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Introduction

Immune deficiencies can be subdivided into two categories: primary or secondary. This chapter describes secondary
defects related to infection, and other forms of secondary immunodeficiency are described elsewhere in this book. Some
microbes manipulate or exhaust effector immune responses, leading to secondary infections by other microbes. While the
manipulation or exhaustion of immune responses is an important defense mechanism of some microbes to evade effective
immune clearance, it is also likely that the genetic immune response repertoire that programs how an infected individual
will respond to these microbes contributes significantly to whether the resulting immune responses will protect against, or
facilitate, superinfection by other microbes. In this chapter, we discuss how some microbes manipulate or, in the case of the
human immune deficiency virus (HIV), exhaust protective innate and/or adaptive immunity, ultimately leading to severe
microbial superinfections by other infectious organisms that cause significant morbidity and, on occasion, mortality from
secondary infections.

A critical component of host defense includes the expression of immunosuppressive cytokines. IL-10, and TGF-b, and
the generation of regulatory T cells that can express these cytokines serve to limit the immune-mediated damage related to
host defense. These same elements also cause secondary immune deficiency by suppressing or blocking effector Th1-like
responses. These immunoregulatory elements, generated in response to the original infection, as a consequence, can lead to
secondary immune deficiency and the development of severe or fatal infection with other microbes. Some of the microbes
that cause temporary or permanent changes in immune responses to other organisms are shown in Table 49.1 (see below).
In addition, Fig. 49.1 shows the functional diversity of CD4þ T cells that has evolved to control the microbiome present on
mucosal surfaces. In concert with the repertoire of these T cells, and the cytokines and chemokines that they express, the
continuum of macrophages (Fig. 49.2)1 and their respective cytokine/chemokine repertoires expressed in response to
microbial infection, form the critical immune response elements that are required to mount and maintain an effective
immune response against these microbes.

The amount of immunomodulatory cytokines, such as IL-10, expressed during infection contributes to the development
of secondary infections during and after recovery from the primary infection. Alteration in the balance between immunity
and immune suppression is in part, based on how much IL-10 is expressed during a given infection. IL-10 promoter
polymorphisms that control high, intermediate, or low expression of IL-102e4 during and after microbial infection may
influence the development of resistance or susceptibility to secondary microbial infection. Excessive IL-10 levels defined
by a given host’s IL-10 genotype could predispose an individual to develop secondary infections by blocking appropriate
pro-inflammatory responses. In contrast, low IL-10 levels, also defined by a given host’s genotype, could protect
against secondary infection, at the expense of limiting collateral tissue damage and T cell memory that higher IL-10
expression would support.5 Taken together, the successful balance of cellular innate and adaptive immune responses,
and the cytokine/chemokine repertoires that they express during a primary infection to an infectious microbe, can
temporarily or permanently “hijack” effective immune responses that are necessary to prevent other infections by microbes
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TABLE 49.1 Microbes that cause secondary immune deficiency states.

Microbe

Affected

immunocyte

Immune dysregulation

phenotype

Pathogens causing

secondary infection

Abnormal lab tests

associated with microbe

infection

Viruses:

Measles T Cells
Dendritic
cells

(1) Diminished
lymphocyte
proliferation

(2) Decreased antibody
production

(3) Increased susceptibility
to co-infection or
super-infection with
viral, bacterial or
fungal pathogens

(1) Viral: Herpes simplex,
cytomegalovirus,
parainfluenza,
adenovirus, coxsackie,
respiratory syncytial virus

(2) Bacteria: S. aureus,
S. pneumonia, Klebsiella,
Pseudomonas,
mycobacteria,
Acinetobacter

(3) fungal: Candida

(1) Anti-measles IgM

(2) Mitogen/Lymphocyte
Proliferation Assay

(3) Lymphocyte profile
(T/B/NK cell immunocyte
counts)

Influenza A
Virus

Neutrophils (1) Deactivation of
chemotaxis, respiratory
burst, degranulation,
and
bacterial killing

(2) IFNs-g, -a, -b triggered
by IAV depresses
macrophage function
and macrophage
scavenger receptor
(MARCO)

(3) Impaired murine
chemokine recruitment
of neutrophils to the
lung

(1) Bacteria: Streptococcal
pneumoniae,
Staphylococcal (MRSA),
Haemophilus influenzae
pneumonia post
Influenza A Virus
infection

(1) PCR-based influenza
assay

(2) complete blood count
with manual differential

Human Immune
deficiency Virus
(HIV)

CD4þ cells
(T cells,
macrophages)

Depletion of CD4þ T cells
over time

Opportunistic infections:
Bacteria, fungi, parasites

(1) 4th generation HIV-1/2
Ag/Ab Assay

(2) Lymphocyte count
(T/B/NK
immunophenotype)

Human T cell
Lymphotropic
Virus (HTLV)

T cells, NK
cells

(1) induces cytotoxic T cells
to kill virus-infected
cells,

(2) alter CD4þ T cell
function and cytokine
production

(3) decreases NK cell
activation

Strongyloides schistosomiasis (1) HTLV-1 and HTLV-2
IgG/IgM

(2) Lymphocyte count
(T/B/NK
immunophenotype)

Cytomegalovirus T Cells (1) lower frequency of
naı̈ve T cells and
accumulation of
memory T cells

(2) immune senescence

Rare secondary bacterial/viral
super infection

(1) CMV PCR

(2) CMV IgG

(3) Lymphocyte count
(T/B/NK
immunophenotype)
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TABLE 49.1 Microbes that cause secondary immune deficiency states.dcont’d

Microbe

Affected

immunocyte

Immune dysregulation

phenotype

Pathogens causing

secondary infection

Abnormal lab tests

associated with microbe

infection

Epstein-Barr
Virus

B Cells (1) Depletion of B cells
(X-linked
lymphoproliferative
syndrome (XLP))

(2) Monoclonal/polyclonal
gammopathy

(3) Autoimmunity

(4) Cancer

Parvoviridae, Streptococcus
group A.

(1) EBV DNA by PCR

(2) Heterphile Ab

(3) EBV Serology (EBV Viral
capsid IgG/IgM, EBV
early Antigen, EBV
Nuclear Antigen)

4) Lymphocyte count
(T/B/NK
immunophenotype)

Parasites:

Leishmania Macrophages (1) Decreased MHC class
II expression

(2) Decreased IL-1
production

Bacteria that cause infection
in patients with chronic gran-
ulomatous disease.

(1) Visualization of
amastigote in smears or
tissue (histopathology)

(2) parasite isolation by
in vitro culture

(3) molecular detection of
parasite DNA

(4) serologic testing

Malaria T Cells
Dendritic
cells

(1) Impaired dendritic cell
maturation and
activation

(2) Increased susceptibility
to co-infection with
viral and bacterial
pathogens

(3) Decreased efficacy of
heterologous vaccines

(4) Reactivation of existing
Epstein-Barr infection,
with increased
susceptibility to
develop lymphoma

(1) viral: Herpes zoster,
hepatitis B, Moloney
leukemia virus,
Epstein-Barr virus

(2) bacterial: Salmonella

(1) Light microscopy -
Giemsa stained blood
smears

(2) Rapid diagnostic test e
antigen based assay
(HRP2, pLDH, aldolase)

(3) PCR based confirmation
for research and
epidemiological uses

(4) Lymphocyte count
(T/B/NK
immunophenotype)

Bacteria:

Bordetella
Pertussis

Airway
macrophages,
neutrophils

(1) Delay of neutrophil
recruitment and influx
into airways

(2) Depletion of airway
neutrophils

Pyogenic bacterial and
mycoplasma pneumonia

(1) culture - ciliated
respiratory epithelium
posterior nasopharynx

(2) polymerase chain
reaction (PCR) e
polyester/ rayon
swab - ciliated
respiratory epithelium
of posterior nasopharynx

(3) Serology of pertussis
antibodies (IgA or IgG to
pertussis toxin,
filamentous
hemagglutinin, pertactin,
fimbriae, or sonicated
whole organism) acutely
versus 4 weeks later



that are commonly found in the environment. Thus, an imbalance in the immune responses made during a primary
infection can have devastating consequences on the ability of an individual to generate effective immune responses to
prevent or survive secondary infections caused by different microbes. Failure to establish an appropriate innate/adaptive
immune balance can lead to persistent, severe, or fatal infections cause by secondary infections.

Distinguishing secondary immune deficiency from primary immune deficiency

It is often difficult to distinguish secondary immune deficiency in a normal individual with a significant initial primary
infection, where the offending microbe temporarily subverts or paralyzes the adaptive immune response to other microbes,
from a patient with primary immune deficiency disease (PIDD) who presents with a serious initial infection (Box 49.1).
Several clues help distinguish between an initial infection in these different patient populations.6e8 Among these clues that
patients with PIDD are more likely to have are:

l a family history of recurrent infections that persist despite optimal medical management
l evidence of neonatal/early childhood demise secondary to infection
l bloodline relatives who have had frequent miscarriages
l unusual infections, such as meningitis or deep seeded organ abscesses
l relatives with repetitive infections with unusual organisms especially in male relatives
l multiple microbes causing an infection at the same time.

Patients with normal immune systems who become infected with viruses, bacteria, or parasites known to temporarily
subvert or paralyze adaptive immunity without the above history are more likely to have secondary immune defects caused
by microbes that prevent appropriate immunity to other organisms. Thus, the challenge for clinicians is to distinguish
between patients with PID versus those with microbe-induced, secondary immune deficiency at the time of first presen-
tation of a serious infection. In this review, we address the patient population with secondary, infection driven immune
compromise, in contrast to patients with PIDD who are the focus of the remainder of this textbook.

IL-12

IL-23

IL-17
IL-22
IL-21

Intracellular
pathogens

(e.g. Mycobacterium
tuberculosis)

Extracellular bacteria,
fungi

(e.g. Candida albicans,
Aspergillus fumigatus)

Helminths
(e.g. Schistosoma mansoni,

Toxocara canis)

IFN-g

TNF-a

IL-1

IL-4

IL-4

IL-5

IFNs

Antigen

APC

Naive Th cells

Th1 cells Th2 cells

Th17 cells

FIG. 49.1 Adaptive T cell responses to microbes. T helper (TH) cell responses to microbial antigens presented by antigen-presenting cells (APCs),
their cytokine milieu and role in driving the subsequent T-cell responses that are involved in protection against bacteria, fungi and parasites.
Figure from D’Elios MM, Benagiano M, Della Bella C, Amedei A. T-cell response to bacterial agents. J Infect Dev Ctries 2011;5(9):640e5. Reprinted
under https://creativecommons.org/licenses/by/4.0/.
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Sepsis

Sepsis with a wide variety of organisms causes a profound secondary immune deficiency. It is not an uncommon scenario
to have to rule out a PIDD in the intensive care setting where both the underlying disease and medications may alter the
immunologic findings. Sepsis is one of the more common causes of secondary lymphopenia (Box 49.1). Furthermore, there
are both acute disruptions of immunologic function and longer term findings that are poorly characterized that are seen
after trauma and burn injuries as well. In fact, increased mortality persists for years after an episode of sepsis. Immunologic
findings occurring with acute sepsis include:

l Decreased CD4þ T cells (apoptosis)
l Decreased gd T cells
l Decreased NK cells
l Decreased B cells
l Diminished neutrophil oxidative burst
l Diminished TLR responses from monocytes
l Diminished monocyte HLA-DR expression
l Diminished NK cytotoxicity

Thus, findings of altered immune function during sepsis require confirmation after clinical recovery. When immediate
action is required, interpretation of results requires placing the laboratory results in the context of recognized secondary
immunologic effects.

FIG. 49.2 General concepts and properties of polarized macrophages. Classically activated macrophages (M1) are induced through LPS and/or
microbial product stimulation. Their inflammatory repertoire is characterized by the secretion of pro-inflammatory mediators and the release of reactive
oxygen and nitrogen intermediates. In contrast, alternative activation of macrophages (M2) covers a continuum of functional states classified as M2a,
induced by IL-4/IL-13; M2b, induced by immune complexes and TLR agonists; and M2c, induced by IL-10 and glucocorticoid hormones. From Labonte
AC, Tosello-Trampont AC, Hahn YS. The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells. 2014 Apr 30; 37(4):
275e285.
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BOX 49.1 Causes of lymphopenia

Primary immune deficiencies

Infections

l Brucellosis

l Cytomegalovirus (CMV)

l Epstein Barr Virus (EBV)

l Human immunodeficiency virus (HIV)

l Histoplasmosis

l Human lymphotropic virus (HTLV)

l Influenza
l Leishmania

l Malaria

l Measles
l Pertussis

l Parvovirus B19

l Viral hepatitis

l Tuberculosis

l Typhoid fever

l Rickettsia

l Varicella zoster virus

Autoimmunity

l Sarcoidosis

l Sjögren’s syndrome

l Systemic lupus erythematosus
l Rheumatoid arthritis

l Myasthenia gravis

Medications

l Chemotherapy (most)
l Anti-lymphocyte globulin

l Alemtuzumab

l Azathioprine
l Bisphosphonates (some)

l Carbamazepine

l Cimetidine

l Corticosteroids

l Dimethyl fumarate

l Imidazoles

l Interferons
l Methotrexate

l Opioids

l Psoralen
l Rituximab

Gastrointestinal/nutritional conditions

l Celiac disease

l Ethanol Abuse
l Inflammatory bowel disease

l Lymphangiectasia

l Malnutrition

l Protein loosing enteropathy

l Zinc deficiency

Hematology/Oncology conditions

l Bone marrow failure

l Hodgkin’s disease
l Aplastic anemia
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Examples of microbes that cause temporary or long-term secondary immune
deficiency

Table 49.1 9 shows some of the microbes that are known to induce secondary immune deficiency, the cells that they affect,
and the pathogens causing secondary infection. In some cases, secondary immune deficiency occurs as a result of a
cytokine storm. Some infections known to cause a cytokine storm are shown in Box 49.2. Below, we describe examples of
how some of these microbes suppress immunity and thereby cause secondary immune deficiency, predisposing patients to
secondary microbial infections.

Viruses that hijack immune responses to other microbes

Measles virus: temporary immunosuppression

Measles virus (MV) continues to cause child morbidity and mortality worldwide, despite the availability and use of an
effective live attenuated measles vaccine.10e14 Part of the reason why control of MV continues to be elusive is that it is

BOX 49.2 Select Infections causing cytokine storm224e233

l Anaplasma phagocytophilum

l Burkholderia pseudomallei

l Crimean-Congo hemorrhagic fever virus

l Dengue virus

l Ebola virus

l Ehrlichia chaffeensis
l Francisella tularensis

l Influenza (H5N1, H7N9 more than H1N1, H3N2)

l Junin virus
l Lassa virus

l Marburgvirus

l Puumala orthohantavirus

l Middle East respiratory syndrome CoV (MERS-CoV)

l Severe acute respiratory syndrome CoV (SARS-CoV)

l Visceral Leishmaniasis

l Yellow fever virus

Radiation

l Radiation therapy

l Radiation injury

l Thermal energy (burn)
l Ultraviolet A irradiation

Other conditions

l Cushing Syndrome

l Exercise

l Idiopathic CD4þ lymphocytopenia

l Lymphocyte loss conditions

l Renal failure

l Sepsis/Severe Acute Respiratory Syndrome (SARS)

l Stress

l Thoracic duct drainage, leak, rupture, diversion

l Trauma
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highly contagious for susceptible individuals and there are difficulties with vaccine delivery. MV infection begins in the
respiratory tract, spreads systemically in lymphoid, epithelial and endothelial cells, and ultimately infects multiple
organs,15 causing a characteristic fever, rash, and conjunctivitis 10e14 days after respiratory infection (Fig. 49.3A and B).
High fever, rhinorrhea and conjunctivitis typically precede the rash and the rash migrates from the head and neck to the
hands and feet over 3e4 days. Many of these manifestations are caused by the immune response made to MV, and
commonly this response clears MV in infected tissues and prevents re-infection for life (Fig. 49.3C and D). However, MV
infection can cause several weeks of immune suppression after resolution in select individuals. This is the primary cause of
measles-associated deaths: MV-induced secondary infection.16 Although vaccination against measles is very high in the
United States, 92.7% of children aged 19e35 months were vaccinated in 2017,17 there are pockets of unvaccinated people
who are susceptible to local outbreaks of measles. Since “herd immunity” is primarily effective when the vaccination rate is
around 96%,18 vaccination levels below this level leave children and adults at risk for primary MV infection and secondary
microbial infections.

FIG. 49.3 Outline of the pathogenesis of measles virus (MV) from the time of infection through recovery. (A) MV infection is initiated in the
respiratory tract and spreads systemically to infect multiple organs, including lymphoid tissue, liver, lungs, and skin. Epithelial cells, endothelial cells, B
and T cells, monocytes/macrophages, and dendritic cells can be infected. MV clearance begins with the onset of the rash. Clearance of MV is complete
20 days after infection; however, viral RNA (dashed line) persists at multiple sites. (B) Clinical signs and symptoms begin approximately 10 days after
infection, with prodromal symptoms of fever, conjunctivitis, and oral Koplik’s spots, followed by a maculopapular rash for 3e5 days. (C) The rash
represents adaptive immune responses with infiltration of CD4þ and CD8þ T cells into sites of MV replication and clearance. There is a rapid activation,
expansion, and then contraction of MV-specific CD8þ T cells. CD4þ T cell responses appear at the same time, but activation is prolonged. MV-specific
IgM appears with the rash, and this is commonly used for diagnostic purposes. This is followed by the sustained MV-specific IgG synthesis. Immune
suppression is evident during acute disease and for many weeks after recovery. (D) Cytokines and chemokines produced during infection are found in
plasma in elevated amounts. Early, IL-8 is increased. During the rash, IFN-g and IL-2 are g and IL-2 are produced by activated TH1-like, CD4

þ and CD8þ

T cells. After rash resolution, TH2-like T cells and regulatory CD4þ T cells produce IL-4, IL-10, and IL-13. Figure reproduced from Griffin DE. Measles
virus-induced suppression of immune responses. Immunol Rev 2010;236:176e89 ©2010 John Wiley & Sons A/S.
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Measles was the first virus clearly identified to cause increased susceptibility to other microbial secondary infections.
Most often, measles-associated deaths are caused by severe, overwhelming pneumonia and diarrhea.16 Suppression of
delayed hypersensitivity has been identified in tuberculin-sensitized individuals many weeks after complete resolution of
MV infection (Fig. 49.3C).19 Furthermore, several weeks after successful MV recovery, increased susceptibility to other
infections has been reported, and T cell function and in vitro proliferation of T cells in response to mitogens has been
shown to be markedly decreased (Fig. 49.4A and B).1,20,21 Immunosuppression occurs during a period of intense im-
mune activation that occurs during the onset of the MV rash and anti-MV immune responses (Fig. 49.3C and D).
Lymphopenia, skewing of Th2-like chemokine polarized responses, and suppression of lymphocyte proliferation have
also been documented (Fig. 49.3D). MV infection causes decreases in T and B cells in the blood during the MV rash
period.22e25 Altered trafficking and increased apoptosis of MV-infected and uninfected lymphocytes contribute to the
development of lymphopenia.22,26e30 While lymphocyte numbers rapidly return to normal in the blood after the rash
resolves, immunologic abnormalities persist.21,22,31,32 Immune suppression, Th2 cytokine polarization of CD4þ T cells,
and Treg induction have been associated with indirect immunosuppression caused by MV infection.33,34 MV infection is
also associated with suppression of IL-12 expression, lymphocyte CD30 expression, and IL-4, IL-10, and IL-13
expression after rash resolution.35e37 Reduction of IL-12 production reduces T cell expression of type I cytokines,
particularly IFN-g10,32 (Fig. 49.3D). It is possible that MV interacts with the complement regulatory molecule CD46 in
polarizing Th2-like cytokine production, causing activation of signaling cascades that modify cell function, although this
interaction is not firmly established.38,39 The MV-CD46 interaction may alter innate immunity by selectively down-
regulating receptor expression.40e46 This would increase susceptibility to complement-mediated lysis of MV-infected
cells, and decrease antigen presenting cell production of IL-1247,48 and crosslinking of CD46 on T cells, leading to
the induction of regulatory CD4þ T cells and enhanced IL-10 levels.49 These interactions would induce Th2-like po-
larization that would favor B cell maturation, provide lifelong MV antibody memory, and protect against MV re-
infection. This polarization, however, would also depress APC activation and Th1-like responses to new pathogens.

MV suppresses PBMC proliferation to mitogens after MV resolution, and this continues for several weeks
(Fig. 49.4B).20,31 IL-2 supplementation can improve, but not fully restore, this responsiveness. This suggests that defective
IL-2 expression is in part responsible for this proliferative defect.50 Cell cycle arrest in G1 after in vitro infection with MV
is a recognized cause of hyporesponsiveness to mitogens.42,51e53 MV RNA can persist in PBMCs for months after MV
resolution54,55 and may reduce mitogen proliferation, although this has not been established. The receptor used by wild-
type MV to infect cells, CD150, is a dual function co-receptor for lymphocyte activation, and enhances IFN-g
expression.56e58 However, MV binding to CD150 can also downregulate receptor expression.59,60 T cell signaling through
the MV glycoprotein complex of H and F1-F2 in the membranes of virions or MV-infected cells61e65 may also contribute
to immunosuppression. This inhibitory signal prevents T cell S-phase entry for several days, and is independent of cell
death, membrane fusion, soluble inhibitor production, or T cell infection.52,61,62,65e67 Thus, there is a delay in cell cycle
progression and an accumulation of T cells in the G0/G1 phase.52,66,67 The mechanism by which H/F1-F2 suppresses
mitogen-induced proliferation is unknown, but it is associated with MV-induced interference of T cell activation of
phosphoinositide 3-kinase (PI3K) in T cells, or IL-2 receptor ligation.68 IL-2 added to MV-treated cells activates signal
transducer and activator of transcription 3 (STAT3) but fails to activate Akt kinase, which is required for cell cycle
progression.69 The modulatory effects of MV with glycoprotein complexes, and the downstream consequences of this

FIG. 49.4 Immune suppression during measles. (A) Delayed-type hypersensitivity skin test responses to tuberculin in Peruvian children before
(control) and after the onset of measles. (B) Peripheral blood mononuclear cell proliferation in response to phytohemagglutinin from rhesus macaques
during a primate center outbreak of MV. Figure reproduced from Griffin DE. Measles virus-induced suppression of immune responses. Immunol Rev
2010;236:176e89 ©2010 John Wiley & Sons A/S.
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interaction, have recently been summarized.10,68e70 While the relevance of these processes to the in vivo suppression of
T cell lymphoproliferation remains to be identified. The combination of the established mechanisms leading to post-MV
infection immunosuppression, and those that remain to be elucidated, cause, in select individuals, severe and on occasion,
fatal secondary infection with other microbes.

A key epidemiologic factor in measles-related deaths is vitamin A deficiency. In the developing world, the World
Health Organization recommends vitamin A supplementation. Studies have demonstrated improved outcomes and suggest
an effect on the mucosal barrier and also on improved T cell function though by an undefined mechanism.

Influenza virus: temporary immunosuppression

Three world-wide (pandemic) outbreaks of influenza virus (IV) occurred in the 20th century, in 1918, 1957, and 1968.
They are now known to represent three different antigenic subtypes of influenza A virus: H1N1, H2N2, and H3N2,
respectively.71 The 1918 “Spanish Flu” epidemic claimed an estimated 50 million lives and 20%e40% of the worldwide
population became ill; approximately 675,000 Americans died during this epidemic.72 Since then, IV infections have
caused more than 20,000 deaths yearly in each of the 20 epidemics from 1957 to 1991,73 and greater than 40,000 deaths
occurred in each of the more recent epidemics, Thus, IV is a formidable pathogen.74 While influenza-related mortality can
in part be attributed to direct effects on the respiratory system, many of the deaths associated with IV infection are caused
by increases in susceptibility to secondary bacterial pneumonia.75 In fact, it has been suggested that the major mortality and
morbidity resulting from IV infection may be caused by secondary bacterial infection that is associated with the inhibition
of neutrophil function.73 The bacteria commonly causing pneumonia in the most severely ill influenza patients are
Streptococcus(S.) pneumoniae, Staphylococcus aureus, and Haemophilus influenzae. Together, IV infection itself, and
secondary bacterial pneumonia, were the most common causes of infectious death in the United States in 2002.76 Research,
clinical, and epidemiological studies show that there is a positive correlation between the increase in morbidity and
mortality during influenza epidemics and pandemics, and an increase in secondary S. pneumoniae infection.75,77,78 It has
been hypothesized that influenza infection alters neutrophil function, thereby reducing the effectiveness of phagocyte-
mediated killing of bacteria. An alternative hypothesis is that the tissue damage caused by IV alters the epithelial sur-
face of the respiratory tract, thereby exposing different surface receptors to which S. pneumoniae adhere, and/or increasing
the affinity of S. pneumoniae for its receptors, which may result in increased growth and decreased neutrophil killing of
S. pneumoniae in the respiratory tract. Support for the former hypothesis comes from reports using both in vitro and in vivo
models of influenza infection.79e90 Neutrophils are important in resistance to S. pneumoniae infection independent of an
influenza infection.91 Influenza A virus alters the three major properties of the neutrophil that are crucial for bacterial
clearance, namely chemotactic responsiveness, phagocytosis, and intracellular killing. This alteration of neutrophil
function likely increases the susceptibility of an influenza-infected patient to S. pneumoniae infection because of decreased
phagocytosis and killing of these bacteria by neutrophils.80,84,89,92

In humans, IV was reported to alter cell function by interacting with G proteins.81,90,93 Human neutrophils express
monomeric and trimeric G proteins that have critical roles in activation and regulation of various signal pathways, leading
to chemotaxis and metabolic function.94,95 Susceptibility to S. pneumoniae in mice is greatest at six days after influenza
infection, consistent with the clinical findings.96e99 Influenza-induced tissue damage is also greatest six days after
influenza infection, as is adherence of S. pneumoniae to murine influenza-infected tracheas.100 Influenza-induced
neutrophil dysfunction is also greatest six days after influenza infection,101 and murine mortality secondary to
S. pneumoniae infection is greatest seven days after infection. Although neutrophils accumulate in the lungs of mice
infected with influenza by day six, they do not function in resistance to S. pneumoniae. Thus, it is likely that bactericidal
function of lung neutrophils is suppressed, making these influenza-infected mice susceptible to S. pneumoniae. Effective
neutrophil phagocytosis and killing of S. pneumoniae is necessary to eliminate S. pneumoniae from the lungs.102 Neu-
trophils are affected within 30 min of in vitro influenza infection,83,84,87,89,103 with some effects seen as rapidly as 5 min
after incubation with IV. Changes in infected neutrophils include decreased protein phosphorylation, accelerated apoptosis,
decreased respiratory burst activity, an altered cytoskeleton, depressed bactericidal capacity identified by release of reactive
oxygen species, decreased chemotactic ability, decreased adherence, decreased release of lactoferrin into phagosomes, and
inhibition of lysosomeephagosome fusion.81,82,84,87,89,92,103 In addition, the effects of influenza virus infection on
neutrophil function are not limited to the lungs, indicating that these effects are systemic in nature.89,90 Influenza infection
also increases susceptibility to S. pneumoniae by increasing cytokine production (TNF, IFN-g, MCP-1, IL-10, IL-6) in the
lung.75

IL-10 is also elevated in post-influenza pneumococcal pneumonia, leading to increased susceptibility to S. pneumoniae
long after an influenza infection has been resolved.104 Susceptibility remains at least 14 days after a primary influenza
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infection, and is thought to be mediated by IL-10 inhibition of neutrophil function, resulting in increased bacterial growth
in the lungs leading to mortality.104 Of note, viral influenza neuraminidase increases S. pneumoniae adherence in the lungs
by cleaving sialic acid residues, and exposing receptors to which S. pneumoniae can adhere.78 Thus, both neutrophil-
dependent and -independent mechanisms cause increased susceptibility to secondary S. pneumoniae infection after a
primary influenza infection. Novel therapies that can restore neutrophil function caused by IV infection may be
helpful.73,75

Human immune deficiency virus: long-term immunosuppression

HIV is a double-stranded, enveloped RNA retrovirus from the genus Lentivirus within the subfamily Retroviridae, with a
tropism for human CD4þ cells, including T cells and macrophages.105 Two HIV types have been identified, HIV-1 and
HIV-2, and both cause similar but not identical human disease. The HIV genome contains three structural genes (gag, pol,
and env) and six regulatory genes (tat, rev, nef, vif, vpr, and vpu). These proteins, their function, and their role in forming
the viral particle have recently been summarized.105 The Env protein is cleaved to produce two envelope proteins, gp120
and gp41, which are involved in HIV binding to CD4 and the chemokine receptors CXCR4 and CCR5 on cell surfaces.105

Tat, Nef, and Rev proteins play a role in downregulating classical MHC class I molecules on the surface of HIV-infected
T cells.106e108 In the case of Tat, HLA-C and HLA-E are spared.109 The classical HLA presenting molecule HLA-C on
antigen presenting cells is not as potent in presenting viral peptides to T cells similar to the non-classical MHC class I
molecule HLA-E. However, the non-classical MHC class I molecule HLA-E, similar to HLA-A, HLA-B, and HLA-C,
suppress NK function. This viral strategy to evade immune surveillance serves two functions: (1) prevent CD8þ T cells
from recognizing HIV peptides presented by class I MHC molecules, and (2) prevent NK cell recognition and activation
because HLA-C and HLA-E remain on HIV-infected cells leading to inhibition of NK killing of class I MHC expressing
target cells. The Nef protein also downregulates CD4 expression on the surface of HIV-infected cells, which is a
co-receptor of the T cell receptor participating in T cell activation.110 This facilitates HIV-infected cell escape from
immune surveillance.

Following HIV gp120 protein binding to CD4 and CCR5 molecules on target cells, HIV-infected cells migrate to
the lymph nodes, where initial replication and infection of nearby CD4þ T cells occurs.111 During acute HIV infection,
gut-associated lymphoid tissues, predominantly memory CD4þ T cells, are severely depleted. There is high HIV viremia
and immune activation.112,113 HIV induces T cell lymphopenia through several mechanisms: HIV-induced apoptosis; a
viral cytopathic effect; non-specific immune activation-induced apoptosis; and cytotoxicity of HIV-infected cells.105

Autophagy is also induced by HIV Env protein in uninfected T cells.114 In addition, shedding of gp120 molecules by HIV
triggers a series of events that cause the adaptive immune system to become less effective by altering the normal balance of
immunoregulatory Th1 and Th2 T cells. Impaired function of HIV-infected macrophages and dendritic cells contributes to
the failure of effective innate and adaptive immune responses to secondary infection.

The acute and latency phase of HIV infection is shown in Fig. 49.5.115,116 Without combined antiretroviral therapy
(cARV), CD4þ T cell counts progressively decrease, and the host usually succumbs to infections with opportunistic
organisms that occur because of HIV-induced secondary immune deficiency. Specific anti-HIV, CD4þ, and CD8þ

T cells, and neutralizing anti-HIV antibodies develop, however, these responses are eventually overcome by viral escape
strategies.105 Patients can present with constitutional symptoms, such as fever, weight loss, diarrhea, lymphadenopathy,
secondary opportunistic infections, and viral skin infections, heralding the presence of an immunocompromised immune
system. Peripheral CD4þ T cell counts of <200 cells/mL herald the development of AIDS. This T cell depletion pre-
disposes patients to develop opportunistic infections including, but not limited to, cytomegalovirus, Herpes simplex,
varicella zoster virus, Pneumocystis jirovecii pneumonia, histoplasmosis, toxoplasmosis, coccidioidomycosis, Crypto-
sporidium, Nocardia, Mycobacterium avium complex, salmonella, and Toxoplasma gondii. If HIV-infected patients do
not receive antiretroviral treatment, repeated infections with these opportunistic secondary infections ultimately lead to
death. Thus, HIV infection exhausts the adaptive immune system, leading to chronic depletion of CD4þ T cells and
immune dysfunction of the multiple effector immune responses that are required to prevent secondary bacterial, viral,
fungal, and protozoan infections.

Human T-lymphotropic virus: long-term immunosuppression

Human T-Lymphotropic viruses (HTLV) are complex type C retroviruses with a capsid that contains two simple RNA
strands with associated reverse transcriptase and integrase enzymes which are essential for insertion of the virus into the
host genome.117 Several types of HTLV have been identified (HTLV-1, HTLV-2, HTLV-3, HTLV-4). While HIV-1 was
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previously called HTLV-3, HTLV-3 is a different virus.117 Similar to other retroviruses, HTLV-1 contains gag, pro/pol
and env genes that have structural and functional roles. In addition, the pX region codes for regulatory proteins (such as
transactivator protein, Tax, and the helix basic zipper protein, HBZ) essential for viral transcription, and inhibition of signal
transduction pathways, such as NFkB (leading to decreased SOCS1), and AP-1. This leads to HTLV-1 inducing cytotoxic
T cells that can kill virus-infected cells.118

The HTLV-1 Tax gene can decrease Th1-like antiviral signaling pathways both by modulating the suppressor of
cytokine signaling 1 (SOCS1)119 and also through the aryl hydrocarbon receptor protein (AIP) that binds to interferon
regulatory factor 7 (IRF7), thus decreasing Type I interferon (IFN-a/b) expression.120 HTLV-1 modifies the behavior of
CD4þ T cells and alters their cytokine production. HTLV-1 is clinically associated with adult T cell leukemia/lymphoma
(ATL), and tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM)121 and can cause autoimmune dis-
ease, such as rheumatoid arthritis, systemic lupus erythematosis, and Sjögren’s syndrome.117e120

The development of the HTLV-1 induced autoimmunity is thought to rely on molecular mimicry, and HTLV-1 induced
T cell immunosuppression is caused by direct infection of CD4þ T cells. CD4þ T cells that have altered function and
cytokine production. Tax is the primary inducer of clonal infected T cell expansion, and genetic instability.117 Tax
expression promotes T cell activation, proliferation, and resistance to apoptosis.122 Clinically, patients infected with
HTLV1 have increased infections and increased autoimmunity, particularly rheumatoid arthritis and Sjogren syndrome.
The autoimmunity correlates somewhat with viral load, however, there are immunologic mechanisms that probably
facilitate breaks in tolerance leading to autoimmunity.

In addition, natural killer (NK) cells from individuals with PET/HAM have decreased expression of the activating
receptor NKp30.123 This likely results in decreased NK cell activation, leading to decreased ability of NK cells to kill virus-
infected cells. HTLV infection is clinically associated with an increased risk of disseminated strongyloidiasis,124 schis-
tosomiasis,125 likely due to high levels of IFN-g, decreasing the production of Th2-like cytokines (IL-4, IL-5, IL-13) and
IgE essential to contain these parasitic infections. Taken together, HTLV induces cytotoxic T cells to kill virus-infected
cells, alters CD4þ T cell function and cytokine production and it decreases NK cell activation leading to susceptibility
to subsequent disseminated parasitic infections.
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FIG. 49.5 Typical course of HIV Infection. During the early period after primary infection, there is widespread dissemination of virus and a sharp
decrease in the number of CD4þ T cells in peripheral blood. An immune response to HIV ensues, with a decrease in detectable viremia followed by a
prolonged period of clinical latency. The CD4þ T cell count continues to decrease during subsequent years, until it reaches a critical level below which
there is a substantial risk of opportunistic diseases. Figure reproduced from Reid S, McGrath L. HIV/AIDS. Sleep Medicine Clinics 2019;2(1):51e8 with
permission from Elsevier.
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Bone marrow (BM) suppression related to viral infection

Many viral infections have been associated with BM failure or hyperproliferative syndromes. Table 49.2 summarizes some
of the human viral infections that cause self-resolving or persistent BM suppression.126 However, the specific pathogenic
mechanisms that underlie the reported virally induced BM manifestations have not been fully characterized. Nonetheless,
many different viruses generate the same pathological condition. This suggests that a common underlying mechanism(s),
specifically virologic or immunologic are responsible for the clinical pathologic outcome. Certain virus can also lead to
different pathological manifestations in different patients heralding a genetic basis for aberrant immune activation in BM
failure.

There are 4 different mechanisms by which viruses can affect hematopoietic stem and progenitor cells (HSPC). These
mechanisms include: (1) direct viral infection, (2) viral recognition by HSPCs and indirect effects, (3) inflammatory
mediators, and (4) changes in the BM microenvironment. Taken together, many types of viruses can affect hematopoiesis
acutely (Parvovirus B19, dengue), transiently, permanently, chronically (CMV, HIV), systemically (HIV), locally
(Influenza), directly, or indirectly, causing disruption of the hematopoietic process.126

Parasites that hijack immune responses to other microbes

Leishmaniasis: temporary immune suppression

Leishmaniasis is caused by protozoan parasites of the genus Leishmania of the family Trypanosomatidae, and is trans-
mitted by a sand fly vector. It infects over 12 million individuals globally in tropical and subtropical regions, with
approximately 2 million new clinical cases (0.5 million visceral leishmaniasis [VL] and 1.5 million cutaneous leishmaniasis
[CL]) each year. The estimated death toll caused by these infections is approximately 50,000 persons per year.127,128 Three
major clinical forms of leishmaniasis are known (VL, CL, and mucocutaneous leishmaniasis [MCL]); all are the result of
infection by different species of this parasite and the various host immune responses made to these microbes (Box 49.3).
Leishmaniasis is transmitted by sand flies with dogs, rodents (East Africa, Ethiopia, the Sudan and Kenya) and foxes
(Mediterranean and Asia) as reservoirs.

VL is fatal if not treated, and is caused by Leishmania donovani, Leishmania infantum, and Leishmania chagasi.129,130

Immunity to leishmaniasis is mediated by the cellular and humoral arms of the mammalian immune system: the innate

TABLE 49.2 Bone marrow pathologies associated with human viral infections.

Pathology Virus Comments

Pancytopenia EBV Self-resolving

HCV Affected by medication

Aplastic anemia Parvovirus B19 Driven by infection of erythroid progenitors

EBV, CMV, VZV, HHV, HIV,
HAV, and HCV

Driven by a strong antiviral T cell response and ensuing
cytokine production

Dengue Mechanism unknown

HLH CMV Driven by the ensuing antiviral immune response rather
than the virus itself

Parvovirus B19

Dengue

HAV

HIV (acute)

Lymphoproliferative disorders and
malignancies

EBV Infectious mononucleosis and chronic active EBV disease

HCV Acute myeloid leukemia, primary myelodysplastic
syndrome

Table reproduced from Pascutti MF, Erkelens MN, Nolte MA. Impact of viral infections on hematopoiesis: from beneficial to detrimental effects on Bone
marrow output. Front Immunol 2016;7:364. Reprinted under https://creativecommons.org/licenses/by/4.0/.
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system (by neutrophils, macrophages, and dendritic cells) and by adaptive (T cells) responses.131 Sand-fly bites cause
minimal tissue damage, but the bite promotes neutrophil recruitment.132,133 Parasites can survive for a time within neu-
trophils, and eventually they parasitize neutrophils. Viable parasites are engulfed by macrophages or dendritic cells. Inside
the macrophages, promastigotes change into amastigotes and they reproduce by binary fission, ultimately rupturing the
macrophage and releasing amastigotes into the blood. Leishmania modulates the normal antimicrobial mechanisms of the
macrophages. They increase membrane fluidity and thereby disrupt lipid rafts and APC antigen presentation as well as
lysosomal fusion.134 Leishmania-infected APCs interact with T cells, and together they express cytokines and chemokines
that begin to “hijack” the immune system, which enables these parasites to survive.135 Cell-mediated immunity is the
principle host defense against leishmania species. Th1-like cells primed mainly by APCs and IL-12 expression are major
effector responses to this microbe.136e139 The dichotomy between Th1-like protection (IFN-g, IL-2, and TNF) and Th2-
like disease progression (IL-10, IL-4) in mice has been shown to be essential in CL infection,140 although this paradigm is
less clear in humans infected with VL.141,142 The immunopathology of VL is complex, and involves cellular and genetic
factors that confer disease susceptibility, versus resistance to Leishmania species.143

Persistent VL correlates with a chronic Th2-like (IL-10, IL-4, IL-5, and IL-13) response to L. donovani142 and
increased serum IL-10 expression.144e147 IL-10 is crucial in establishing and maintaining Th2-dependent chronic
suppression of Th1-like mediated immunity in CL.148e150 and inhibits amastigote killing.150,151 IL-10 also inhibits the
production of IFN-g.152 Cellular immunity impairment correlates with active disease progression secondary to IL-10
expression, independent of IFN-g levels.153 In murine CL, CD4þCD25þFoxP3þ natural Tregs are a major IL-10
source and are crucial for parasite survival.154 However, IL-10 is also derived from non-Tregs.146,155 This suggests that
any therapeutic approach to treat leishmania infection will require species-specific manipulation of the immune responses
made to these parasites. For example, the potent Th2-like cytokine IL-4 is critical in CL, but not in VL.141 Thus,
modulating IL-4 expression may be helpful in VC, but not in the treatment of CL.156

Resolution of human and murine VL depends on the production of Th1-like cytokines.139,140,147,157e160 IL-12 and
IFN-g are crucial in controlling parasite growth and development.157,161 While IL-10 suppresses host immunity and helps
parasite survival, it is the antidote to inflammation that reduces tissue damage caused by exaggerated inflammation.162

Since IFN-g -producing cells can also produce small amounts of IL-10, this may act as a negative feedback in controlling
tissue damage142,146,163,164 and supporting immune memory. TNF stimulates IFN-g -induced expression of nitric oxide by
APCs that can kill VL parasites.165e170 Th17-like cells that produce IL-17 are pro-inflammatory, and stimulate IL-6, TNF-
a, and chemokine expression. However, L. donovani strongly induces IL-17 and IL-22, and enhances the secretion of these
cytokines that protect this parasite.171 CD8þ cytotoxic T cells are also important in controlling CL and VL.172 CD4þ and
CD8þ T cells, and their pro-inflammatory cytokines, are required to control VL parasite proliferation and leishmaniacidal
activity.138,161,173e176 However, in canine VL, antibodies are insufficient in providing protection in the absence of -pro-
inflammatory T cell responses.132 Thus, in addition to protective T cell responses, other T cell subsets, including Tregs
and Th17 cells, confer either susceptibility or resistance to animal verses human VC. Other cells may also be important in

BOX 49.3 Leishmaniasis (L)

Visceral Leishmania.

Fever, weakness, weight loss, splenomegaly.

L. donovani.

Cutaneous Leishmania (simple or diffuse).

Single or multiple ulcers.

L. tropica.

L. major.

L. aethiopica.

L. Mexicana.

L. braziliensis.

Mucocutaneous Leishmania.

Mucous membrane ulceration.

L. braziliensis.
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the resolution of these infections, thus further investigation is required in designing vaccines or treatments for these
diseases.

Greater than 20% of CL patients have reported secondary bacterial infections.177 S. aureus, coagulase-negative
Staphylococcus, Escherichia coli, Proteus, and Klebsiella have been cultured from lesions (listed in decreasing
frequency). However, the incidence of these infections is higher in ulcerated compared to non-ulcerated lesions. Thus, both
disruption of the skin, and possibly immunosuppression caused by CL, likely play roles in the development of secondary
bacterial infection in CL, leading to severe or lethal bacterial infection.177 Increased Treg numbers in CL have been linked
to activation/reactivation of latent microbial infections (Mycobacterium tuberculosis, Toxoplasma, herpes viruses) that
cause significant morbidity and mortality, possibly as a result of immunosuppression and other factors, although how
activation/reactivation of dormant infections occurs remains unknown.178 Thus, leishmania infection causes secondary
infections, and activation/reactivation of dormant infections that can lead to severe or lethal outcomes through multiple
mechanisms.178 L. donovani infection can also clinically resemble and cause hemaphagocytic lymphohistiocytosis (HLH)
and successful treatment of leishmaniasis can lead to the complete resolution of HLH symptoms.179,180 These reports open
the question as to whether HLH patients should be prescreened and aggressively treated for visceral leishmania infection
prior to instituting stem cell transplantation for HLH when from endemic areas.179 VL has been associated with significant
secondary infections. These may be confounded by HLH where neutropenia is common. Infections ranging from sepsis to
urinary tract infections occur in a significant subset of patients with VL. The most common pathogens causing sepsis are
S. aureus, Klebsialla pneumonia, and Pseudomonas aeruginosa. Common laboratory features include neutropenia,
eosinopenia and leukopenia. Co-infection with HIV alters the clinical presentation with more lung and gastrointestinal
involvement.

Taken together, the innate response (professional APCs) is altered by leishmaniasis infection, leading to polarized
adaptive immune responses that support or block persistent infection by leishmania organisms. This subverts or supports
effective immunity to these parasites, and in patients with persistent infection, the Th2-like/Treg bias may predispose
patients infected with leishmania species to develop or reactivate lethal secondary superinfections, and the development of
HLH-like clinical symptoms.

Malaria: temporary immunosuppression

Malarial organisms are parasites with a major public health impact world-wide. There were an estimated 219 million cases
of malaria (range 154e289 million) and 660,000 deaths (range 610,000e971,000) in 2010.181 Plasmodium species cause
malaria and can induce immunosuppression in infected individuals182 resulting in increased susceptibility to secondary
infections, such as non-typhoidal salmonella,183 herpes zoster virus,184 hepatitis B virus,185 Moloney leukemia virus,186

and Epstein-Barr virus reactivation.187 Efficacy of heterologous vaccines can also be suppressed in malaria-infected
patients,188 further documenting the immunosuppressive effects of malaria infection.

Malaria parasites inhibit DC maturation189 via uptake of malaria pigment hemozoin (HZ) from parasitized RBCs.190

DC inhibition reduces T cell expansion, cytokine production, and migration into B cell follicles.191 The effect on DC
changes occurs during the different phases of this infection. Although DC function is impaired immediately following the
initial burst of parasitemia, T and B cell responses to heterologous antigens change dynamically during the course of
infection.191 T cell proliferation, and effector function and migration are suppressed, and B cells do not expand or produce
antibodies. HZ, prevents the formation of stable, long-lasting cellecell contacts between T cells and DCs impairing co-
stimulatory activity.192 Nonetheless, there is also a T cells functional defect.188 Taken together, impairment of both
innate and adaptive signaling induced by malarial infection/HZ pigment skews the immune response toward tolerance
instead of immunity, and this subversion of effective immunity leads to secondary infection with other organisms as a
consequence of this parasitic infection.

Invasive infections in patients with malaria are due to S. pneumoniae, H. influenzae type b, S. aureus, E. coli and
other gram-negative bacteria. Risk factors include younger age, recent malaria infection, severe anemia, splenomegaly,
HIV-co-infection and severe malnutrition. Some of this susceptibility seems to reflect functional asplenia and impaired
barrier function.

Bacteria that hijack immune responses to other microbes

Bordetella pertussis: temporary immunosuppression

B. pertussis, the causative agent of whooping cough, is an infection that can be fatal in infants, but in older children,
adolescents, and adults usually causes a chronic cough of varying severity that generally persists long after clearance of the
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infection. This bacterial infection of the airways is an important cause of infant death world-wide, and continues to be a
public health concern even in countries with high vaccination coverage. While estimates of the incidence of new cases of
pertussis vary,193,194 pertussis infection world-wide varies between 16 million and 50 million cases yearly, 95% of which
are in developing countries.193,194 In addition, between 195,000 and 300,000 deaths, mostly of young infants who were
either unvaccinated or incompletely vaccinated, occur yearly.193,194 For several decades, infant immunization programs
using pertussis vaccines of high efficiency have been highly successful in preventing severe pertussis in infants. However,
pertussis continues to be a significant health issue world-wide.

Following an incubation period of 9e10 days (range 6e20 days) patients develop catarrhal symptoms including cough,
and over 1e2 weeks develop coughing paroxysms that end in the characteristic “whoop” associated with this infection.
Although the cause of the characteristic “whoop” associated with B. pertussis infection remains unresolved, a significant
body of knowledge has accumulated to explain how B. pertussis induces immune suppression, evasion, and modulation,
thereby leading to a poor clinical outcome. Fig. 49.6195 gives an overview of several B. pertussis virulence factors that have
immunomodulatory properties, the cells that they target, and the mechanisms thought to be involved in the induction of
immune dysregulation caused by this infection. It has been shown that B. pertussis-derived filamentous hemagglutinin
(FHA) is the major surface structure that mediates adherence of B. pertussis to host cells, primarily to cilia of airway
ciliated epithelium. However, multiple factors likely contribute to this binding process,196 including secreted adenylate
cyclase toxin (ACT), which enhances FHA adherence to lung epithelial cells.197 FHA also has immunosuppressive and
modulatory activities by its ability to induce FHA-specific Tregs that secrete IL-10 and suppress Th1-like responses to
B. pertussis.198 Anti-FHA antibodies can also reduce phagocytosis of these bacteria by human neutrophils.199 ACT, a
secreted toxin, targets host phagocytic cells by binding complement receptor 3 (CR3; CD11b/CD18).200,201 ACT-deficient
mutants of B. pertussis are more efficiently phagocytosed by human neutrophils,202 and in mice, lower bacterial loads are
found in the respiratory tract.203 Secreted ACT upregulates major histocompatibility complex class II MHC and
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FIG. 49.6 Bordetella infection. Bordetella pertussis infection begins with infection of the respiratory tract. The toxins elaborated during the infection
have multiple effects which modulate the immune response. Figure reprinted from Carbonetti NH. Immunomodulation in the pathogenesis of Bordetella
pertussis infection and. Curr Opin Pharmacol 2007;7(3):272e8 with permission from Elsevier.
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co-stimulatory molecule expression on dendritic cells (DCs). ACT also prevents maturity, and thereby decreases their pro-
inflammatory cytokine production.204e206 Tracheal cytotoxin (TCT) is also expressed at relatively high levels by
B. pertussis, and is a disaccharide-tetrapeptide fragment of peptidoglycan. Purified TCT, in synergy with lipopolysac-
charide (LPS), damages ciliated airway epithelial cells through production of IL-1a and nitric oxide,207 causing deleterious
effects on neutrophils.208

Pertussis toxin (PT), uniquely produced by B. pertussis, is another secreted toxin expressed by this bacterium. PT ADP
ribosylates several heterotrimeric G proteins in mammalian cells, has long been known to disrupt signaling pathways with
a wide range of downstream effects,209 and can cause immunosuppression. PT causes lymphocytosis.210 PT-deficient
mutant strains show reduce levels of airway infection 24 h after inoculation because PT delays neutrophil recruitment
and influx to the airways,203,211,212 reduces anti-B. pertussis antibody-induced bacterial clearance,211 depletes airway
macrophages213 enhancing infection.214 Since ADP ribosylation of airway macrophage G proteins by PT has been shown
to be long-lasting, and correlates with active infection-promoting longevity of this microbe.212 This evidence supports the
concept that the effects of PT on host cells in the airway may be particularly long-lived. PT also exerts multiple suppressive
effects on the immune system beyond innate immune cells, including suppression of serum antibody responses to
B. pertussis antigens following infection,214e216 reduction of major histocompatibility complex class II expression on
human monocytes,217 and modulation of dendritic cell expression of surface markers.218

B. pertussis infection causes immunomodulation of Toll-like receptor (TLR4),219 which recognizes the lipopoly-
saccharide found on B. pertussis and Gram-negative bacteria.220,221 TLR4 signaling triggered by B. pertussis induces
IL-10, which can inhibit inflammatory responses, and limit airway inflammation,220 and can synergize with ACT to
induce IL-10.206 In addition, TLR4-dependent responses induced by B. pertussis drive lower levels of inflammatory
cytokines.222

Thus, PT promotes B. pertussis infection by multiple mechanisms through its effects on innate immunity in the initial
stages of disease in naïve individuals. This reduces adaptive immune responses during the initial infection, and promotes
re-infection in partially immune individuals. The consequences of these suppressive effects on both the innate and adaptive
immune responses induced by B. pertussis infection can cause secondary infection, typically pneumonia, which is the
major cause of fatal outcome from this infection.223 Infants are at highest risk of all complications related to B. pertussis
infection but all ages have relatively high rates of secondary complications. Approximately 50% of infants exhibit apnea of
greater or lesser duration and a quarter develop pneumonia. Roughly 5% have otitis media and 1% develop seizures. In
adults, the most common secondary effect is pneumonia occurring in about 5%.

Conclusions

Distinguishing patients with secondary immune deficiency disease caused by a primary infection in an individual with an
“intact” immune system from patients with an underlying PIDD is often a challenge. Recognizing primary infections that
can cause secondary immunodeficiencies is an important factor in discrimination between these two groups of patients.
Clinical immunologists need to always consider whether an acute, serious infection is causing a secondary primary
infection in an “immunologically intact” individual, or is the herald of an underlying defect in a genetically defined
immunocompromised patient with PIDD. The long term treatment and clinical outcomes of these two different patient
populations is linked to understanding how severe primary infections cause disease in these two different settings.
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