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Introduction
Most drugs fail in the early stages of a clinical trial and it takes a lot of time and cost for 
a drug to be successful in the market [1, 2]. These factors have led scientists to work on 
better and cheaper ways to find suitable drugs. One of the most effective and interesting 
solutions to solve these problems is drug repositioning (also called drug repurposing). 
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It is true that drug repositioning, by eliminating the early stages of drug design, can 
speed up research, but it also has drawbacks. For example, determining the dosage of 
a drug that is considered for a new disease using drug repositioning is one of the most 
important challenges of this viewpoint because the drug has already been considered for 
another disease with a specific dose. However, this viewpoint has found its place and we 
have to consider it today.

One of the most important steps of drug repositioning is identifying Drug–Target 
Interactions (DTI), which is a difficult task if laboratory and traditional methods are 
used. In contrast, computational methods can be more effective both in terms of time 
and cost. These methods can identify or predict DTI more quickly. The computational 
methods are usually based on machine learning or recommender systems. To predict 
interactions, these methods first consider a mathematical model for the information 
in the databases and then add biological and/or chemical information to the model, 
according to the guilt by association principle. For example, NRLMF [3], NetLapRLS [4], 
BLM-NII [5], WNN-GIP [6] and DT-Hybrid [7] are some of the well-known methods in 
this field. In addition to the DTI problem, computational methods are also widely used 
to predict drug–drug interactions and drug–disease associations [8–10].

NRLMF is a matrix factorization approach that predicts the probability that a drug 
would interact with a target. In this method, the properties of a drug and a target are 
represented by two latent vectors in the shared low dimensional latent space, respec-
tively [3]. NetLapRLS is a semi-supervised learning method based on Laplacian regular-
ized least square. NetLapRLS, by incorporating a new kernel established from the known 
drug-protein interaction network, is actually an improvement of the LapRLS [4, 11]. The 
bipartite local model (BLM) is a supervised learning approach introduced by Bleakley 
and Yamanishi in 2009 [12]. To improve the BLM, Mei et al. presented a simple proce-
dure called neighbor-based interaction-profile inferring (NII) and integrated it into the 
existing BLM method and called it BLM-NII [5]. WNN-GIP is actually a combination of 
a simple weighted nearest neighbor algorithm and the GIP method [6, 13]. An example 
of recommender systems method introduced for DTI prediction problem is DT-Hybrid. 
It is a network-based interface method that extends a well-established recommendation 
technique by domain-based knowledge including drug and target similarity [7]. Many 
other algorithms have been introduced for this problem, but the algorithms mentioned 
are the most popular and can be considered as the state-of-the-art methods in this field.

As mentioned, the methods first model the information in databases. There are some 
public databases, for example, KEGG [14], PubChem [15], DrugBank [16], and ChEMBL 
[17] that contain information about drugs, targets, and interactions between them. Usu-
ally, all methods introduced for predicting DTI interactions use DrugBank to evaluate 
their results or compare them to other methods. Regardless of what algorithm each of 
these methods uses, they all add similarity between targets and chemical structure simi-
larity between drugs to improve the prediction (Fig. 1). The similarities between targets 
(proteins) are always calculated by the Smith-Waterman method [18] and the chemical 
structure similarities between drugs are usually computed with SIMCOMP [19] which 
has been implemented in the KEGG system for searching similar chemical structures in 
the chemical structure databases. SIMCOMP is a graph-based method and uses a graph 
alignment algorithm to get a global similarity score based on the size of the common 
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substructures between two compounds [5]. Of course, other information such as molec-
ular fingerprints can be used to calculate similarities between drugs, but it is not usu-
ally used. There are several types of molecular fingerprints (e.g., MACCS [20], PubChem 
fingerprint [21], BCI fingerprints [22] and TGD [23]). PubChem fingerprints are 2D 
fingerprints that make a drug to be expressed by a vector and used to discover similar 
conformers by the PubChem database. These fingerprints are very popular and easily 
calculated for every drug.

The purpose of this study is not to identify the best method. Here, we want to discuss 
the following questions specifically for the DTI prediction problem (Fig. 1):

•	 Does considering the similarity of drugs indeed improve the results of computational 
methods?

•	 Is SIMCOMP the best way to calculate drug–drug similarities in any computational 
method?

•	 Do the type and size of the dataset affect the improvement that occurs with adding 
drug–drug similarities?

In this paper, the similarity between drugs refers to the chemical structure similarity.

Fig. 1  Schematic illustration of the DTI prediction problem and the questions addressed in this study
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Materials and methods
Datasets

Yamanishi et  al. have provided four benchmark drug–target interaction datasets 
including Nuclear Receptors, G-Protein Coupled Receptors (GPCR), Ion Channels, 
and Enzymes [24]. The datasets are publicly available at http://​web.​kuicr.​kyoto-u.​ac.​
jp/​supp/​yoshi/​drugt​arget/. The interactions were retrieved from databases KEGG 
BRITE [25], BRENDA [26], SuperTarget [27], and DrugBank [16]. These datasets of 
known DTIs are commonly considered as the gold standard for evaluating the per-
formance of any new method introduced for DTI prediction problem. Each dataset 
contains three types of information in the form of matrices:

1.	 The drug–target interaction matrix, where the presence or absence of an interaction 
is indicated by 1 or 0, respectively.

2.	 The drug–drug similarity matrix calculated by SIMCOMP [19].
3.	 The target-target similarity matrix obtained by Smith-Waterman method [18].

To obtain the matrix mentioned in the second case, the chemical structure of a drug 
is treated as a 2D graph consisting of atoms as vertices and covalent bonds as edges. 
SIMCOMP provides the atom alignments between two chemical compound graphs, 
then it can also calculate the similarity of two chemical compounds by counting the 
number of matched atoms in those atom alignments. The calculation of similarity is 
based on the algorithm to solve the maximal common subgraphs of two graphs as 
the maximum vertex induced common subgraph or as the maximum edge induced 
common subgraph. The maximal common subgraphs of two graphs can be found by 
searching for maximal cliques in the association graph [19].

Some properties of datasets are shown in Table 1. The abbreviations in Table 1 are 
as follows:

•	 ND : Number of drugs.
•	 NT : Number of targets.
•	 NI : Number of interactions.
•	

•	 ADT : Average number of drugs per target.

Density = NI/(ND × NT )

Table 1  The properties of the benchmark datasets

Dataset Nuclear Receptors GPCR Ion Channels Enzymes

ND 54 223 210 445

NT 26 95 204 664

NI 90 635 1476 2926

Density 0.0641 0.0299 0.0344 0.0099

ADT 3.46 6.68 7.24 4.41

ATD 1.67 2.85 7.03 6.58

D1T 72.22% 47.53% 38.57% 39.78%

T1D 30.77% 35.79% 11.27% 43.37%

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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•	 ATD : Average number of targets per drug.
•	 D1T : Percentage of drugs with only one target.
•	 T1D : Percentage of targets with only one drug.

Evaluation

For each data set, in addition to the default drug similarity matrix obtained by SIM-
COMP, we calculated 104 other matrices including one hundred random similarity 
matrices, one matrix where every element is equal to one, and three matrices calculated 
from PubChem 2D fingerprint using Tanimoto coefficient, Dice coefficient and Cosine 
similarity. The software PaDEL was used to obtain PubChem 2D fingerprints of all drugs 
[28]. For a drug, PubChem 2D fingerprints is a binary vector of length 881 that encodes 
the presence or absence of specific molecular substructures. Then, for the fingerprints 
of two drugs A and B, the Tanimoto, Dice and Cosine similarity can be calculated as 
follows:

•	 Tanimoto(A,B) = c
a+b−c

,
•	 Cosine(A,B) = c

√

ab
,

•	 Dice(A, b) = 2c
a+b

, 
where a equals the amount of bit set to 1 in A, b equals the amount of bits set to 1 in 
B and c equals the amount of bits set to 1 in both A and B.
We considered a matrix where every element is equal to one to find out what happens 

to the results of the algorithms if the similarity of the drugs is not affected. To show 
how far the effect of adding drug–drug similarity to DTI problem is from the random 
effect that may occur, we generated 100 random similarity matrices between drugs. To 
make the comparison fair, we consider four state-of-the-art methods NRLMF, NetL-
apRLS, BLM-NII and WNN-GIP. Therefore, in short, we executed every algorithm on 
every dataset using every drug–drug similarity matrix. To do this, we slightly modified 
the PyDTI package [3] to perform the evaluation. Like most studies in this field, results 
are assessed using the area under the ROC curve (AUC) and the area under the preci-
sion-recall curve (AUPR). Similar to [3, 4, 6, 13], we performed tenfold CV for five times 
to evaluate the performance of the methods on datasets. Then, we calculated the average 
AUC and AUPR over the five repetitions. In the next section, we will illustrate the results 
of the evaluations.

Results and discussion
Before discussing the results, it is necessary to state some of the abbreviations given in 
the tables and figures as follows:

•	 All-onesSim: The value obtained for the matrix where every element is equal to one.
•	 MeanRandoms: The average value obtained for random matrices.
•	 BestRandom: The best value obtained for the random matrices.
•	 WorstRandom: The worst value obtained for the random matrices.
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•	 CosinePF: The value obtained for the matrix calculated by Cosine similarity for the 
PubChem fingerprint.

•	 DicePF: The value obtained for the matrix calculated by Dice similarity for the 
PubChem fingerprint.

•	 TanimotoPF: The value obtained for the matrix calculated by Tanimoto similarity for 
the PubChem fingerprint.

The evaluation results on Enzyme, GPCR, Ion Channel and Nuclear Receptors data-
sets are shown in Tables 2, 3, 4 and 5, respectively. In these tables, higher value cells have 
a green color, middle value cells have a yellow color, and lower value cells have a red 
color. It is worth noting that the best parameters for each algorithm are obtained in [3], 
and we have used these parameters here as well.

In each row of tables, the best similarity matrix for each algorithm is bolded. The best 
AUC and AUPR are also marked with underlines. The first point about these tables is 
that the use of random matrices has degraded the efficiency of the methods. In fact, 
what the first four columns of the tables show is that ignoring the drug–drug similarities 
yields far better results than using inaccurate drug–drug similarities. It should be noted 
that the NRLMF and NetLapRLS have less tolerance than other methods in this case. 

Table 2  Comparing different drug–drug similarities on Enzyme dataset

Method All-onesSim MeanRandoms BestRandom WorstRandom CosinePF DicePF TanimotoPF SIMCOMP

A
U
C

NRLMF 0.971239 0.968016 0.969477 0.966555 0.976691 0.97665 0.975809 0.97632

BLM-NII 0.977584 0.7542 0.80648 0.718349 0.977368 0.977764 0.976215 0.969431

NetLapRLS 0.959789 0.96367 0.964636 0.962813 0.966335 0.966613 0.968903 0.972169
WNN-GIP 0.938578 0.515036 0.524567 0.507309 0.914265 0.897733 0.875283 0.964062

A
U
PR

NRLMF 0.84053 0.841717 0.845043 0.839261 0.870242 0.870329 0.870117 0.875611
BLM-NII 0.592729 0.023396 0.034385 0.019237 0.605514 0.60798 0.535238 0.703746

NetLapRLS 0.784019 0.787323 0.787526 0.787082 0.789326 0.789748 0.791864 0.794216
WNN-GIP 0.476497 0.011065 0.01174 0.010693 0.256565 0.281493 0.243454 0.69719

Table 3  Comparing different drug–drug similarities on GPCR dataset

Method All-onesSim MeanRandoms BestRandom WorstRandom CosinePF DicePF TanimotoPF SIMCOMP

A
U
C

NRLMF 0.932221 0.922694 0.929836 0.917277 0.956879 0.957188 0.95682 0.960355
BLM-NII 0.94386 0.671366 0.692179 0.647643 0.934594 0.928518 0.879454 0.943664

NetLapRLS 0.902196 0.90289 0.905388 0.896996 0.910593 0.910846 0.91363 0.914909
WNN-GIP 0.872255 0.528443 0.540304 0.517898 0.804141 0.787323 0.901193 0.933079

A
U
PR

NRLMF 0.570196 0.62361 0.642159 0.60265 0.69302 0.689631 0.688301 0.702622
BLM-NII 0.373081 0.054418 0.062578 0.046693 0.342311 0.33531 0.324491 0.514827

NetLapRLS 0.606391 0.611795 0.612422 0.611115 0.613065 0.613264 0.615776 0.615446

WNN-GIP 0.278136 0.033394 0.035729 0.031326 0.2326 0.230504 0.428247 0.466361

Table 4  Comparing different drug–drug similarities on Ion Channels dataset

Method All-onesSim MeanRandoms BestRandom WorstRandom CosinePF DicePF TanimotoPF SIMCOMP

A
U
C

NRLMF 0.979234 0.975785 0.977846 0.973896 0.981475 0.980925 0.980701 0.983564
BLM-NII 0.974675 0.702874 0.744834 0.672745 0.96044 0.958388 0.944077 0.981287

NetLapRLS 0.958158 0.95734 0.957955 0.956605 0.959433 0.959498 0.959527 0.959882
WNN-GIP 0.861103 0.525954 0.535912 0.516046 0.930855 0.919196 0.944477 0.956789

A
U
PR

NRLMF 0.865326 0.856477 0.863683 0.847016 0.864683 0.85956 0.858608 0.863386

BLM-NII 0.521158 0.058516 0.068181 0.051707 0.484567 0.482101 0.636176 0.821476
NetLapRLS 0.81846 0.820111 0.820284 0.819911 0.821028 0.821095 0.821819 0.823003
WNN-GIP 0.34916 0.038653 0.04019 0.037466 0.53947 0.524961 0.594643 0.667893
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Although the purpose of this study is not to identify a better method, the performance of 
NRLMF is better than other methods in most cases. In the Enzyme dataset (Table 2), the 
AUPR value for all methods and the AUC value for NetLapRLS and WNN-GIP methods 
are the best values when SIMCOMP similarity is considered. The NRLMF and BLM-NII 
methods obtain the best AUC value if they use the CosinePF and DicePF similarities, 
respectively. In the GPCR dataset (Table 3), the AUC for BLM-NII and the AUPR for 
NetLapRLS are the best values if they use the All-onesSim and TanimotoPF similarities, 
respectively. Except for these two cases, according to Table 3, the use of SIMCOMP has 
given the best results in all cases. Table 4 shows that, in the Ion Channels dataset, using 
All-onesSim for the NRLMF method leads to a better AUPR. In all other cases, it is clear 
that SIMCOMP is the best.

In the Nuclear Receptors dataset (Table 5), the SIMCOMP gives both the best AUC 
and AUPR for NetLapRLS and BLM-NII methods. The same thing happens with Tani-
motoPF and WNN-GIP. The AUC and AUPR values for NRLMF are the best if it uses 
the SIMCOMP and DicePF similarities, respectively. In summary, these tables show that 
in almost 94% of experiments, the use of drug–drug chemical structure similarities has 
led to better results.

So far we have seen that drug–drug similarities can increase the accuracy of DTI pre-
dictions. But which method of calculating chemical structure similarity between drugs 
is more appropriate for the DTI predictions problem? The answer shown in Tables  2, 
3, 4 and 5 is clearly SIMCOMP. But the results shown in these tables are obtained by 
parameters tuned for SIMCOMP [3]. Therefore, we randomly selected a dataset for each 
method and tuned the parameters of that method for all drug–drug similarities except 
random similarities. Nuclear Receptors, GPCR, Ion Channel and Enzyme datasets were 
considered for NRLMF, NetLapRLS, WNN-GIP and BLM-NII methods respectively. 
The results of these experiments are illustrated in Fig. 2. The use of SIMCOMP for NetL-
apRLS and WNN-GIP methods gives the best AUC in GPCR and Ion Channel datasets, 
respectively. The AUCs and AUPRs calculated in the rest of the experiments, i.e., 75% 
of them, show that TanimotoPF gave better results than the rest of the similarities. In 
general, it can be concluded that for these datasets and these methods, TanimotoPF and 
SIMCOMP are more appropriate than other similarities in the DTI prediction problem.

To investigate the effect of the type and size of the datasets on the values obtained 
in the experiments, we check the values in Tables 2, 3, 4 and 5 in a different way. Fig-
ures 3, 4, 5 and 6 are given for this purpose. In each figure, we considered a method and 
illustrated the values of AUC and AUPR obtained for that method across all datasets. 

Table 5  Comparing different drug–drug similarities on Nuclear Receptors dataset

Method All-onesSim MeanRandoms BestRandom WorstRandom CosinePF DicePF TanimotoPF SIMCOMP

A
U
C

NRLMF 0.889655 0.864416 0.887016 0.832639 0.937526 0.945632 0.945968 0.948522
BLM-NII 0.775846 0.580958 0.613693 0.537734 0.797103 0.803759 0.896945 0.905075

NetLapRLS 0.79702 0.802193 0.819461 0.77738 0.823197 0.824621 0.835049 0.849627
WNN-GIP 0.810938 0.541304 0.591313 0.504229 0.900681 0.898618 0.90459 0.90394

A
U
PR

NRLMF 0.515368 0.499308 0.564758 0.427307 0.720545 0.728063 0.726034 0.722834

BLM-NII 0.391072 0.123816 0.178884 0.087529 0.485113 0.495231 0.63054 0.659326
NetLapRLS 0.428803 0.430737 0.437371 0.421767 0.444117 0.445235 0.454609 0.464816
WNN-GIP 0.317686 0.095114 0.118977 0.079856 0.581542 0.584819 0.590779 0.582391
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The results for the NRLMF, BLM-NII, NetLapRLS and WNN-GIP methods are shown in 
Figs. 3, 4, 5 and 6, respectively.

The results of Figs. 3, 4, 5 and 6 can be summarized as follows:

Nuclear Receptor
(AUC) GPCR (AUC) Ion Channel

(AUC) Enzyme (AUC) Nuclear Receptor
(AUPR) GPCR (AUPR) Ion Channel

(AUPR) Enzyme (AUPR)

All-onesSim 0.889655 0.932221 0.979234 0.971239 0.515368 0.570196 0.865326 0.84053
CosinePF 0.937526 0.956879 0.981475 0.976691 0.720545 0.69302 0.864683 0.870242
DicePF 0.945632 0.957188 0.980925 0.97665 0.728063 0.689631 0.85956 0.870329
TanimotoPF 0.945968 0.95682 0.980701 0.975809 0.726034 0.688301 0.858608 0.870117
SIMCOMP 0.948522 0.960355 0.983564 0.97632 0.722834 0.702622 0.863386 0.875611
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Fig. 3  Investigating the effect of data type on the use of different drug similarities for NRLMF method

Nuclear Receptor
(AUC) GPCR (AUC) Ion Channel

(AUC) Enzyme (AUC) Nuclear Receptor
(AUPR) GPCR (AUPR) Ion Channel

(AUPR) Enzyme (AUPR)

All-onesSim 0.775846 0.94386 0.974675 0.977584 0.391072 0.373081 0.521158 0.592729
CosinePF 0.797103 0.934594 0.96044 0.977368 0.485113 0.342311 0.484567 0.605514
DicePF 0.803759 0.928518 0.958388 0.977764 0.495231 0.33531 0.482101 0.60798
TanimotoPF 0.896945 0.879454 0.944077 0.976215 0.63054 0.324491 0.636176 0.535238
SIMCOMP 0.905075 0.943664 0.981287 0.969431 0.659326 0.514827 0.821476 0.703746
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Fig. 4  Investigating the effect of data type on the use of different drug similarities for BLM-NII method

Nuclear Receptor
(AUC) GPCR (AUC) Ion Channel

(AUC) Enzyme (AUC) Nuclear Receptor
(AUPR) GPCR (AUPR) Ion Channel

(AUPR) Enzyme (AUPR)

All-onesSim 0.79702 0.902196 0.958158 0.959789 0.428803 0.606391 0.81846 0.784019
CosinePF 0.823197 0.910593 0.959433 0.966335 0.444117 0.613065 0.821028 0.789326
DicePF 0.824621 0.910846 0.959498 0.966613 0.445235 0.613264 0.821095 0.789748
TanimotoPF 0.835049 0.91363 0.959527 0.968903 0.454609 0.615776 0.821819 0.791864
SIMCOMP 0.849627 0.914909 0.959882 0.972169 0.464816 0.615446 0.823003 0.794216
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Fig. 5  Investigating the effect of data type on the use of different drug similarities for NetLapRLS method
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•	 By replacing the similarities, the change in the value of AUPR is greater than that 
of AUC.

•	 Ion Channel and Enzyme datasets seem to be less dependent on similarity matri-
ces replacement.

•	 In almost all figures, when the similarity matrix is replaced, the amount of AUC and 
AUPR changes for the Nuclear Receptors dataset is greater than what happens for 
other datasets. This has sometimes happened with less tolerance for the GPCR data-
set.

•	 Compared to other methods, the NRLMF and NetLapRLS methods are less depend-
ent on similarities and by replacing the matrices, their AUC and AUPR values change 
slightly.

In addition to the more changes that occur in the results on Nuclear Receptors and 
GPCR datasets, all methods perform worse on these two data, compared to other data. 
If we review Table  1 again, we find that these two datasets are smaller than the Ion 
Channel and Enzyme datasets, and the difference between the ADT and ATD criteria in 
these two data is a larger number. Also, the D1T criterion has a larger value for these two 
data, especially for the Nuclear Receptors dataset. Probably, these factors have caused 
that the different methods cannot have better performance and less tolerance on these 
two datasets.

We did not settle for these results and did more analysis to make sure that the impact 
of adding chemical structure similarities between drugs is completely related to the type 
and size of the data. For this purpose, for each dataset and each method, we compared 

Nuclear Receptor
(AUC) GPCR (AUC) Ion Channel

(AUC) Enzyme (AUC) Nuclear Receptor
(AUPR) GPCR (AUPR) Ion Channel

(AUPR) Enzyme (AUPR)

All-onesSim 0.810938 0.872255 0.861103 0.938578 0.317686 0.278136 0.34916 0.476497
CosinePF 0.900681 0.804141 0.930855 0.914265 0.581542 0.2326 0.53947 0.256565
DicePF 0.898618 0.787323 0.919196 0.897733 0.584819 0.230504 0.524961 0.281493
TanimotoPF 0.90459 0.901193 0.944477 0.875283 0.590779 0.428247 0.594643 0.243454
SIMCOMP 0.90394 0.933079 0.956789 0.964062 0.582391 0.466361 0.667893 0.69719
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Fig. 6  Investigating the effect of data type on the use of different drug similarities for WNN-GIP method

Table 6  Percentage of AUC improvement after considering drug–drug similarity

Percentage 
improvement 
(enzyme) (%)

Percentage 
improvement (ion 
channels) (%)

Percentage 
improvement 
(GPCR) (%)

Percentage improvement 
(nuclear receptors) (%)

NRLMF 0.56 0.44 3.02 6.62

BLM-NII 0.02 0.68 0 16.66

NetLapRLS 1.29 0.18 1.41 6.6

WNN-GIP 2.72 11.11 6.97 11.55
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the value obtained by the All-onesSim similarity matrix with its best value from Tables 2, 
3, 4 and 5 and calculated the percentage of improvement. Tables  6 and 7 show these 
values for AUC and AUPR, respectively. What can be deduced from these tables is that, 
in general, the value of AUPR has improved more than that of AUC. Our datasets are 
all imbalances (Table  1), so it is appropriate to use the AUPR criterion for evaluation 
[29]. Since AUPR focuses mainly on the positive interactions, Tables 6 and 7 show that 
adding similarities between drugs has made the methods work better in predicting posi-
tive interactions. This improvement is quite evident in methods BLM-NII and espe-
cially WNN-GIP. The results of method WNN-GIP have improved by 46% in the lowest 
case and 91% in the highest case. The nature of the NRLMF and NetLapRLS methods 
is apparently such that the adding drug–drug similarities does not have much effect on 
them. As mentioned before, NRLMF works great compared to other methods. So, if its 
developers can make changes to the algorithm to get more impact from drug–drug simi-
larities, then the results will be even better.

Another important case that can be deduced from Tables 6 and 7 is that the improve-
ment of both the AUC and AUPR criteria for all methods in the case of Nuclear Recep-
tors dataset is large compared to the other datasets. The size of this dataset may have 
caused this to happen because it is smaller than other datasets, but certainly not the only 
possible reason. Hence, we performed an analysis on the drug–drug similarity matrices 
of drugs for all datasets. Since the SIMCOMP similarities performed better in almost all 
Tables 2, 3, 4 and 5, we calculated the variance and drew boxplots only on these similari-
ties. The results of this analysis are shown in Fig. 7. In this figure, the variance is denoted 

Table 7  Percentage of AUPR improvement after considering drug–drug similarity

Percentage 
improvement 
(enzyme) (%)

Percentage 
improvement (ion 
channels) (%)

Percentage 
improvement 
(GPCR) (%)

Percentage improvement 
(nuclear receptors) (%)

NRLMF 4.17 0 23.22 41.27

BLM-NII 18.73 57.63 37.99 68.59

NetLapRLS 1.3 0.56 1.55 8.4

WNN-GIP 46.32 91.29 67.67 85.96

Fig. 7  Variance and Boxplot of chemical structure similarities between drugs obtained by SIMCONP for all 
datasets
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by var . It is clear that the dispersion of drug–drug similarities in Nuclear Receptors 
dataset, both variance and interquartile range, is greater than in other datasets. In other 
words, there is more information in the drug–drug similarity matrix for this dataset. 
Therefore, it can have a greater impact on the performance of methods, even in the case 
of the NRLMF and NetLapRLS methods. In fact, if the dispersion of similarities within 
the drug–drug matrix is low, it means that the chemical structures of the drugs are very 
similar, and this is equivalent to the fact that the similarities between the drugs are not 
considered.

Conclusions
This paper presents a meta-analysis of adding drug–drug chemical structure simi-
larities to DTI prediction problem. Four state-of-the-art methods were selected and 
implemented on four benchmark datasets. The results show that using a meaningful 
drug–drug similarity can improve the performance of all methods. Tables 2, 3, 4 and 5 
indicated that chemical structure similarity between drugs obtained by SIMCOMP has 
acceptable results for almost all computational methods and all datasets. It is worth not-
ing that these methods have some parameters which can be optimized for the different 
similarities.

The other important conclusion is that the improvement that occurs by adding drug–
drug similarities is not the same for every dataset and every method. It strongly depends 
on the nature of the DTI predictor method, data type and data size. The results of a 
method may be greatly improved, but this improvement for another method may be neg-
ligible. Perhaps, the nature of these methods is such that the effect of adding drug–drug 
similarities in the processes of the various stages of their algorithm is lost and wasted. 
For example, the WNN-GIP method is strongly influenced by the addition of drug–drug 
similarities, and the results are sometimes even improved by up to 90%. But for method 
NRLMF, which works better than all other methods, considering drug–drug similarities 
has little effect on the accuracy of its predictions.

Finally, we analyzed the relationship between the datasets and the improvement dis-
cussed. We showed that if the dispersion of similarities between drugs is low then add-
ing drug–drug similarities to the DTI problem will have little effect on improving the 
results. That is why the improvement of both the AUC and AUPR criteria for all meth-
ods in the case of Nuclear Receptors dataset is large compared to other datasets.

Briefly, we should mention that using drug–drug chemical structure similarity can 
improve the prediction results in the DTI problem. However, this improvement depends 
on the nature of computational predictor method, the size and type of dataset, and the 
type of the method used to obtain the similarities between drugs. This means that this 
improvement may be very small for one method and very desirable for another. It may 
work well on some datasets and not so much on another. If a method wants to improve 
the results by using the drug–drug similarities, it must increase the effect of the drug–
drug similarities in some steps of its algorithm. Otherwise, it may not achieve the desired 
results. One direction for future work is that all the experiments performed here can be 
done on the target-target similarities.
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