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LETTER TO EDITOR

Machine learning algorithms utilizing blood parameters
enable early detection of immunethrombotic dysregulation
in COVID-19

Dear Editor,
The pandemic of coronavirus disease 2019 (COVID-19)

has stressed and overloaded the existing medical capacity
worldwide. From a more pragmatic perspective, the early
detection of patients who may experience rapid clinical
deterioration will enable prompt interventions and avert
disease progression.1 T cell exhaustion, immunothrom-
botic dysregulation, as well as complement-associated
microvascular injury are considered as the hallmarks of
disease severity in COVID-19.2–5 It is generally accepted
that the identification of useful surrogates, for exam-
ple, IL-6, TNFα, MIP1α, LDH, ferritin, D-dimer, CK, etc.,
to represent as immune response to COVID-19 infec-
tion is crucial.3,4,6 Nevertheless, no individual parameter
was so far predictive of immune-thrombotic dysregula-
tion fueled by a maladaptive host inflammatory response
in severe infection with SARS-CoV-2.7–9 We, therefore,
consider to develop potential solutions for forecasting
thrombotic complications prior to clinicopathological
exacerbation.
By incorporating whole blood transcriptome profil-

ing and multi-omics analysis, our study characterized
immunological and hematological perturbations with
respect to different categories of severity (i.e., healthy
donors vs. mild or moderate vs. severe vs. critical illness).
Functional diversity was found among those groups by
unsupervised hierarchical clustering of differential expres-
sion profiles (Figure 1A, left). Circus plots revealed that the
differentially expressed genes (DEGs) were enriched into
the key processes, that is, neutrophil activation, platelet
activation, blood coagulation, complement receptor-
mediated signaling pathway, leukocyte activation, and
cytokines production. In contrast, the downregulated
DEGs were functionally linked with lymphocyte acti-
vation/proliferation/differentiation/migration, gamma
delta (γδ) and alpha beta (αβ) T cells activation, and
so on (Figure 1A, right, and B). More specifically, the
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upregulation of gene-signatures in platelet, neutrophil,
and coagulation activation, as well as downregulation of
lymphocyte activation in severe and critically ill COVID-19
were demonstrated (Figure 1B).
Multi-omics data incorporating plasma cytokines and

chemokines, circulating complements, flow cytometry-
derived immune cells counts, clinical laboratory outcomes,
aswell as featured gene-signatureswere implicated in pair-
wise Pearson correlations (Figure 1C, left). Furthermore,
the upregulations of both neutrophil and platelet activa-
tion signatures were strongly correlated with downregula-
tion of lymphocyte activation (R = –0.88, p < 0.001) (Fig-
ure 1C, middle). Gene-subsets for neutrophil, platelet, and
coagulation activations were found to correlate with blood
complements C3b, C4a, C6b, and C7b, in contrast to lym-
phocytes as inverse correlations (Figure 1C, right, and 1E,
left).
DEGs with specific interests to the recruitment and

activation of neutrophils and platelets were also studied.
A spectrum of genes were identified in initiation and
amplification of the proinflammatory response, immune
complex-mediated activation of neutrophils, acting as cell
surface receptors or their intracellular signal transductions
for platelets and neutrophils, for example, S100As, SER-
PINA1, TLRs, STAT3, SELP (P-selectin), SELPLG (PSGL-
1), SYK, F2RL1 (PAR2), ITGAM (αM), ITGB2 (β2), ITGA2B
(αIIb), ITGB3 (GPIIIa), and so on. The key molecules
associating with NET formation (NETosis), including
PAD4, FCGR2A (FcγRIIa), PLCG2 (PLCγ2), CFP, F8,
and F12, were considerably upregulated, facilitating
platelets–neutrophils conjugates and highly procoagulant
microcirculation disturbances via intrinsic pathways.10
Those transcriptional signatures were also partially evi-
denced in the proteomics level by Tian et al.11 Intriguingly,
neutrophil effector molecules, such as ELANE (neutrophil
elastase), MPO (myeloperoxidase), CTSG (Cathepsin G),
as well as vascular inflammation mediator PTX3 and
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F IGURE 1 Transcriptional profiling of whole blood and multi-omics characterization of peripheral immune response in COVID-19
patients with different severity. (A) The diversity of gene-expression profiles in patients with different severity shown in unsupervised
hierarchical clustering (Left). A circus plot shows transcriptional regulatory pathways, as well as network profiles from Gene Ontology
Biological Process (GO-BPs) enrichment results of those differentially expressed genes (DEGs) (Right). The up- and down-regulated GO-BPs
were represented by red and blue colors. (B) Heatmap and line charts display the differentially regulations of gene-subsets for platelet,
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neutrophil-derived lactoferrin, were significantly
upregulated in severe compared to critical illness (Fig-
ure 1D). NETs were described as important mediators
of coagulation.12 Neutrophil activations correlated well
with NETosis (R = 0.98, p < 0.0001), as well as blood

D-dimer concentrations (R= 0.78, p< 0.001), highlighting
a prominent role of activated neutrophils or NETosis in the
pathogenesis of COVID-19 coagulopathy (Figure 1E, right).
The unveiled transcriptional findingswere validated in a

multicenter cohort of 1219 eligible individuals (Figure S1).

neutrophil, lymphocyte, and blood coagulation activations. (C) Multi-omics characteristics correlation matrix of 43 features of COVID-19
patients. Linear regression for the correlation of lymphocyte-neutrophil-platelet activity in COVID-19. The square size corresponds to the
absolute value of the Spearman rank correlation coefficient, with brown (blue) color indicating a positive (negative) correlation. *FDR < 0.05,
**FDR < 0.01, ***FDR < 0.001. (D) Heatmap for gene-signatures of activation, recruitment and interactions for neutrophil, platelet, and the
formation of NETs (NETosis). (E) Correlation analysis for plasma complements or D-dimer versus transcriptional levels of specific
gene-subsets

F IGURE 2 Critical blood parameters as well as age associated with disease severity of COVID-19 patients. (A–E) Boxplots depicting
lymphocyte, neutrophil, platelet, hemoglobin, and age with respect to disease severity. *p < 0.05, **p < 0.01, ***p < 0.001. (F) Correlation
matrix of lymphocyte, neutrophil, platelet, and hemoglobin in the peripheral blood, as well as age in COVID-19 patients. (G) Intuitive
three-dimensional plot shows the interplay of lymphocyte, neutrophil, platelet counts, and hemoglobin level in 1219 COVID-19 patients. (H–J)
The featured outcomes from routine blood tests and age were examined independently by ROC curves in discriminating disease severity of
COVID-19 patients
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F IGURE 3 ROC curves depict classification accuracy of the machine learning models and the overview of the performance for machine
learning-based three-dimensional severity classifications. (A–D) Construction, evaluation, and validation of LASSO-based algorithms for
disease severity classification. (E) GLMmodel. (F) LDA model. (G) Three-dimensional classification plot shows the performance for machine
learning-based three-dimensional severity classifications based on identified features
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F IGURE 4 Construction, evaluation, and validation of algorithm for prognosis and fatal risks prediction. (A) LASSO Cox-based
nomogram in training cohort for predicting 15-, 30-, and 45-days survival. Red dots represent a patient with total risk score is –0.832, overall
death probabilities are 0.190, 0.303, and 0.419 within 15, 30, and 45 days, respectively. This patient is triaged as low risk. (B–D) Calibration,
DCA, and net reduction plot for the nomogram. (E–G) The training cohort. (H–J) Internal testing cohort. (K–M) External validation cohort.
We used AUCs at 15-, 30-, and 45-days to assess prognostic accuracy, and calculated p values using the log-rank test
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A summary of patient characteristics is provided (Table S1).
Peripheral lymphocyte, neutrophil, platelet counts, as well
as hemoglobin and ages among different severity groups
were shown (Figure 2A–E). Besides, the demographically
predictive of protection against advancement of severity
in COVID-19 is female sex, particularly for critically ill
and lethal events (Figure S2). Consistent with transcrip-
tional findings, clinical laboratory outcomes evidenced
that lymphopenia, neutrophilia, as well as thrombocy-
topenia owning to the overconsumption of platelets were
notably characterized in the late stages of COVID-19. And
those featureswere ofmutual linkages and exhibited corre-
lation to varying degrees (Figure 2F). A three-dimensional
simulation further implicated the dynamic interplay of
lymphocyte, neutrophil, platelet, and hemoglobin (Fig-
ure 2G), providing a solid basis for mathematical model-
ing. Nonetheless, an individual blood parameter had rela-
tively poor predictive performance for stratifying patients
with different severity (Figure 2H–J and Table S2).
To improve the discrimination accuracy, machine

learning-based severity classification was performed.
LASSO regression classifier was applied to train the model
utilizing the featured blood-parameters (Figure 3A).
The calibration curve demonstrated a good consistence
between the predicted and observed values and favorable
predictive performance confirmed by receiver operating
characteristic (ROC) analysis (Figure 3B–D). The discrim-
inative ability was also assessed for testing and validation
cohorts (Figure S3A–H). In parallel, the generalized linear
model (GLM) and linear discriminant analysis (LDA)
were utilized for the construction and optimization of
disease discrimination. Strong discriminative capacities
were achieved for both GLM (Figure 3E) and LDA (Fig-
ure 3F)-based algorithms. Eventually, the overall cohort
of 1219 patients was stratified into different degrees of
severity with a robust hierarchical classification capacity
(Figure 3G).
Machine learning-based prognosis prediction was also

studied (Figure 4A). The calibration curve and the diago-
nal coincided in general, indicating relatively high predic-
tion accuracy for 15-, 30-, and 45-days in-hospital mortal-
ity risks (Figure 4B). A superior prediction capacity was
demonstrated by decision curve analysis (DCA) and the
net reduction in interventions was maximized (Figure 4C,
D). The derived survival risk score was associated with
immunethrombotic dysregulation. Patients in the training
cohort could be, therefore, divided into high- and low-risk
groups with significantly stratified fatal risks (Figure 4E).
Area under curves (AUCs) of 0.73 (95% CI, 0.65–0.81), 0.80
(95%CI, 0.73–0.87), and 0.81 (95%CI, 0.72–0.90) for 15-, 30-,
and 45-days were determined, and distinct survival
outcomes were observed (p < 0.0001) (Figure 4F, G).

Consistently, highly predictive performance was also eval-
uated in both internal testing (Figure 4H–J) and external
validation cohort (Figure 4K–M).
In conclusion, genome-wide whole blood profiling was

performed to deciphering the peripheral immune and
hematologic pertubations to COVID-19, revealed an inter-
esting feature of uncontrolled neutrophil-complement-
coagulation interplay associated with immunethrombosis
in severe and critically ill patients. Via machine learning
techniques as well as the inclusion of large-scale multi-
center cohorts of 1219 patients, an optimized precision of
prediction algorithm by integrating platelet, neutrophil,
and lymphocyte counts and hemoglobin was established.
Taken together, we developed and validated mechanistic-
driven rather than purely data-driven algorithms to assess
the specific risks of immunothrombotic dysregulation in
COVID-19. In principle, it might be used as a potential sur-
rogate of decision-making for the ICU patients with coagu-
lation abnormalities, enabling more timely interventions,
such as low molecular weight heparin-treatment, and/or
anticytokine therapies. Of note, those patients in ICUs are
largely incapable of communicating and with very lim-
ited access to standard imaging utilizing computed tomog-
raphy (CT). This algorithm will assist in guiding clini-
cal decision-making in more individualized managements
and provide insights for longitudinal surveillance of severe
and critically ill individuals.

FUNDINGS
This work was supported by the National Natural Science
Foundation of China (NSFC) (No. 81703166), Science and
Technology Program of Guangzhou (Nos. 202002030445
and 202002030086), Natural Science Foundation of
Guangdong Province (No. 2019A1515011943), China Post-
doctoral Science Foundation (Nos. 2020T130052ZX and
2019M662974), and Medical Scientific Research Founda-
tion of Guangdong Province (Nos. A2020505, A2020499,
B2021203, and B2021139). The funders had no role in study
design, data collection and analysis, decision to publish or
preparation of the manuscript. All authors had full access
to all the data in the study and had final responsibility for
the decision to submit for publication.

CONFL ICTS OF INTEREST
The authors declare no potential conflicts of interest.

ETH ICS APPROVAL AND CONSENT TO
PART IC IPATE
This study was approved by the Ethics Committee of
Nanfang Hospital, Southern Medical University (approval
number: NFEC-2020-033) and the Ethics Committees from
the collaborated centers.



LETTER TO EDITOR 7 of 8

AUTH OR CONTRIBUT IONS
CZ, ZZ, PZ, and LW conceived and designed the study. XZ,
LMC, TA, HG, HD, QY, YJL, YXL, XC, BN, SW, XLZ, JL,
MXZ, and HY assisted in acquisition, analysis, and inter-
pretation of the data. ZZ, LW, CZ, DG, and CJ developed
and validated the algorithms. ZZ, LW, DG, XZ, and LMC
did the statistical and transcriptome analysis under the
supervision of CZ, LHC, LBC, MLL, MJZ, and PZ. CZ, ZZ,
and LW wrote the manuscript. BJ, AA, PZ, and LZ revised
critically the study for important intellectual content. All
authors have read and approved the final study.

AVAILAB IL ITY OF DATA AND
MATERIALS
The transcriptome sequencing data was deposited at the
Gene Expression Omnibus under the accession number
GSE167930.

Zhaoming Zhou1,2,†
Xiang Zhou3,†

Liming Cheng4,†
Lei Wen5

Taixue An6
Heng Gao7

Hongrong Deng8
Qi Yan9

Xinlu Zhang10
Youjiang Li11
Yixing Liao12

Xin-zu Chen13,14
Bin Nie15

Jie Cheng16,17
Guanhua Deng5

Shengqiang Wang18
Juan Li5

Hanqi Yin19
Mengxian Zhang20

Linbo Cai5
Lei Zheng6

Minglun Li21
Bleddyn Jones22
Longhua Chen1

Amir Abdollahi23
Meijuan Zhou2

Ping-Kun Zhou24
Cheng Zhou1,23

1 Department of Radiation Oncology, Nanfang Hospital,
Southern Medical University, Guangzhou, China

2 Department of Radiation Medicine, School of Public
Health, Southern Medical University, Guangzhou, China

3 Department of Anesthesiology, General Hospital of
Central Theater Command of PLA, Wuhan, China

4 Department of Laboratory Medicine, Tongji Hospital,
Tongji Medical College, Huazhong University of Science

and Technology, Wuhan, China
5 Department of Oncology, Guangdong Sanjiu Brain

Hospital, Guangzhou, China
6 Department of Laboratory Medicine, Nanfang Hospital,

Southern Medical University, Guangzhou, China
7 Department of Neurosurgery, Jiangyin Affiliated Hospital
of Southeast University School of Medicine, Jiangyin, China

8 Department of Endocrinology and Metabolism,
Guangdong Provincial Key Laboratory of Diabetology, the

Third Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China

9 Department of Geriatrics, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,

Wuhan, China
10 Department of Cardiology, Nanfang Hospital, Southern

Medical University, Guangzhou, China
11 Department of Clinical Laboratory, The Fourth Affiliated

Hospital, Zhejiang University School of Medicine, Yiwu,
China

12 Department of Critical Care Medicine, The First
Affiliated Hospital, Zhejiang University School of Medicine,

Hangzhou, China
13 Department of Gastrointestinal and Hernia Surgery, The

Second People’s Hospital of Yibin - West China Yibin
Hospital, Sichuan University, Yibin, China

14 Department of Gastrointestinal Surgery, West China
Hospital, Sichuan University, Chengdu, China

15 Department of Laboratory Medicine, The Second People’s
Hospital of Yibin - West China Yibin Hospital, Sichuan

University, Yibin, China
16 Center for Reproductive Medicine, Renji Hospital, School

of Medicine, Shanghai Jiao Tong University, Shanghai,
China

17 Shanghai Key Laboratory for Assisted Reproduction and
Reproductive Genetics, Shanghai, China

18 Department of Rehabilitation Medicine, Tongji Hospital,
Tongji Medical College, Huazhong University of Science

and Technology, Wuhan, China
19 South China Institute of Biomedicine, Guangzhou, China
20 Department of Oncology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,

Wuhan, China
21 Department of Radiation Oncology, University Hospital,
Ludwig-Maximilians-University (LMU) Munich, Munich,

Germany
22 Gray Laboratory, CRUK/MRC Oxford Institute for

Radiation Oncology, University of Oxford, Oxford, UK
23 Translational Radiation Oncology, German Cancer

Research Center (DKFZ) and University Heidelberg School
of Medicine, Heidelberg, Germany

https://orcid.org/0000-0002-9788-0184
https://orcid.org/0000-0003-3017-4135


8 of 8 LETTER TO EDITOR

24 Department of Radiation Biology, Beijing Key Laboratory
for Radiobiology, Beijing Institute of Radiation Medicine,

Beijing, China

Correspondence
Cheng Zhou, Department of Radiation Oncology,
Nanfang Hospital, Southern Medical University,

Guangzhou 510515, China.
Email: czhou.rob@gmail.com

Ping-Kun Zhou, Department of Radiation Biology, Beijing
Key Laboratory for Radiobiology, Beijing Institute of

Radiation Medicine, Beijing 100850, China.
Email: zhoupk@bmi.ac.can

†These authors contributed equally to this article.

ORCID
ZhaomingZhou https://orcid.org/0000-0002-9788-0184
ChengZhou https://orcid.org/0000-0003-3017-4135

REFERENCES
1. Pan C, Chen L, Lu C, et al. Lung recruitability in COVID-

19-associated acute respiratory distress syndrome: a single-
center observational study. Am J Respir Crit Care Med.
2020;201(10):1294-1297.

2. Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P.
Cytokine levels in critically ill patients with COVID-19 and other
conditions. JAMA. 2020.324(15):1565–1567.

3. Magro C, Mulvey JJ, Berlin D, et al. Complement associated
microvascular injury and thrombosis in the pathogenesis of
severe COVID-19 infection: a report of five cases. Transl Res.
2020;220:1-13.

4. Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of
COVID-19 patients reveals distinct immunotypes with therapeu-
tic implications. Science. 2020;369(6508):eabc8511

5. ZhengH-Y, ZhangM, Yang C-X, et al. Elevated exhaustion levels
and reduced functional diversity of T cells in peripheral blood
may predict severe progression in COVID-19 patients. Cell Mol
Immunol. 2020;17(5):541-543.

6. Malik P, Patel U, Mehta D, et al. Biomarkers and outcomes
of COVID-19 hospitalisations: systematic review and meta-
analysis. BMJ Evid Based Med. 2021;26(3):107-108.

7. Lazzaroni MG, Piantoni S, Masneri S, et al. Coagulation dys-
function in COVID-19: the interplay between inflammation,
viral infection and the coagulation system. Blood Rev. 2020;46:
100745.

8. Connors JM, Levy JH. COVID-19 and its implications for throm-
bosis and anticoagulation. Blood. 2020;135(23):2033-2040.

9. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay
between inflammation and coagulation. Lancet Respir Med.
2020;8(6):e46-e47.

10. von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neu-
trophils, and platelets cooperate to initiate and propagate venous
thrombosis in mice in vivo. J Exp Med. 2012;209(4):819-835.

11. Tian W, Zhang N, Jin R, et al. Immune suppression in the early
stage of COVID-19 disease. Nat Commun. 2020;11(1):5859.

12. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic autoantibodies
in serum from patients hospitalized with COVID-19. Sci Transl
Med. 2020;12(570):eabd3876.

SUPPORT ING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

mailto:czhou.rob@gmail.com
mailto:zhoupk@bmi.ac.can
https://orcid.org/0000-0002-9788-0184
https://orcid.org/0000-0002-9788-0184
https://orcid.org/0000-0003-3017-4135
https://orcid.org/0000-0003-3017-4135

	Machine learning algorithms utilizing blood parameters enable early detection of immunethrombotic dysregulation in COVID-19
	FUNDINGS
	CONFLICTS OF INTEREST
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	AUTHOR CONTRIBUTIONS
	AVAILABILITY OF DATA AND MATERIALS
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


