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The role of spatial attention in crowding and feature binding
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Crowding refers to the failure to identify a peripheral
object due to nearby objects (flankers). A hallmark of
crowding is inner–outer asymmetry; that is, the outer
flanker (more peripheral) produces stronger interference
than the inner one. Here, by manipulating attention, we
tested the predictions of two competing accounts: the
attentional account, which predicts a positive
attentional effect on the inner–outer asymmetry (i.e.,
attention to the outer flanker will increase asymmetry)
and the receptive field size account, which predicts a
negative attentional effect. In Experiment 1, observers
estimated a Gabor target orientation. A peripheral
pre-cue drew attention to one of three locations: target,
inner flanker, or outer flanker. Probabilistic mixture
modeling demonstrated asymmetry by showing that
observers often misreported the outer-flanker
orientation as the target. Interestingly, the outer cue led
to a higher misreport rate of the outer flanker, and the
inner cue led to a lower misreport rate of the outer
flanker. Experiment 2 tested the effect of crowding and
attention on incoherent object reports (i.e., binding
errors, reporting the tilt of one presented item with the
color of another item). In each trial, observers estimated
both the tilt and color of the target. Attention merely
increased coherent target reports, but not coherent
flanker reports. The results suggest that the locus of
spatial attention plays an essential role in crowding, as
well as inner–outer asymmetry, and demonstrate that
crowding and feature binding are closely related.
However, our findings are inconsistent with the view
that covert attention automatically binds features
together.

Introduction

In vision, the spacing of objects can fundamentally
limit object recognition. Objects that are too close
together can become indistinguishable (cluttered),
a phenomenon known as “crowding” (Pelli, 2008;
Whitney & Levi, 2011). Crowding hinders the

identification of various basic stimuli, such as letters
(Bouma, 1970) and faces (Strasburger, Rentschler, &
Jüttner, 2011), and impairs essential perceptual tasks
such as reading (Whitney & Levi, 2011) and face
recognition (Strasburger et al., 2011). Crowding plays
a critical role in deficits such as macular degeneration
(Wallace, Chung, & Tjan, 2017), amblyopia (Song, Levi,
& Pelli, 2014), and dyslexia (Gori & Facoetti, 2015).
Recently, it has been shown that crowding errors directly
reflect binding errors (i.e., reporting a feature of one
item as belonging to another item) (Yashar, Wu, Chen,
& Carrasco, 2019). Thus, investigating crowding and
the means to reduce its disruptive effect has important
implications for understanding object recognition and
has the potential for clinical contribution (Levi, 2008).

The critical spacing of crowding—that is, the
minimal space between the target and the flankers that
permits performance similar to when no flankers are
presented—scales with target eccentricity (Bouma,
1970; Pelli, Palomares, &Majaj, 2004). Although spatial
attention (Yeshurun & Rashal, 2010) and training
(perceptual learning) (Chung, 2007; Hussain, Webb,
Astle, & McGraw, 2012; Yashar, Chen, & Carrasco,
2015; Zhu, Fan, & Fang, 2016) can reduce the critical
spacing, their effect on the interference is limited, and
in a typical crowded display the critical spacing is often
0.3 to 0.5 of eccentricity (Levi, 2008; Pelli et al., 2004).

A hallmark of crowding is inner–outer asymmetry;
that is, in a radial display, an outer flanker (more
peripheral) produces stronger interference than an inner
one (closer to the fovea) (Banks, Bachrach, & Larson,
1977; Bouma, 1970; Chaney, Fischer, & Whitney, 2014;
Dayan & Solomon, 2010; Levi, 2008; Petrov, Popple, &
McKee, 2007; Petrov & Meleshkevich, 2011a; Petrov &
Meleshkevich, 2011b; Shechter & Yashar, 2021; but see
Strasburger, 2020; Strasburger & Malania, 2013).

Proposed models for explaining inner–outer
asymmetry include cortical magnification, receptive
field size, and spatial attention. According to the
cortical magnification view, crowding is due to smaller
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critical distances in the periphery (Motter & Simoni,
2007; Pelli, 2008). Thus, inner–outer asymmetry
reflects a smaller cortical distance between the outer
flanker and the target compared with that between
the inner flanker and the target. However, this view
was challenged by the finding that inner–outer
asymmetry is related to the reported item rather than
the display. Namely, within the same display (i.e.,
the same cortical distance), crowding interference
is substantially reduced when observers report the
outer item rather than the central one (Shechter &
Yashar, 2021). Moreover, the cortical magnification
factor in V1 and other retinotopic areas is not large
enough to explain the strong inner–outer asymmetry
(Petrov et al., 2007).

Receptive field (RF) size accounts of asymmetry
rely on the fact that RF size increases at the visual
periphery (Chaney et al., 2014; Dayan & Solomon,
2010). For example, according to an optimal Bayesian
model, the larger RF size of the outer flankers increases
the number of RFs responding to the outer flanker
compared to the inner one and thereby biases the
Bayesian selection toward the outer flanker (Dayan &
Solomon, 2010).

According to the attentional selection view, attention
is biased outward, leading to stronger interference of
the outer flanker (Petrov & Meleshkevich, 2011b).
Support for this view comes from findings showing
that asymmetry is reduced when attention is biased
inward, either by a foveal task or by blocking stimulus
eccentricity (Petrov & Meleshkevich, 2011a). However,
these manipulations involve other processes besides
attention, such as task demand, stimulus uncertainty,
and difficulty. Moreover, in this study, as with most
demonstrations of asymmetry, the target was flanked
by a single flanker and such a crowded display may bias
attention. So, it is still unclear whether and how the
locus of covert spatial attention affects the inner–outer
asymmetry in a typical crowded display where both
flankers are presented simultaneously. In the present
study, we address this issue by manipulating covert
attention.

Researchers manipulate covert spatial attention by
presenting a peripheral cue that appears at the target
location (valid), a non-target location (invalid), or the
fixation location (neutral). The effect of attention is
assessed by comparing valid and neutral trials, and the
cost of inattention is measured by comparing neutral
and invalid trials. Behavioral studies showed that
attention enhances spatial resolution (e.g., Yeshurun
& Carrasco, 1998). Neurophysiological investigations
suggest that this enhancement in spatial resolution can
be linked to two possible causes: either attention shrinks
the receptive field size of cells over the attended location
or it shifts the receptive field profile of cells toward the
attended location (for a review, see Anton-Erxleben &
Carrasco, 2013).

Despite the compelling evidence for an attentional
effect on spatial resolution, investigations of attentional
manipulation in crowding have yielded mixed results.
Some studies have shown that attention decreases
critical spacing (i.e., the minimum spacing required for
crowding) (Grubb, Behrmann, Egan, Minshew, Heeger,
& Carrasco, 2013; Kewan-Khalayly, Migó, & Yashar,
2022; Yeshurun & Rashal, 2010); however, other studies
have failed to demonstrate an effect on crowding
(Scolari, Kohnen, Barton, & Awh, 2007; Strasburger,
2005). One possible reason for this inconsistency is that
the locus of attention with respect to the target could
have varied across these studies and therefore caused
the attentional effect on crowding. Indeed, in Scolari
et al. (2007) the cue appeared at the location of the
target, whereas in Yeshurun and Rashal (2010) the cue
appeared closer to the fovea (inner flanker) than the
target.

The exact locus of attention also has implications
for investigating the predictions of the two competing
asymmetry models. The attentional account predicts
a direct positive effect between attention and
asymmetry—namely, directing covert attention toward
the outer flanker will increase asymmetry, whereas
directing covert attention toward the inner flanker will
decrease asymmetry. By contrast, the RF size view
predicts a reduction of asymmetry when the locus
of attention is at the outer-flanker location due to a
change in either the size or the profile of the RFs over
the attended location.

Finally, the effect of locus of attention may
vary across the different types of crowding errors.
Investigations of the pattern of crowding errors have
revealed that crowding often leads to the misreporting
of a flanker as the target (Ester, Klee, & Awh, 2014;
Freeman, Chakravarthi, & Pelli, 2012; Harrison & Bex,
2015; Jimenez, Kimchi, & Yashar, 2022; Strasburger
& Malania, 2013; Yashar et al., 2019). However, the
effect of crowding on the perception of orientation,
color, spatial frequency (SF), and motion is distinctive
(Greenwood & Parsons, 2020; Yashar et al., 2019). For
example, with orientation observers often misreport
a flanker as the target, whereas with SF they average
flankers and target values together (Yashar et al.,
2019). Importantly, crowding of two features, such as
orientation and color, leads to misbinding errors, such
as reporting an orientation of one item with the color
of another (Yashar et al., 2019). The binding process
is particularly relevant for the issue of attention, as
spatial attention is considered to play a critical role in
feature binding. Attention is thought to act as a glue
that binds features together (Treisman & Gelade, 1980;
Treisman & Schmidt, 1982), perhaps by increasing
spatial resolution through the reduction of RF size
(Reynolds & Desimone, 1999).Thus, understanding
the role of attention in crowding may shed light on its
role in the feature binding process. However, whether
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and how the locus of attention affects misreport and
binding error in crowding is still unclear.

In the present study, we tested whether and how
the locus of covert spatial attention affects feature
binding in crowded displays and how it interacts with
inner–outer asymmetry. In two experiments, observers
estimated either the orientation of a grating (Gabor)
stimulus (Experiment 1) or the tilt and color of a
T-shaped object (Experiment 2) by reporting each
feature in a continuous space. The target appeared on
the horizontal meridian at 7° eccentricity and was either
alone (uncrowded) or along with two flankers, one on
each side of the target on the horizontal meridian (a
radial crowding). We used a center-to-center distance
between the target and the flankers—that is, within the
crowding window (I, e, m < 0.5 of eccentricity). To
manipulate attention, we presented a pre-cue (a circle)
at one of four possible locations: fixation (neutral
cue), the inner-flanker location (inner cue), the target
location (target cue), and the outer-flanker location
(outer cue). To assess the pattern of crowding and
binding errors, we compared the fitting of probabilistic
mixture modeling to the error distributions. The results
reveal that binding errors in a radial crowded display
reflect the inner–outer asymmetry. Analysis of cue
positions revealed that the effect of covert attention is
contingent on the locus of attention within the crowded
stimulus and that covert attention is involved in the
inner–outer asymmetry. The methods used and the data
analyzed in the present study are available in the Open
Science Framework repository (https://osf.io/ck4b2/
?view_only=ce9737fce46046238b273fd4d66c71ad).

Experiment 1

Method

Observers
Eighteen students (6 males; age range 22–35 years,

M = 26.66, SD = 3.49) from the University of Haifa
participated in this experiment for either course credit
or payment of 50 shekels (around $14) per hour.
We estimated that a sample size of 16 observers was
required to detect a medium to large effect with 80%
power, given a 0.05 significance criterion based on a
priori power analysis using effect sizes from previous
studies (Shechter & Yashar, 2021; Yashar et al., 2019).
We collected data from two more observers because of
possible dropouts or equipment failure. All observers
were naïve to the research question and reported
normal or corrected-to-normal vision, with no reported
attention deficits. We obtained written informed
consent from all observers before the experiment. The
University Committee on Activities Involving Human

Subjects at Haifa University approved all experimental
procedures.

Apparatus
We used MATLAB (MathWorks, Inc., Natick, MA)

with the Psychophysics Toolbox extensions (Kleiner,
Brainard, Pelli, Ingling, Murray, & Broussard, 2007) to
generate the stimuli and task. We ran the experiment
on an iMac (Apple, Cupertino, CA) connected to a
gamma-corrected 21-inch CRT monitor (with 1280 ×
960 resolution and 85-Hz refresh rate). We used the
EyeLink 1000 (SR Research, Kanata, ON, Canada),
an infrared eye tracker, to monitor and record eye
movement and a SpectroCAL MKII (Cambridge
Research Systems, Rochester, UK) spectroradiometer
to calibrate luminance and color. Observers were tested
individually in a dimly lit room and used a mouse to
generate responses. We used a chinrest to set the viewing
distance of each observer at 57 cm.

Stimuli and procedure
Figure 1 illustrates the sequence of events in a

trial. All stimuli were presented on a gray background
(luminance 53 cd/m2). Each trial began with the fixation
display, a black dot (subtending 0.24° of visual angle,
luminance 0.0073 cd/m2) at the center of the screen.
Following observer fixation for 300 ms, a pre-cue
(a black circle 1.8° in diameter and 0.5° pen width)
appeared for 50 ms. The cue appeared at the location of
the upcoming target (target cue 25% of the trials) or the
less eccentric flanker (inner cue 25% of the trials) or
the more eccentric flanker (outer cue 25% of the trials).
In the remaining 25% of the trials, the cue appeared at
fixation (neutral cue). After an interstimulus interval
of 50 ms, a peripheral target appeared for 100 ms.
The target was a Gabor: a sinusoidal grating (1.5
c/°) with a Gaussian envelope (SD = 0.65°) and 75%
contrast (the size was about 1.8° in diameter). The
target was located on the horizontal meridian with 7°
of eccentricity in either the left or the right hemifield.
The target appeared either alone (uncrowded-display
condition) or flanked by two Gabors (crowded-display
condition). The flankers appeared one on each side
of the target on the horizontal meridian. The center-
to-center spacing between the target and the flankers
was 2.3°.

Target and flanker orientation were randomly
sampled from a circular parameter space of 180
values evenly distributed between 1° and 180°, with
the restriction that, in each trial, the orientation of
the Gabors differed by at least 15° from each other. A
blank interval of 500 ms followed the stimulus display,
then the response display appeared and remained on
the screen until the observers completed their response.
The response display was comprised of a probe

https://osf.io/ck4b2/?viewonlyce9737fce46046238b273fd4d66c71ad
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Figure 1. Illustration of the sequence of events within a trial in Experiment 1. Here, only the right hemifield of the display is shown
(i.e., the fixation mark was at the center of the screen). The cue appeared at fixation (neutral), the inner-flanker location, the target
location, or the outer-flanker location. The target (7° eccentricity) appeared alone (uncrowded) or radially flanked by two Gabors (2.5°
center-to-center distance). Observers estimated the target orientation by adjusting the probe using a mouse.

(a Gabor at the center of the screen). Observers were
asked to estimate the target orientation by adjusting
the orientation of the probe using the mouse. Each
condition had 100 trials (800 trials overall). Each
observer completed 10 blocks of 80 trials in one session.
In each block, there were 20 trials from each of the four
cue conditions. The experiment began with a 40-trial
practice block. Observers were encouraged to take a
short break between blocks. To monitor eye fixation and
stimulus eccentricity, we used online eye-tracking. We
terminated trials in which the observer broke fixation
and reran them at the end of the last block (>2° from
fixation).

Models and analysis
We calculated the estimation error in each trial

by subtracting the true value of the target from
the estimated value. First, for each observer in
each condition, we assessed report bias and report
precision by calculating the mean and the inverse
of the standard deviation (std−1) of the error,
respectively. We then analyzed the error distributions
by individually fitting probabilistic mixture models
developed from the standard and standard-with-

misreporting models (Bays, Catalao, & Husain, 2009;
Zhang & Luck, 2008).

For uncrowded-display trials we fitted the standard
model (Equation 1), which uses a von Mises (circular)
distribution to describe the probability density of the
pooling estimation of the orientation of the target
and a uniform component to reflect the guessing in
estimation. The model has two free parameters (γ , σ ).
In this model, the probability of reporting a feature
value p(θ̂ ) is

p
(
θ̂
) = (1 − γ )φσ

(
θ̂ − θ

) + γ

(
1
n

)
(1)

where θ̂ is the value of the reported feature and
θ is the actual value of the target feature, γ is the
proportion of trials in which observers are randomly
guessing (guessing rate) with n = 180, φσ is the
von Mises distribution with a standard deviation σ
(variability) and a mean of 0. For crowded-display
trials, we compared the fitting of models that included
a component of misreporting a flanker as the
target.

The one-misreport model (Equation 2) has three free
parameters (γ , σ , β). This model adds a misreporting
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component to the standard model. The misreport
component describes the probability of reporting one
of the flankers to be the target. In this model, the
probability of reporting a feature value is

p
(
θ̂
)= (1 − γ − β )φσ

(
θ̂ − θ

)

+ γ

(
1
n

)
+ 1

m
β

m∑
i=1

φσ

(
θ̂ − ϕi

)
(2)

where β is the probability of misreporting a flanker as
the target, and ϕi is the actual value of the i flanker and
m is the total number of flankers. The variability of the
distribution around each stimulus was assumed to be
the same.

The two-misreport model (Equation 3) has four
free parameters (γ , σ , βIn, βOut). The model adds two
misreporting components to the standard model. Each
misreport component describes the probability of
reporting one of the flankers to be the target. In this
model, the probability of reporting a feature value is

p
(
θ̂
)=

(
1 − γ − β ln − βout

)
φσ

(
θ̂ − θ

)

+ γ

(
1
n

)
+ βInφσ

(
θ̂ − ϕIn)

+ βoutφσ

(
θ̂ − ϕout) (3)

where βIn is the probability of misreporting the inner
flanker as the target, and βOut is the probability of
misreporting the outer flanker as the target, ϕIn and
ϕOut are the actual value of the inner flanker and the
outer flanker, respectively.

In addition to the standard model, the one-misreport
model, and the two-misreport model, we also fitted
these models with a target bias component: the bias
standard model, the bias one-misreport model, and the
bias two-misreport model. These models were similar to
the regular models except that the mean (μ) of the von
Mises distribution around the target (φσ ,μ) was a free
parameter.

The standard with bias model (Equation 4) has three
free parameters (μ, γ , σ ):

p
(
θ̂
) = (1 − γ )φσ,μ

(
θ̂ − θ

) + γ

(
1
n

)
(4)

The one-misreport with bias model (Equation 5) has
four free parameters (μ, γ , σ , β):

p
(
θ̂
)= (1 − γ − β )φσ,μ

(
θ̂ − θ

)

+ γ

(
1
n

)
+ 1

m
β

m∑
i=1

φσ

(
θ̂ − ϕi

)
(5)

The two-misreport with bias model (Equation 6) has
five free parameters (μ, γ , σ , βIn, βOut):

p
(
θ̂
)= (

1 − γ − βIn − βOut)φσ,μ

(
θ̂ − θ

)

+ γ

(
1
n

)
+ βInφσ

(
θ̂ − ϕIn)

+ βOutφσ

(
θ̂ − ϕOut) (6)

We used the MemToolbox (Suchow, Brady, Fougnie,
& Alvarez, 2013) for model fitting and comparison.
To compare models, we calculated Akaike information
criterion with correction (AICc) for the individual fits.
We calculated the target reporting rate as Pt = (1 –
γ ), Pt = (1 – γ – β), and Pt = (1 – γ – βIn – βOut)
in the standard model, one-misreport model, and
two-misreport model, respectively.

We performed a 2 × 4 analysis of variance (ANOVA)
with display condition (uncrowded display vs. crowded
display) and cue condition (neutral, inner, valid, outer)
as within-subject factors on precision and parameters
of the best-performing model. To test our main
hypothesis, we performed a four-way ANOVA with cue
position as the within-subject factor on the best-fitting
model parameters.

Results and discussion

Figure 2A plots the distribution of errors for the
uncrowded- and crowded-display trials. The mean
report bias in all conditions was within the range of
±2°, indicating that there was no systematic report bias
(Supplementary Table S1). First, we performed a 2 × 4
repeated-measures ANOVA with display condition and
cue position as within-subject factors on precision.
As expected, report precision was higher in the
uncrowded-display trials than in the crowded-display
trials (Figure 2B). There were no significant main effect
of cue position and no significant interaction between
cue position and display condition on precision (all p
> 0.72) (Supplementary Table S1). Planned one-way
ANOVA with cue position on precision showed no
main effect of cue position in uncrowded display trials
(F < 1) (Figure 2C), whereas cue position significantly
affected precision in crowded trials, F(3, 45) = 5.49,
p = 0.002, η2 = 0.3, with the highest precision in
inner-cue trials and lowest precision in outer-cue trials
(Figure 2D).

Model fitting results
For crowded-display trials, as indicated by the

mean AICc (Figure 3A), the two-misreport model
outperformed the standard model and the one-
misreport models, suggesting that the misreport rate
differed between the inner and the outer flankers
(Figure 3A). Next, we analyzed model parameters
(Figures 2D and 2E, Figures 3B and 3C, Supplementary
Table S2) of the standard model in uncrowded-display
trials and the two-misreport model in crowded-display
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Figure 2. Uncrowded-display versus crowded-display trials in Experiment 1. (A) Merror distribution of errors (dark dots) in the
uncrowded-display trials and the crowded-display trials. Errors were binned into 20 equal-width (9°) bins. Solid lines are the standard
model and the two-misreport model for uncrowded and crowded trials, respectively. Model lines were generated best on the average
parameters of the individual fits. (B) Precision (std−1 of report errors in degrees) as a function of display condition. Un =
uncrowded-display trials, Cw = crowded-display trials. (C, D) Cueing effect (peripheral cue – neutral cue) for uncrowded (C) and
crowded (D) trials. Error bars, ±1 within-subject SE.

Figure 3. Model comparisons and parameters in Experiment 1. (A) Model comparisons in crowded trials. �AICc was calculated by
subtracting from each AICc the AICc of the best-performing model (two-misreport model). Lower �AICc values indicate better
performance. S = standard, 2M = two-misreport, 1M = one-misreport, SB = standard with bias, 2M = two-misreport with bias, 1M
= one-misreport with bias. (B, C) Mean fitted guess rate (g) for each crowding display condition (B) and variability (s) for each
crowding display condition (C). Parameters were fitted individually with the best-performing models (standard in uncrowded trials
and two-misreport in crowded trials). (D) Mean report component of the two-misreport model in crowded display trials. Bi = inner
flanker, Pt = target, Bo = outer flanker. Error bars, ±1 within-subject SE.

trials. Crowded display increased variability (σ ), F(1,
15) = 14.99, p = 0.002, η2

p = 0.5 (Figure 3B), and
guesses (γ ), F(1, 15) = 6.97, p = 0.019, η2

p = 0.32, and
decreased target reports (Pt), F(1, 15) = 113.93, p <
0.001, η2

p = 0.88 (Figure 3C). (See the Supplementary
Materials for the remaining 2 × 4 ANOVA results
on all parameters.) Figure 3D shows the misreport
component in the crowded trials. The misreport rate

of the outer flanker was substantially higher than
that of the inner flanker, demonstrating inner–outer
asymmetry.

Next, we analyzed the cuing effect in crowded-display
trials. Cue position modulated misreport of the outer
flanker (βOut), F(3, 45) = 8.42, p < 0.001, η2

p = 0.56,
with higher βOut in outer cue trials compared with
inner and target cue trials (Figure 4A). There was no



Journal of Vision (2022) 22(13):6, 1–16 Kewan-Khalayly & Yashar 7

Figure 4. Cueing effects in crowded-display trials of Experiment
1. (A) Cueing effect on target report rate. (B) Cueing effect on
the rate of misreporting the outer-flanker as target. Cueing
effect was calculated by subtracting the report rate in the
neutral cue from the report rate in each peripheral cue
position. I = inner, O = outer. Error bars, ±1 within-subject SE.

significant effect on misreport of the inner flanker (βIn)
(F < 1). There was a significant effect of cue position
on target report rate (Pt), F(3, 45) = 7.66, p < 0.001,

η2
p = 0.51 (Figure 4B). These findings show that the

chance of reporting the outer flanker increased with
the proximity of the outer flanker to the locus of focal
attention, demonstrating a positive relation between
attention and inner–outer asymmetry.

Experiment 2

In Experiment 2, we extended our investigation to
the process of feature binding. A recent study (Yashar
et al., 2019) tested the effect of crowding on feature
binding—that is, the integration of feature dimensions
(e.g., tilt, color, SF) to a coherent object. Observers
performed a double report task by estimating both the
tilt (fully circular space 0°–360°) and the color (on a
color wheel 0°–360°) of a T-shaped target. In a crowded
display, observers misreported tilt or colors in an
independent manner; that is, observers often reported

Figure 5. Illustration of the sequence of events within a trial in Experiment 2. The fixation point, here on the left, was presented at the
center of the screen. The cue appeared at fixation (neutral), at the inner-flanker location, or at the outer-flanker location. Observers
estimated the target color and orientation by adjusting the probe using a mouse.
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presented features accurately but in an inaccurate
conjunction. These findings suggest that crowding
disrupts the integration of features into a coherent
object, leading to what is known as misbinding or
“illusory conjunction” (Treisman & Schmidt, 1982).

Classical visual attention views argue that spatial
attention plays a critical role in feature binding.
Indeed, when covert attention was disrupted,
misbinding errors were reported in uncrowded
displays (i.e., object spacing was outside the
crowding window) (Treisman & Gelade, 1980;
Treisman & Schmidt, 1982). In Experiment 2, we tested
the effect of covert spatial attention on both crowding
and binding errors. If binding errors in crowding
are due to diffused attention, then directing spatial
attention should modulate binding errors.

Method

The method was the same as in Experiment 1 except
for the following.

Observers
Nineteen students (7 males; age range 23–37 years,

M = 28.37, SD = 4.34).

Stimuli and procedure
Figure 5 illustrates the sequence of events in a trial.

The pre-cue appeared at one of three possible locations:
fixation (neutral), inner flanker, or outer flanker. The
target and the flankers were T-shaped items, each
subtending 1.8° × 1.8° and drawn with a 0.3° stroke.
The tilt and color of the target and the flankers were

each independently selected at random from two
circular parameter spaces. Target and flanker tilt were
randomly selected out of 360 values evenly distributed
between 1° and 360°. The color was randomly selected
out of 360 values evenly distributed along a circle in
the Derrington–Krauskopf–Lennie (DKL) color space
(Derrington, Krauskopft, Lenniet, Kra, & Lennie,
1984). We followed the same color space calibration as
Yashar et al. (2019) (see supplementary information in
Yashar et al., 2019). Stimuli color and background were
equiluminant.

The color response displays included a color wheel
(2° thick with an inner radius of 5°) containing 360
colors. Observers were asked to estimate the target
color by selecting a color on the color wheel using the
mouse curser. During response, a visual presentation
of the selected color was presented at the center of the
screen. As in Experiment 1, observers estimated the
target tile by rotating a T-shaped item at the center of
the screen using the mouse.

In both response types, a final report was made by
clicking the mouse. The response order (tilt and color)
alternated every block of 150 trials. In each of the three
cue positions there were 200 crowded-display trials and
100 uncrowded-display trials (900 trials in total). We
encouraged observers to take a short break every 50
trials. The experiment began with a 40-trial practice
block.

Models and analysis
To analyze each feature space separately, we

performed the same model fitting procedure as
described in Experiment 1. Table 1 shows all free
parameters of the joint-distribution models. To analyze

Component category Tilt Color Mixture component Probability density function

Bound target 1 Target Target TtTc φσt (θ̂t − θt )φσc (θ̂c − θc )
Feature error 2 Uniform Uniform UtUc ( 1

360 )
2

3 Uniform Target UtTc 1
360φσc (θ̂c − θc)

4 Target Uniform TtUc φσt (θ̂t − θt ) 1
360

5 Outer Uniform OtUc φσt (θ̂t − ϕOut
t ) 1

360
6 Inner Uniform ItUc φσt (θ̂t − ϕIn

t )
1

360
7 Uniform Outer UtOc

1
360φσc (θ̂c − ϕOut

c )
8 Uniform Inner UtIc 1

360φσc (θ̂c − ϕIn
c )

Binding error 9 Outer Inner OtIc φσt (θ̂t − ϕOut
t )φσc (θ̂c − ϕIn

c )
10 Inner Outer ItOc φσt (θ̂t − ϕIn

t )φσc (θ̂c − ϕOut
c )

11 Outer Target OtTc φσt (θ̂t − ϕOut
t )φσc (θ̂c − θc )

12 Inner Target ItTc φσt (θ̂t − ϕIn
t )φσc (θ̂c − θc )

13 Target Outer TtOc φσt (θ̂t − θt )φσc (θ̂c − ϕOut
c )

14 Target Inner TtIc φσt (θ̂t − θt )φσc (θ̂c − ϕIn
c )

Object error 15 Inner Inner ItIc φσt (θ̂t − ϕIn
t )φσc (θ̂c − ϕIn

c )
16 Outer Outer OtOc φσt (θ̂t − ϕOut

t )φσc (θ̂c − ϕOut
c )

Table 1. Mixture components of the joint-standard model (rows 1–4) and joint-misreport model (rows 1–16).
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binding errors, we fitted joint mixture models (Bays,Wu,
& Husain, 2011; Dowd & Golomb, 2019) to the joint
distributions of tilt and color. For uncrowded-display
trials, each feature dimension report could come from
uniform or target distributions, leading to four possible
report combinations of tilt and color distribution (Table
1, rows 1–4, joint-standard model). For crowded-display
trials, each feature dimension report could come from
one of four distributions: uniform, Gaussian over the
target, Gaussian over the inner flanker or Gaussian
over the outer flanker. Because we had two feature
dimensions, the total number of possible distribution
combinations of tilt and color was 16 (Table 1, rows
1–16, joint-misreport model). Each joint model also
included a von Mises variability component for each
feature dimension (σ t, σ c). (Note that, because the sum
of all report components is equal to 1, TtTc (Table 1,

row 1) was defined as TtTc = 1 − ∑16
i=2(pi), where p is

the report probability of the ith component (Table 1,
rows 2–16). Thus, overall, the joint-standard model had
five free parameters, and the joint-misreport model had
17 free parameters.

We used the MCMC function in the MemFit toolbox
to individually fit the models in each crowding and
cue condition. To simplify the analysis of the joint-
misreport model (16 components) in crowded-display
trials, we grouped components into four categories
of reports: (a) bound target (Table 1, row 1), which
related to the report of both tilt and color of the target;
(b) feature error (Table 1, rows 2–8), which related to
any guessing component; (c) binding errors (Table 1,
rows 9–14), which related to misreport of different
items (e.g., the target tilt with a flanker color); and
(d) object error (Table 1, rows 15 and 16), which

Figure 6. Uncrowded-display trials versus crowded-display trials in Experiment 2. (A, B) Mean error distributions (dark dots) in each
crowding condition were plotted for tilt (A) and color (B) reports. Errors were binned into 20 equal-width (9°) bins. Solid lines plot the
best fitted model in each condition and report feature. (C) Mean precisions, calculated as the inverse of the standard deviation of the
report errors (SD°−1) in uncrowded- and crowded-display trials for tilt. I = inner, O = outer. (D) Mean cueing effect on precision in
crowded-display trials for tilt. (E) Mean precisions (SD°−1) in uncrowded- and crowded-display trials for color. (F) Mean cueing effect
on precision in crowded-display trials for color. We calculated the cueing effect by subtracting the neutral cue from each peripheral
cue condition. (G) Joint distribution of tilt and color reports for uncrowded-display trials. (H) Joint distribution of tilt and color reports
for crowded-display trials. Error bars, ±1 within-subject SEM.
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related to misreporting both features of the same
flanker. Note that both object error and target report
reflect correct binding. To test for the effect of covert
spatial attention on binding, we analyzed the effect
of cue position on each of the four error types. We
performed a three-way, repeated-measure ANOVA
with cue position as a within-subject factor on each
component category. To test for the effect of cue
position on correct binding in uncrowded display trials,
we performed a three-way repeated measures ANOVA
with cue position as the within-subject factor on the
bound target rate (Table 1, row 1) of the standard joint
model.

Results and discussion

Figures 6A and 6B plot the distribution of errors
for the uncrowded- and crowded-display trials for tilt
and color. For either tilt or color reports, precision
was higher in the uncrowded-display trials than in the
crowded-display trials, F(1, 18) = 78.75, p < 0.001, η2

p
= 0.81 and F(1, 18) = 24.98, p < 0.001, η2

p = 0.58,
respectively (Figures 6C and 6E). The main effect of
cue position on precision was significant for color,
F(2, 36) = 5.15, p < 0.019, η2

p = 0.22 (Figures 6D

and 6F). No other effect was significant on precision,
and no effect was significant on report bias, (all p > 0.1)
(Supplementary Table S3).

Model fitting results
For tilt report in crowded-display trials, as indicated

by the mean AICc (Figure 7A), the two-misreport
model with bias outperformed models with one or
no misreport component, suggesting that, as for
Gabor orientation in Experiment 1, the misreport
rate for tilt differed between the inner and the outer
flankers. For color, the standard with bias model
outperformed the other models. We removed one
observer from the model fitting analysis due to a high
guessing rate (>0.50). Thus, for tilt, we analyzed the
fitted parameters of the standard with bias model
and the bias two-misreport models in uncrowded-
and crowded-display trials, respectively. For color,
we analyzed the fitted parameters of the standard
with bias model (see all fitted parameters values in
Supplementary Tables S4 and S5).

Crowding increased the tilt guess rate (γ ) and
variability (σ ) (Figures 7B and 7C), F(1, 17) = 53.98, p
< 0.001, η2

p = 0.76 and F(1, 17) = 4.58, p = 0.047, η2
p

= 0.21, respectively. All other effects on tilt σ were not

Figure 7. Model comparisons and parameters in Experiment 2. (A) Model comparisons in crowded trials for tilt. For each model,
�AICc was calculated by subtracting the AICc of the best-performing model (two-misreport model). Lower �AICc indicates better
performance. S = standard, 2M = two-misreport, 1M = one-misreport, SB = standard with bias, 2M = two-misreport with bias, 1M
= one-misreport with bias. (B) Mean fitted tilt guess rate (γ ). (C) Mean fitted tilt variability (σ ). (D) Mean tilt report component of the
two-misreport model in crowded display trials. Bi = inner flanker, Pt = target, Bo = outer flanker. (E) Model comparisons in crowded
trials for color. For tilt and color, parameters were fitted individually with the best-performing models (standard model for tilt in
uncrowded trials and for color in uncrowded and crowded trials, and two-misreport model for tilt in crowded trials). Error bars, ±1
within-subject SE.
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Figure 8. Cueing effects in crowded-display trials of Experiment
2. (A) Cueing effect on the rate of misreporting the
outer-flanker tilt as target tilt. (B) Cueing effect on target-color
guess rate. Cueing effect was calculated by subtracting the
report rate in the neutral cue from the report rate in each
peripheral cue position. I = inner, and O = outer. Error bars, ±1
within-subject SE.

significant (p > 0.1). Next, we analyzed the cueing effect
in crowded-display trials. Figure 8A plots βIn, Pt, and
βOut in neutral cue trials in crowded-display trials. Cue
position significantly affected βOut, F(2, 34) = 9.07, p <
0.001, with higher βIn in the outer cue trials than the
inner cue and neutral cue trials. These findings indicate
that the outer cue increases the inner–outer asymmetry.
The effect of cue position on Pt (Figure 6B) and βIn

was not significant, F(2, 34) = 2.93, p = 0.065, and F(2,
34) = 2.94, p = 0.066, respectively.

The effect of crowding on color was reflected in a
lower guess rate (γ ) in the uncrowded trials than in the
crowded trials, F(1, 17) = 6.69, p = 0.017, η2

p = 0.28
(Figure 7F). There was a main effect of cue position on
guess rate, F(2, 34) = 5.76, p = 0.006, η2

p = 0.25, with a
higher guess rate in the outer cue trials compared with
the cue trials (Figure 8B). This finding suggests that, as

with tilt and orientation (Experiment 1), the outer cue
increases the hindering effect of crowding on feature
recognition. No other main effect or interaction was
significant (all p > 0.05).

Joint-distribution models
Figure 9A summarizes the joint report components

based on the type of report error. A large proportion
of the errors reflect binding errors (i.e., reporting the
orientation of one item with the color of another
item). These errors are mainly driven by misreports of
the orientation of the outer flanker while reporting
the color of the target (see Supplementary Table S7),
indicating that the inner–outer asymmetry reflects
feature binding errors in radial crowding.

Next, we tested the effect of cue position on
binding error by analyzing the fitted parameters of the
joint-distribution models (Supplementary Table S6).
For the joint-standard model in uncrowded-display
trials, there was no significant effect of cue position
on the bound target report rate (F < 1). Figures
6G and 6H depict the joint distribution of tilt and
color for uncrowded- and crowded-display trials,
respectively.

Figure 9A shows the mean rate for each mixture
component category in neutral trials with a crowded
display. The bound target report rate was higher in the
inner-cue position compared to the outer-cue position,
t(17) = 2.21, p = 0.04 (Figure 9B). These findings reflect
the overall increase in target report rate in inner-cue
trials within each feature space. Interestingly, when cue
position was tested on each of the three error types,
cue position did not significantly affect the feature
errors, binding errors, or object errors (all p > 0.18)
(Figure 9B).

Figure 9. Joint feature report rates in Experiment 2. (A) Mean report rates for each report component category of the joint-misreport
model. (B) For each component, we plotted the cueing effect by subtracting the report proportion in the outer-cue trials from the
inner-cue trials. Feat. error = feature error, Bind. error = binding error, Obj. error = object error, Bound target = target reported in
both features. Error bars, ±1 within-subject SE.
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General discussion

The results show that the locus of covert attention
within the crowded stimulus (i.e., inner, target, or
outer locations) determines target identification.
First, as in the study by Shechter and Yashar (2021),
instead of the target, observers often misreported the
orientation or tilt of the outer flanker rather than the
inner one, which demonstrates inner–outer asymmetry
in a typical display of radial crowding. Second, as
in the study by Yashar et al. (2019), color crowding
was substantially smaller than orientation crowding.
Moreover, color errors did not reflect inner–outer
asymmetry. Third, compared to maintaining allocation
at fixation, attending to the target location did not
affect target performance. Interestingly, attending to the
inner-flanker location—a more foveal location than the
target—increased the target identification and reduced
the asymmetry. Finally, attending to the outer flanker
reduced the target identification and increased the
asymmetry.

This direct and positive relationship between covert
attention and inner–outer asymmetry is consistent with
the attentional bias account (Petrov & Meleshkevich,
2011a) and inconsistent with the receptive field size view
of inner–outer asymmetry (Chaney et al., 2014; Dayan
& Solomon, 2010). Whereas attentional accounts
predict an increase in asymmetry when the locus of
attention is the outer-flanker location, the receptive field
size view predicts a decrease in asymmetry in outer-cue
trials due to the reduction in receptive field size over the
outer flanker.

Spatial attention and crowding

The present findings explain the inconsistent results
of spatial attention investigations in crowding and
attribute them to variations in the locus of attention.
Consistent with the present study, previous studies
using various cue and target types showed that cueing
attention at the target location did not reduce crowding
interference (Scolari et al., 2007; Strasburger &
Malania, 2013), whereas cueing attention at location
inner to the target reduced crowding interference
(Grubb et al., 2013; Kewan-Khalayly et al., 2022;
Yeshurun & Rashal, 2010).

The results of the present study cannot be explained
by forward masking created by the cue. First, we used
an empty circle shape for the cue, which was shown to
be ineffective for forward masking of an orientation
grating stimulus (Saarela & Herzog, 2008). Second,
the pattern of results is inconsistent with a forward
masking effect. In particular, when the cue appeared at
the outer flanker location, observers more frequently

misreported the outer flanker as the target compared
to trials in which the cue appeared away from the
outer flanker. By contrast, a masking effect by the cue
predicted the reduction misreport rate of each cued
item, and it is difficult to explain why the cue masked
the target but not the outer flanker. The idea that
attention is biased outward, therefore, provides a more
parsimonious explanation and is consistent with studies
of the inner–outer asymmetry phenomenon (Petrov &
Meleshkevich, 2011a).

Investigations of the effect of spatial attention
on basic signal processing typically display a simple
stimulus around threshold levels, often by reducing
stimulus strength (for a review, see Carrasco, 2011).
Here, to test the attentional effect on crowding
alone, we used a high-contrast super-threshold
target. Thus, we did not expect to find an attentional
effect in the uncrowded-display trials in which
performance was relatively at ceiling levels (i.e., Pt
close to 1).

Crowding, binding, and attention

The present study has implications for the feature-
binding issue. First, this study replicates the results of
Yashar et al. (2019) by showing that crowding errors
reflect binding errors. Specifically, here, when observers
had to report the tilt and color of a T-shaped target,
they often misreported the tilt of the outer flanker
with the color of the target (i.e., reporting an “illusory
conjunction,” a binding error). A joint misreport
mixture model revealed that observers performed
binding errors (i.e., reporting one feature from one
object and the second feature from another object) or
feature errors (i.e., reporting one or two feature values
unrelated to a presented object—a guess). Notably, only
a small percentage of trials reflected object error (i.e.,
reporting two features of the same flanker), suggesting
that misreport errors reflect feature integration errors
rather than confusion between coherent objects. This
finding suggests that crowding is due to excessive
integration processes and supports pooling models
(Freeman et al., 2012; Freeman & Simoncelli, 2011;
Keshvari & Rosenholtz, 2016; Rosenholtz, Yu, &
Keshvari, 2019).

Second, the results provide insight into the role
of spatial attention in feature binding. A prominent
view of feature binding and attention is the feature
integration theory (Treisman & Gelade, 1980),
according to which attention operates as the “glue” that
binds features together. Thus, this view predicts that
allocating covert attention toward the crowded stimulus
will reduce binding errors—namely, attention would
lead to higher reports of a coherent target (bound
target) and coherent flankers (object errors). However,
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the present study results are inconsistent with this
prediction. First, they showed that binding errors in
a crowded display were persistent even when covert
attention was allocated toward the crowded stimulus.
Second, they showed that cueing covert attention
to the crowded stimuli affected feature and binding
errors but not object errors. In other words, when
observers misreported a flanker feature as the target,
covert spatial attention did not “glue” the other feature
dimension to generate a coherent object perception
and reports of the other feature of the same flanker
(object errors).

This finding is inconsistent with previous studies
that tested the effect of spatial attention on binding
errors and showed that cueing attention decreased
binding errors in a conjunction detection task (Briand,
1998; Prinzmetal, Presti, & Posner, 1986). However,
these studies did not monitor eye movement and
used a cue–stimulus stimulus onset asynchrony of
227 to 250 ms, which was enough time for a saccade
(e.g., Mayfrank, Kimmig, & Fischer, 1987). Thus, it
is unclear whether the cueing effect is due to overt
(rather than covert) attention. Here, by monitoring eye
movement using an eye tracker, we were able to test
the effect of covert attention per se on feature binding.
We showed that the effect of covert attention on
feature binding is limited to the task-relevant item—the
target.

Moreover, we showed both the cost and benefit of
attentional allocation in a crowded display by testing
various cue positions. Therefore, our feature binding
findings go beyond a particular cue–target special
relation. In Experiment 2, we used two cue positions,
inner cue and outer cue, which we selected to maximize
attentional cost and benefit based on Experiment
1. The pattern of cue position effect on crowding
errors was consistent across experiments. Thus, it is
unlikely that adding target–cue position in Experiment
2 would have changed the pattern of feature binding
results.

Note that our findings mainly apply to bottom–up
covert attention; however, top–down attention may still
play a critical role in feature binding. Indeed, according
to a prominent view, crowding is due to reduced
attention resolution in the periphery (Chakravarthi &
Cavanagh, 2007; He, Cavanagh, & Intriligator, 1996;
Intriligator & Cavanagh, 2001; Tripathy & Cavanagh,
2002). This view assumes that the minimum size of the
attentional selection region is larger in the periphery.
Thus, when two or more items fall into the selection
region, they are indistinguishable. Given that the
selection region reflects top–down attention that differs
from the bottom–up attention manipulated by the cue,
our findings do not challenge the attentional selection
view of crowding. Thus, reduced top–down attentional
resolution may be responsible for binding errors in
crowding.

Conclusions

The present study results reveal the important role
of covert spatial attention in inner–outer asymmetry.
The findings are consistent with the attentional bias
account of inner–outer asymmetry and inconsistent
with the receptive field size account. Our study also
demonstrates a strong link between crowding and
feature binding/integration and shows that crowding
errors reflect binding errors.

Keywords: crowding, attention, binding, mixture
model, asymmetry, color, orientation
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