0001)
EVs Control Std. Mean Difference Std. Mean Difference
Study or Subgroup _Mean _SD_Total Mean _SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
Chen F 2017 082 003 8 032 004 8 3.4% 13.37(7.95,18.80)
Chen Z 2023 062 005 S 015005 5 3.9%  8.49(3.55, 13.43)
Guo N 2020 079 0.04 4 015 004 4  14%  13.91(4.24,23.58)
LiK 2023 179 007 8 095 027 8§ 86%  4.03(2.14,5.91)
LiM12018 09 009 12 043 006 12 8.4%  5.93(3.93,7.94) -
LiM 2018 0.82 0.11 12 043 006 12 92%  4.25(2.71,5.79) -~
Liv Q2019 1.62 0.08 15 1.01 0.01 15 6.7% 10.41 (7.50, 13.33) -
Liu'Y 2019 064 005 6 037 007 6 7.8%  4.10(1.80, 6.40) -
OckJ 2023 07 004 4 02004 4 21% 10.87(3.27,1847)
Ouyang X 2018 116 002 8 078 0.08 8 89%  3.52(1.81,5.24) -
Song J1 2020 039 003 6 012 002 6 3.9%  9.78(4.87,14.68) —
Song ) 2020 018 002 6 012 002 6 88  2.77(1.014.53) -
Song J2 2020 0.19 0.03 6 0.2 0.02 6 9.0% 2.53 (0.86, 4.21) -
Zhang ) 2024 039 001 10 032 0.02 10 89%  4.24(2.53,5.95) -~
Zou Z 2021 252 054 10 103 009 10 9.2%  3.69(2.14,5.23) -
Total (95% C) 120 120 1000%  5.33 (4.12,6.54) *
Heterogeneity: Tau? = 3.54; Chi® = 52.98, df = 14 (P < 0.00001); I* = 74% I TR T T %
Test for overall effect: Z = 8.61 (P < 0.00001)
c
EVs Control Std. Mean Difference Std. Mean Difference
Study or Subgroup__Mean __SD_Total Mean _ SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
Chen F 2017 0094 0.006 8 0043 001 8 50%  585(3.32 838 —
Chen Z 2023 0703 0.155 5 0.499 0.064 5  7.0% 1,59 (0.06, 3.12) M
Huo W 2020 0087 0.012 10 0051 0.009 10  7.2%  3.25(183,4.68) -
Kim J 2021 0.142 0.021 6 0137 0012 6 7.8%  0.27(-0.87,141) r
Liang L 2021 0135 0017 6 0.042 0.006 6 3.5%  6.73(3.26,10.21) —_—
LiK 2023 0253 0.019 8 0082 0.012 8 2.8% 10.17(6.00, 14.35) —_—
0.065 0.009 12 0.039 0.006 12  7.5%  3.28(1.99.4.58) ~
0072 0.008 12 0039 0.006 12 6.8%  4.51(290,6.11) -~
Liu Q 2019 0109 0.034 15 0031 0.027 15  8.1%  2.47(149,3.45) -
Liu$ 2023 0.095 0.007 6 0.073 0.009 6 67%  252(0.85,4.19) -~
Liu ¥ 2019 0063 0.008 6 0028 0.007 6 S5.1%  4.42(198,6.86) -
Ouyang 8 2019 0.105 0.025 8 0051 0.014 8 7.3%  252(112.3.92) ~
Ouyang X 2018 0.113 0.013 8 0059 001 8 S57%  4.81(265.6.97) -
Yang Q 2020 0193 003 4 0131 0022 4 61%  2.05(0.07,4.03) —
Zhang J 2024 0.165 0.015 10 0.109 0.022 10  7.5%  2.85(L53,4.17) -
Zhu12018 0.003 0.001 8 0003 0.001 8 S.7%  4.73(2.60,6.85) -
Total (95% CI) 132 132 1000% 340 (257,4.23) )
Heterogeneity: Tau® = 1.97; Chi? = 58.44, df = 15 (P < 0.00001); I = 74% = T PR

Test for overall effect: Z = 8.00 (P < 0.00001)
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Fig. 2 a Effect of the SC-EVs on ICP/MAP in ED. b Effect of the SC-EVs on nNOS in ED. ¢ Effect of the SC-EVs on eNOS in ED. d Effect of the SC-EVs
on a-SMA in ED. e Effect of the SC-EVs on Smooth muscle/Collagen in ED
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a

EVs Control Std. Mean Difference
Study or Subgroup _Mean _SD_Total Mean SD Total Weight IV, Random, 95% CI

Std. Mean

Difference

1V, Random, 95% CI

1.22.1 MSC

LiK 2023 0.73 0.02 8 033 0.02 8  2.0% 18.91(11.30, 26.52)
Ouyang X 2018 06 0.04 8 017 0.01 8 3.1%  13.94(8.29, 19.59)
Chen Z 2023 0.81 0.06 S 0.48 0.04 S 5.4% 5.85 (2.33, 9.36)
Liu Y 2019 0.63 0.08 6 034 0.03 6 7.1% 4.43 (1.99, 6.87)
Song J 2020 0.51 0.02 6 035 0.06 6 7.8% 3.30(1.33,5.27)
Huo W 2020 0.56 0.06 10 0.33 0.04 10 8.2% 4.32 (2.59, 6.05)
Kim J 2021 0.31 0.05 6 022 0.05 6  8.8% 1.66 (0.27, 3.05)
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Fig. 3 a Effects of MSC-EVs and ADSC-EVs on ICP/MAP in the ED. b Effects of MSC-EVs and ADSC-EVs on nNOS in the ED. ¢ Effects of MSC-EVs
and ADSC-EVs on a-SMA in the ED. d Effects of MSC-EVs and ADSC-EVs on Smooth muscle/Collagen in the ED
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one by one, as confirmed by sensitivity analysis, which
fully validated the reliability of our findings. Together,
these findings confirm the restorative effect of stem cell
therapy on ED at the molecular level and at the tissue
structure level.

The impact of different subgroups on the structural

and molecular changes in the rat corpus cavernosum.

The influence of different EVs on the structural and molecular
changes in the corpus cavernosum of ED rats.

Subgroup analysis results indicate that for ICP/MAP,
there is no significant difference between MSC-EVs and
ADSC-EVs in improving erectile function (P =0.39,
Fig. 3a). For nNOS, there is no significant difference
between MSC-EVs and ADSC-EVs in improving erec-
tile function (P =0.49, Fig. 3b). For a-SMA, there is no
significant difference between MSC-EVs and ADSC-EVs
in improving erectile function (P =0.24, Fig. 3c). For
Smooth muscle/Collagen, there is no significant differ-
ence between MSC-EVs and ADSC-EVs in improving
erectile function (P= 0.25, Fig. 3d).

The influence of SC-EVs on the structural and molecular
changes in the corpus cavernosum of ED rats caused

by different diseases.

Subgroup analysis results indicate that for ICP/MAP,
there is no significant difference in the improvement of
erectile function by SC-EVs between DM and CNI (P=
0.74, Fig. 4a). For nNOS, there is no significant differ-
ence in the improvement of erectile function by SC-EVs
between DM and CNI (P =0.46, Fig. 4b). For a-SMA,
there is no significant difference in the improvement
of erectile function by SC-EVs between DM and CNI
(P =0.34, Fig. 4c). For Smooth muscle/Collagen, there
is no significant difference in the improvement of erec-
tile function by SC-EVs between DM and CNI (P =0.28,
Fig. 4d).

Publication bias

The funnel plot (Fig S1) exhibited noticeable asymme-
try, suggesting the potential presence of publication bias.
Disappointingly, the Egger’s test also indicated a certain
degree of publication bias (all p< 0.05). Therefore, we
employed the trim-and-fill method to examine the asym-
metry of the funnel plot by hypothesizing unpublished
studies. The recalculated results demonstrated that SC-
EVs play a significant role in ED, with a post-trim-and-fill
P-value <0.05, indicating statistical significance. Further-
more, the combined results before and after trimming
and filling showed P-values <0.05, confirming the stabil-
ity of the findings (Fig S2).
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Discussion

ED is a common male health issue associated with vari-
ous factors, including age, chronic diseases, and psycho-
logical conditions. It not only affects the quality of sexual
life but may also have negative impacts on mental health,
social relationships, and overall quality of life.

Stem cells are undifferentiated cells with self-renewal
capabilities and the potential to differentiate into vari-
ous cell types under specific conditions. They hold broad
application potential in tissue repair, regenerative medi-
cine, and clinical therapy. SC-EVs are small membrane
vesicles secreted by stem cells, containing a variety of
biomolecules such as proteins, lipids, and RNAs. These
EVs play important roles in intercellular communication,
immune regulation, and cellular repair. Figure 5.

SC-EVs (including MSC-EVs, ADSC-EVs, USC-EVs,
PC-EVs, and MCP-EVs) exert therapeutic effects on ED
through their bioactive cargo of miRNAs and proteins.
Regarding vascular endothelium, MSC-EVs improve
endothelial function by delivering miR-21-5p and miR-
296-5p [48], with the latter enhancing eNOS/NO sign-
aling via PTEN-PI3 K-Akt regulation [34]. In smooth
muscle modulation, miR-301a-3p and circPIP5 K1 C in
ADSC-EVs suppress fibrosis by targeting TGF-/Smad
and glycolytic pathways [38], while MSC-EVs upregu-
late Bcl-2 to inhibit apoptosis [37]. In nerve regenera-
tion, ESC-NVs and PC-NVs promote axonal growth by
delivering neurotrophic factors such as NGF and NT-3,
while activating the P13 K-Akt and HGF/c-Met pathways,
as well as the GDNF pathway, which collectively stimu-
late neuronal sprouting and Schwann cell migration [41].
Additionally, SC-EVs contribute to functional recov-
ery by mitigating oxidative stress through antioxidant
enzymes (SOD/CAT) and miR-337-3p-mediated NOX4
inhibition, thereby restoring erectile function via multi-
ple mechanisms [34].

Furthermore, specific small molecules in SC-EVs dem-
onstrate therapeutic efficacy by regulating key pathways.
In endothelial repair, miRNAs including the miR-10
family and let-7 enhance NO bioavailability [40], while
corin and eNOS proteins improve vascular function [36].
Fibrosis is counteracted by USC-Exos through MMP/
TIMP balance restoration and CCSMC-Exos via NO-
c¢GMP signaling [39], shows a trend of reduced collagen
deposition. These findings highlight the ability of SC-EVs
to simultaneously target endothelial dysfunction, fibrosis,
and nerve damage, addressing the multifactorial nature
of ED.

Notably, SC-EVs exhibit distinct therapeutic effects
depending on ED etiology. In diabetic ED, MSC-EVs
and ADSC-EVs primarily improve endothelial dysfunc-
tion and exert antifibrotic effects, restoring smooth mus-
cle/collagen ratios and NO signaling, with CCSMC-EVs
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Fig. 4 a Effect of SC-EVs on ICP/MAP in DM and CNI-induced EDs. b Effect of SC-EVs on nNOS in DM and CNI-induced EDs. ¢ Effect of SC-EVs
on a-SMA in DM and CNI-induced EDs. d Effect of SC-EVs on Smooth muscle/Collagen in DM and CNI-induced EDs
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Fig. 5 SC-EVs ameliorate ED through multi-target mechanisms. In endothelial repair, MSC-EVs enhance NO production by upregulating eNOS/
nNOS expression and activating the PTEN-PI3 K-AKT pathway via miR-296-5p. Concurrently, USC-EVs promote CD31 +/eNOS +endothelial
proliferation and significantly improve the ICP/MAP ratio through miR-21-5p and the let-7 family. For smooth muscle modulation, MSC-EVs increase
a-SMA expression and inhibit caspase-3-dependent apoptosis, while ADSC-EVs suppress fibrosis and glycolysis via the miR-301a-3p-mediated
targeting of PTEN-TLR4 and the circPIP5 K1 C-miR-153-3p-SMURF1 axis, respectively. In antifibrotic processes, USC-EVs reduce collagen deposition
by regulating the MMP/TIMP balance, whereas ADSC-EVs improve endothelial function through corin gene activity. Neural regeneration is primarily
driven by ESC/PC-EVs, which facilitate neuronal sprouting via neurotrophin-3 and enhance Schwann cell migration through Akt/eNOS signaling.
Additionally, MSC-EVs alleviate oxidative stress by suppressing NOX4 via miR-337-3p, and ADSC-EVs inhibit apoptosis by elevating Bcl-2 levels

and reducing caspase-3 activity

demonstrating superior cellular uptake and prolonged
efficacy. In contrast, neurogenic ED benefits more from
ESC-EVs and MSC-EVs, which promote neural repair
through neurotrophic factor delivery and vascular-neu-
ral crosstalk. These differential effects underscore the
importance of selecting EV subtypes based on underlying
pathology—employing antifibrotic EVs for diabetic ED
and proneurogenic EVs for nerve injury-related ED—to
optimize therapeutic outcomes. This tailored approach
highlights the potential of SC-EVs as precision medicine
for ED subtypes.

In ED research, stem cells and SC-EVs are considered
to play significant roles. Stem cells can directly repair
tissue damage related to ED by differentiating into vas-
cular endothelial cells, smooth muscle cells, and others.
SC-EVs, on the other hand, indirectly improve ED symp-
toms by carrying biomolecules that facilitate cell repair,
anti-inflammatory responses, and angiogenesis. Unlike
synthetic nanoparticles, SC-EVs inherently possess tar-
geting moieties (e.g., tetraspanins) that enhance homing
to ischemic or inflamed cavernous tissues, minimizing
off-target effects—a critical advantage in nanomedicine

design [50]. In addition, due to their low immunogenic-
ity, ease of acquisition, and tunable biological functions,
SC-EVs demonstrate promising clinical applications, par-
ticularly in tissue repair and disease treatment. This stem
cell- and EV-based therapeutic strategy provides new
insights for the clinical treatment of ED, especially for
patients who respond poorly to or experience side effects
from traditional treatments.

This study evaluated the therapeutic effects of SC-EVs
on rat ED through meta-analysis. Our findings were
highly consistent with previous findings [51], which
showed that SC-EVs significantly improved erectile func-
tion in rats, demonstrating their potential in ED treat-
ment. This further supports the importance of SC-EVs
in the treatment of ED. This finding not only provides
experimental evidence for stem cell-based ED therapy
but also offers theoretical support for future clinical
applications.

Mechanistically, SC-EVs improve ED through multi-
ple mechanisms, including specific cellular and tissue
responses (e.g., tissue regeneration, anti-inflammation,
anti-apoptosis, immune modulation, and antioxidant
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stress) and specific molecular signaling pathways (e.g.,
NO-cGMP, miR-10a-3p-PKIA-RhoA-ROCK, and Akt
pathways)[30, 41, 43]. These mechanisms ultimately
promote vascular endothelial cell repair, improve neu-
ral function, and inhibit inflammatory responses. For
example, EVs enhance erectile responses via smooth
muscle cell proliferation and repair, improving penile
vascular function. Additionally, EVs may carry anti-
inflammatory molecules to suppress local inflamma-
tion, further facilitating tissue repair and regeneration.

Moreover, compared to traditional single-target
drugs (e.g., sildenafil), SC-EVs demonstrate signifi-
cant advantages in vascular and neural repair through
multi-target mechanisms. EVs carry bioactive mol-
ecules (e.g., miRNAs, growth factors) that simulta-
neously promote angiogenesis, endothelial repair,
anti-inflammatory responses, neural regeneration,
and oxidative stress reduction, thereby fundamen-
tally restoring vascular and neural function. In con-
trast, drugs like sildenafil improve blood flow through
a single mechanism (e.g., PDE5 inhibition) without
repairing damaged tissues. The multi-target effects
of EVs make them particularly suitable for ED caused
by complex etiologies (e.g., diabetes mellitus, neural
injury, vascular diseases), offering not only symptom
relief but also long-term efficacy through tissue repair
and regeneration. Furthermore, as natural intercellu-
lar communication carriers, EVs exhibit low immuno-
genicity and high biocompatibility, reducing the risk
of side effects. Future research should further clarify
the key mechanisms of EVs, optimize delivery proto-
cols, and validate their long-term efficacy and safety
through large-scale clinical trials, providing new
breakthroughs in ED treatment.

Limitations of the study

Although this study demonstrates the positive thera-
peutic effects of SC-EVs on rat ED, several limitations
remain. First, most included studies were small-scale,
short-term experiments lacking long-term follow-up
data, necessitating further validation of the long-term
efficacy and safety of EVs. Second, the specific mecha-
nisms of EVs in ED treatment are not fully understood,
and many details require further exploration through
basic research. Finally, despite the therapeutic potential
of EVs, While SC-EVs show promise, nanomedicine-
specific challenges include batch-to-batch variability
in EVs size/composition and the lack of standardized
protocols for large-scale EV production under Good
Manufacturing Practice (GMP) conditions. Future work
should integrate microfluidic-based EV isolation and
lyophilization techniques to enhance clinical feasibility.
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Clinical application prospects

SC-EVs represent a novel therapeutic approach with
broad application prospects. Future clinical stud-
ies should further explore optimal delivery protocols,
including administration routes, frequency, and dos-
age. Additionally, larger-scale clinical trials are needed
to evaluate the efficacy and safety of EVs in ED treat-
ment. With a deeper understanding of EV mechanisms
and continuous technological advancements, SC-EVs
are expected to become a new generation of biological
therapies for ED.

Conclusion

This study underscores the potential of SC-EVs as a
next-generation nanomedicine for ED. Their natural
nanoarchitecture enables multifunctional therapeutic
effects, bridging the gap between cellular therapies and
synthetic nanoparticle systems. Future research should
focus on engineering EVs for enhanced targeting (e.g.,
surface modification with ligands) and combinato-
rial cargo loading (e.g., miRNAs +small molecules),
advancing personalized nanomedicine for sexual
health.

In summary, the results of this study indicate that SC-
EVs significantly improve ED in rats, demonstrating sub-
stantial clinical potential. Future research should further
investigate their mechanisms, optimize treatment pro-
tocols, and conduct large-scale clinical trials to validate
their feasibility and efficacy in clinical therapy.
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