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Visual Abstract

The cytoarchitecture of a neuron is very important in defining morphology and ultrastructure. Although there is a
wealth of information on the molecular components that make and regulate these ultrastructures, there is a dearth
of understanding of how these changes occur or how they affect neurons in health and disease. Recent advances
in nanoscale imaging which resolve cellular structures at the scale of tens of nanometers below the limit of
diffraction enable us to understand these structures in fine detail. However, automated analysis of these images
is still in its infancy. Towards this goal, attempts have been made to automate the detection and analysis of the
cytoskeletal organization of microtubules. To date, evaluation of the nanoscale organization of filamentous actin
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(F-actin) in neuronal compartments remains challenging. Here, we present an objective paradigm for analysis
which adopts supervised learning of nanoscale images of F-actin network in excitatory synapses, obtained by
single molecule based super-resolution light microscopy. We have used the proposed analysis to understand the
heterogeneity in the organization of F-actin in dendritic spines of primary neuronal cultures from rodents. Our results
were validated using ultrastructural data obtained from platinum replica electron microscopy (PREM). The automated
analysis approach was used to differentiate the heterogeneity in the nanoscale organization of F-actin in primary
neuronal cultures from wild-type (WT) and a transgenic mouse model of Alzheimer’s disease (APPSwe/PS1�E9).

Key words: Alzheimer’s disease; dendritic spines; F-actin; segmentation and pattern recognition; super-resolu-
tion; supervised learning

Introduction
Dendritic spines in neurons are important structures

that mediate neuron to neuron communication. The mor-
phology and molecular composition of spines determine
the efficacy of signal transmission. The morphologic
changes during transmission are accompanied by an al-
teration in the composition of molecules, and thus the
relative strength of the synapses. The filamentous form of
the cytoskeletal molecule actin (F-actin) is a morphologic
and functional determinant of individual spines (Hotulai-
nen and Hoogenraad, 2010). The advent of high resolution
microscopy techniques has revealed the assembly and
architecture of F-actin in various subcompartments of

neurons (Frost et al., 2010; Urban et al., 2011; Chazeau
et al., 2014; Efimova et al., 2017). The recent observations
of actin rings have also highlighted the heterogeneity of
F-actin organization in neuronal processes (Xu et al.,
2013). Although electron microscopy studies have shown
the distribution of F-actin inside spines, very few attempts
have been made to evaluate the F-actin organization
using super-resolution light microscopy. Recent studies
have indicated that F-actin in spines can be organized as
outwardly radiating rods, and the organization of these
rods can be affected very early during the onset of Alz-
heimer’s disease (Kommaddi et al., 2018). However, high
throughput and objective analysis to classify the synaptic
actin cytoskeleton, derived from super-resolution imag-
ing, is still missing.

Platinum replica electron microscopy (PREM) has been
instrumental in providing high resolution images of the
actin cytoskeleton in dendritic spines. Thin filamentous
structures, whose diameter fits that of F-actin, form the
predominant cytoskeleton of the spine (Efimova et al.,
2017). Using light microscopy, most of the morphologic
changes in the spine have been studied indirectly with the
help of volume markers such as GFP or dextran conju-
gated dyes (Mancuso et al., 2013). Conjugating dyes to
proteins of interest or creating fusion constructs can cre-
ate undesirable effects due to excessive expression and
steric interference with protein functions (Ansari et al.,
2016). Alternatively, there have been advances in identi-
fying chemical probes which can bind to F-actin, thus
enabling a direct read-out of the F-actin architecture from
different subcellular compartments (Lukinavicius et al.,
2014; Nanguneri et al., 2014). Thus, it is feasible for these
probes to be used with regular immunocytochemistry
along with other molecules to comprehend the fine orga-
nization of F-actin in different neuronal compartments.
With a rising interest in investigating the role of F-actin
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Significance Statement

Organization of F-actin in dendritic spines is known to be important in maintaining the structure and function
of excitatory synapses. Multicolor super-resolution microscopy enables us to have better insights into its
organization in health and disease. Here, we have combined novel methods for the analysis of nanoscale
images of F-actin network using segmentation with pattern recognition based on supervised learning. This
automated approach was validated using platinum replica electron microscopy (PREM) images of F-actin
organization in dendritic spines. Furthermore, we have explored the differences in the nanoscale F-actin
network in wild-type (WT) and transgenic mouse models of Alzheimer’s disease using this novel approach.
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morphology and spine compartmentalization in neurode-
generative diseases, it is essential to develop approaches
that enable direct probing of F-actin assembly in spines
(Bamburg and Bernstein, 2016; Androuin et al., 2018;
Kommaddi et al., 2018).

In this paper, a novel approach for the analysis of F-actin
network in dendritic spines is presented using data from
super-resolution light microscopy, namely direct stochastic
optical reconstruction microscopy (dSTORM; Heilemann
et al., 2008), in combination with an analytical method called
super-resolution by radial fluctuations (SRRF). SRRF
(Gustafsson et al., 2016) was used to image a postsynaptic
density marker called Homer 1c at subdiffraction resolution
(Dani et al., 2010). Thus, dual color subdiffraction limited
images of F-actin and Homer 1c were analyzed to reveal the
nanoscale architecture of F-actin cytoskeleton in excitatory
synapses. This analysis of branched F-actin network in
spines was achieved in two steps. (1) A supervised learning
tool, trainable Weka segmentation (TWS; Arganda-Carreras
et al., 2017), was used to identify F-actin-enriched regions
overlapping with Homer 1c, and a custom designed classi-
fier was used to sort these regions into distinct subsets of
spines based on their morphology. (2) A deep neural net-
work (DNN) architecture called artificial neural network ac-
celerated photoactivated localization microscopy (ANNA-
PALM), previously developed (Ouyang et al., 2018) to predict
linear features (tubular/rod-like), was used to extract actin
distribution of these F-actin-enriched compartments. The
F-actin distribution thus obtained was analyzed within den-
dritic spines to distinguish between different morphologic
classes of spines. Extraction of F-actin networks from these
single synapses permitted us to estimate the cumulative
F-actin length, as well as to determine the levels of F-actin in
the neck and head of individual spines. The present ap-
proach reported in this paper allows the observer to objec-
tively probe morphologic characteristics of spines based on
F-actin changes. This method has been validated using
PREM images revealing F-actin organization in spines. This
supervised learning algorithm was then used to elucidate the
differences in the properties of the F-actin network between
neuronal cultures from wild-type (WT) and a transgenic
mouse model of Alzheimer’s disease.

Materials and Methods
Super-resolution data

Single molecule based super-resolution data obtained
from primary cortical cultures used for this paper has
been obtained from a repository of images from a previ-
ously published manuscript (Kommaddi et al., 2018).
Mixed sex primary cortical neurons were prepared
from postnatal day 0/1 (P0/P1) pups from both WT and
APP/PS1(APPSwe/PS1�E9) mouse, as described previ-
ously (Kommaddi et al., 2018).

Primary neuronal cultures
Mixed sex primary hippocampal cultures were prepared

from P0/P1 rat pups (Sprague Dawley) using a similar
protocol, as described previously (Kommaddi et al.,
2018). The neuronal cultures were fixed at 21 days in vitro
(DIV 21) and labeled for F-actin and Homer 1c. All the

necessary animal ethics protocols used in this study were
obtained by the ethical committee of the institute.

PREM protocol
PREM was performed as described previously (Svit-

kina, 2016; Efimova et al., 2017). In brief, dissociated rat
embryo hippocampal neurons were cultured in Neuro-
basal media (Gibco) supplemented with 2% B27. At DIV
14–17, neurons were extracted with 1% Triton X-100 in
PEM buffer (100 mM Pipes-KOH, pH 6.9, 1 mM MgCl2,
and 1 mM EGTA) containing 2% polyethylene glycol (mo-
lecular weight of 35,000), 2 �M phalloidin, and 10 �M
taxol for 3 min at room temperature. Detergent-extracted
cells were fixed sequentially with 2% glutaraldehyde in
0.1 M Na-cacodylate buffer (pH 7.3), aqueous 0.1% tan-
nic acid, and aqueous 0.2% uranyl acetate, critical point
dried, coated with platinum and carbon, and transferred
onto 50 mesh electron microscopic grids. Samples were
analyzed using JEM 1011 transmission electron micro-
scope (JEOL USA) operated at 100 kV. Images were
captured by ORIUS 832.10W CCD camera (Gatan). PREM
images are presented in inverted contrast.

dSTORM
Primary neuronal cell culture experiments and dSTORM

based super-resolution imaging were performed, as explained
previously (Kommaddi et al., 2018). The super-resolution im-
ages of F-actin were obtained using ThunderSTORM, an Im-
ageJ plugin (Schneider et al., 2012; Ovesný et al., 2014), and/or
adapted from the existing repository of data that has been
published previously.

SRRF
SRRF is a collection of analytical methods for super-

resolution light microscopy which is available as an Im-
ageJ plugin called NanoJ SRRF (Gustafsson et al., 2016).
It is a fluctuation-based method, which overcomes the
diffraction barrier by a factor of 2. Images of conventional
fluorophores such as GFP and many organic dyes can be
analyzed with this method. In this study, we have used
NanoJ to generate a subdiffraction image of Homer 1c
labeled with Alexa Fluor 532 in dendritic spines.

Super-resolution simulation (SuReSim)
SuReSim (Venkataramani et al., 2016) was used to

simulate resolution matched dSTORM like images from
PREM images of the cytoskeleton in spines. For this,
segmented 10-nm-thin filaments in PREM images were
skeletonized manually and was exported as a �.wimp file
at the same sampling as that of the PREM images (1
nm/px). The �.wimp file was later imported into the
SuReSim interface for simulating resolution matched
dSTORM images from the skeletonized images, with a
similar sampling as that of regular reconstructed super-
resolution images (20 nm/px). For the creation of resolu-
tion matched images, the width of the skeleton was
approximated to be 10 nm. The epitope density, i.e., the
frequency at which the epitope can be labeled on the
skeletonized filament, was given as 0.25 nm�1. Labeling
efficiency was given as 100% at the best labeling. The
on-off cycle to mimic single molecule blinking kinetics
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was given as 5 � 10�4 frames (corresponding to once
every 2000 frames). Localization precision was given as
20 nm in line with experimental accuracy obtained for
single molecules. In the reconstructed super-resolved im-
ages, the localization precision of the single molecules
was provided as 20 nm and a sampling size of the final
images was given as 20 nm/pixel. These settings are
provided in basic settings 1 and 2 in the SuReSim module
to generate the final image.

TWS
TWS is a supervised learning ImageJ plugin for image

segmentation (Arganda-Carreras et al., 2017). Based on
the heterogeneity of the signal from a microscopy image,
the user defines three different classes of signals. Class 1
defines the structure of interest, class 2 defines the back-
ground, and class 3 any other signal which does not fall in
class 1 or class 2. This information is used to train a
classifier to segregate the images into three categories,
from which class 1 is used for further processing.

ANNA-PALM for image analysis
ANNA-PALM is a machine learning-based ImageJ pl-

ugin trained to predict correlative structures in super-
resolution images (Ouyang et al., 2018). It is based on a
pix2pix architecture, which is used to predict correlative
structures such as microtubules from a small subset of its
localization. We used F-actin super-resolution images in
ANNA-PALM to generate tubular structures (referred here
as “ridges”) using the tubulin model published previously
(Ouyang et al., 2018). We refer to this generalized protocol
in our manuscript as a tubular model (Ouyang et al., 2018).
We cropped 512 � 512 px2 regions in the super-
resolution images for this analysis. These images were
used for subsequent ridge detection and feature analysis.

Ridge detection on continuous F-actin networks
Ridge detection is used to find the maxima of a signal in

an image by approximating the signal to a range of inten-
sity peaks and valleys. The points corresponding to the
maximum intensity were approximated to a line which
forms the skeleton of the maximum intensity of structures
in any given area. The skeletonized structures of the map
of intensity maximum depict the ridges that are detected
in the image. In an F-actin super-resolution image, it was
used to find the extent of tubular structures. Here, we
have used ridge detection plugin from ImageJ (Steger,
1998) to map the maxima of tubular structures of net-
works detected by ANNA-PALM, indicating the skeleton
of ridges of F-actin. to create ridges on the ANNA-PALM
images, we have used a sigma of 2.81, and lower and
upper thresholds of 0 and 0.83, respectively.

Expert annotation of spines
An online annotation tool was used to get expert annotations

on the putative spines extracted from the binary images. The
annotation tool is accessible via the link https://www.robots.ox.
ac.uk/~vgg/software/via/via_demo.html.

A total of 1056 spines was extracted from WT rat cultures
and annotated into one of the four classes (mushroom,
stubby, thin, and forked spines). A spine was considered for

further analysis only if at least three out of four annotators
gave the same label (Extended Data 1). A total of 762 spines
passed this selection criterion, including 254 mushroom
spines, 398 stubby spines, 102 thin spines, and eight forked
spines. As they were too few, forked spines were discarded
from further analysis, bringing the total number of spines to
754. Similar annotation and selection procedures were used
for WT mouse neurons (51 mushroom spines, 47 stubby
spines, and 11 thin spines for a total of 109 spines) and
APP/PS1 mouse neurons (17 mushroom spines, 70 stubby
spines, and 18 thin spines for a total of 105 spines) (Ex-
tended Data 1).

Principal component analysis (PCA)
The shape filter from ImageJ was used to extract 22

different shape characteristics of the F-actin distribution
in dendritic spines from binary images of spines such as
area, perimeter, etc. (Wagner and Lipinski, 2013). The 22
shape-based features for 754 and 214 spines from pri-
mary neuronal cultures from rat and mouse, respectively,
were collected in separate matrices, with each row rep-
resenting the feature vector for a single spine. Each col-
umn of this matrix was normalized by z-scoring and
submitted to PCA using the pca function in MATLAB
(R2015b, academic license). It was found that the first five
principal components explained �90% of the variance in
the original 22-dimensional data. The projection of the
22-dimensional data onto these five principal compo-
nents was used for further clustering analysis.

Classification of sines using a linear classifier
A three-way linear support vector machine (SVM) clas-

sifier was trained on the principal component representa-
tion of 754 spines from rat cultures using the MATLAB
function fitecoc. To avoid overfitting, a k-fold cross-
validation approach was used with k � 4. A slightly dif-
ferent procedure was used to classify spines from mouse
cultures. A three-way linear SVM classifier was trained on
the principal component representation of 109 WT spines
with 4-fold cross-validation. This linear SVM model was
then used to classify APP/PS1 spines into mushroom,
stubby or thin categories. However, the performance re-
mained comparable even after training the classifier on
the combined dataset of 214 WT and APP/PS1 spines.

Resolution scaled Pearson’s coefficient (RSP) and
resolution scaled error (RSE) map

RSP and RSE were determined using the NanoJ
SQUIRREL plugin of ImageJ (Culley et al., 2018) with the
magnification parameter set as 1 (Venkatachalapathy
et al., 2019).

Software accessibility
All codes and data used for analysis in the paper are made

available to the scientific community at the following link:
https://github.com/arty-p/auto-factin.git. All MATLAB
(R2015b v8.6.0.267246, student license) scripts were run
on a computer running Windows 10 pro N (64-bit) oper-
ating system with Intel i7-4770 CPU and 32 GB RAM.
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Statistics
We report the mean and the standard deviation for all

parameters. However, while calculating the significance
levels, we first test for normality and accordingly use t test
when the distribution is normal, and rank sum test when
the distribution is non-normal. All the analyses were per-
formed on the MATLAB.

Results
Workflow for morphologic characterization of spines
and feature extraction from super-resolution images

dSTORM imaging (20,000 frames at 33 Hz) was per-
formed and super-resolution images of F-actin in primary

neuronal cultures immunolabelled with phalloidin-Alexa
Fluor 647 were reconstructed. A series of frames (4000
frames at 33 Hz) were captured to record the intensity
fluctuations of Alexa Fluor 532-labeled Homer 1c, which
was later analyzed by SRRF. A schematic of the workflow
for supervised learning based analysis to extract nano-
scale features of F-actin from individual dendritic spines is
depicted in Figure 1. Super-resolution images of F-actin
were processed using TWS and ANNA-PALM in parallel
steps to select for F-actin rich regions in neuronal pro-
cesses, and to create a tubular model of F-actin network,
respectively. The super-resolution image of F-actin is
considered as the “input.” The SRRF image of Homer 1c,

Figure 1. Schematic representation of the workflow for generating an objective classification of F-actin organization in dendritic
spines. The super-resolution image of F-actin generated using dSTORM microscopy is considered as the input. (1) Using the TWS
on input, a segmented image was created. (2) The segments of interest were color coded and a binary image was obtained for
F-actin-enriched regions (mask). (3) The super-resolution image of Homer 1c was generated for the same region of interest as that
of input. (4) The segmented image of input was spatially correlated with the postsynaptic marker Homer 1c to select for dendritic
spines; please refer to Extended Data Fig. 1-1 for a detailed work flow for steps 1-4. (5) The spines obtained from step 4 were further
categorized as mushroom, stubby, and thin using supervised learning. (6) The final data were categorized and plotted into different
classes as output 1. (7) The tubular model of the input image was generated using ANNA-PALM. (8, 9) Two processing steps were
converged to understand the nanoscale distribution of F-actin in dendritic spines generated from the tubular model, which was
spatially correlated with Homer 1c-positive regions obtained in step 4. (10) Spine-specific ridges were extracted in the regions
identified positive for excitatory synapses; please refer to Extended Data Fig. 1-2 for a detailed work flow for steps 8-10. (11) The
spine-specific parameters of the ridges were measured and plotted as output 2.
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marking the postsynaptic compartment, is referred to as
the “reference” (Fig. 1).

The input (Extended Data Fig. 1-1A) was treated by
TWS to extract F-actin rich compartments from the
dSTORM image (Extended Data Fig. 1-1B). Here, the user
defines three classes of F-actin signals on the image for
segmentation. A binary image of the class 1 signal was
generated as an outcome of this segmentation and is
referred to as the mask (Extended Data Fig. 1-1C). The
mask represented all the F-actin rich compartments in the
neuronal processes (Extended Data Fig. 1-1C). Presence
of Homer 1c was used to confirm the presence of den-
dritic spines (Extended Data Fig. 1-1D). To identify the
Homer 1c-enriched compartments, the reference image
was segmented through TWS. Similar to the input, class 1
signal of the reference was binarized (Extended Data Fig.
1-1E). This binarized image is referred to as the filter
(Extended Data Fig. 1-1F). The filter represented the sites
of the postsynaptic density and was used to identify the

regions colocalizing with the mask generated from the
input image (Extended Data Fig. 1-1G). The extracted
Homer 1c-positive mask was automatically classified us-
ing a supervised learning protocol into different classes of
dendritic spines based on their morphologic features, as
explained in the following section (Extended Data Fig.
1-1H). The classified spines were graphically represented
and color coded based on their morphologic identity and
is depicted as output 1 (Fig. 1). We verify that the seg-
mented Homer 1c puncta are distributed with a mean area
of 0.048 � 0.024 �m2. This value compares with the
reported average PSD area of 0.069 �m2 (Harris and
Weinberg, 2012).

In parallel, the input was processed using ANNA-PALM
to generate a network of F-actin distribution using the
tubular model (Extended Data Fig. 1-2). This tubular
model was generated through supervised learning of
tubular/rod-like network. This image generated by ANNA-
PALM was overlaid with the corresponding mask positive

Figure 2. Supervised learning algorithm for morphologic characterization of spines from primary rat hippocampal neurons. A, A gallery
of different morphologies of F-actin-enriched compartments in primary rat hippocampal neurons identified as spines. Scale bar � 1
�m. B, A matrix which depicts pair-wise agreement between different experts to classify spines into distinct morphologic classes. The
pseudocolor bar depicting the pairwise agreement is shown below. C, A 2-dimensional representation of the classification using two
principal components showing that the morphologic characterization of spines forms three nonoverlapping regions. The morphologic
features were used for cataloging F-actin structure into a distinct spine category.

Methods/New Tools 6 of 13

July/August 2019, 6(4) ENEURO.0425-18.2019 eNeuro.org

https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-2


for Homer 1c, marking excitatory synapses (Extended
Data Fig. 1-2). The regions of the F-actin network corre-
sponding to individual excitatory synapses were ex-
tracted and analyzed according to their morphology. The
properties of F-actin network such as the cumulative
length of F-actin are plotted as output 2 (Fig. 1).

Classification of spines into different morphologic
classes using supervised learning

After identifying F-actin masks which were positive for
dendritic spines, we developed an automated tool based
on supervised learning for morphologic characterization
of dendritic spines (as mushroom, stubby or thin), which
has never been performed on dSTORM images. For the
purpose, we computed 22 shape-based features (such as
area, perimeter, aspect ratio, etc.) using the Shape Filter
ImageJ plug-in for 754 spines from primary rat hippocam-
pal cultures. We reduced the dimensionality of this feature
representation to five dimensions using PCA to classify

spines from the dSTORM data (Fig. 2A). These five di-
mensions captured �90% of the variance in the data. We
trained an SVM classifier on these five dimensions and
sorted the spines into three different categories. The
agreement between human experts is presented in Figure
2B. The trained classifiers had an accuracy of 82.6% (on
754 spines with 4-fold cross-validation) compared to the
performance by the human experts. The graphical repre-
sentation of PCA after supervised learning was color
coded for different morphologic classes of spines (Fig.
2C).

Extraction and validation of branched F-actin
networks from dendritic spines

To approximate the F-actin network (Extended Data
Fig. 1-2A) to a tubular/rod-like distribution, we used
ANNA-PALM to generate a tubular network model on
dSTORM images of F-actin (Extended Data Fig. 1-2B).
This gave a continuous network architecture for F-actin in

Figure 3. Analysis of nano-organization of F-actin at 1-nm/px sampling. A, PREM image of cytoskeletal distribution within a spine. Scale
bar � 200 nm. B, The segmented image selecting only the thin filaments in PREM indicate the F-actin distribution. C, ANNA-PALM
simulation of the F-actin network using tubular model. D, Extraction of ridges by skeletonizing the ANNA-PALM image. E, Overlay of an
image obtained by PREM (green) and ridges that mark the F-actin network (red) of the spine. Scale bar � 200 nm. F, G, Magnified views
of sections within the spine; please refer to Extended Data Fig. 3-1 for a comparative analysis between PREM and simulated super resolved
images. The ridges overlapped with the PREM images with a correlation of �89%. Scale bar � 50 nm.
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neuronal processes, which was limited by the resolution
of our experimental system. We performed the ridge de-
tection analysis to identify the distribution of F-actin rods
in the ANNA-PALM image (Extended Data Fig. 1-2C). The
ridges were detected in all regions where the F-actin
network could be resolved (Extended Data Fig. 1-2C). to
analyze the distribution of F-actin in individual spines
(Extended Data Fig. 1-2D), synapse-specific ridges were
extracted from the mask of F-actin-rich regions overlap-
ping with the postsynaptic marker Homer 1c (Extended
Data Fig. 1-2E). Branched F-actin distribution was iso-
lated based on the morphology of individual spines, as
indicated in the previous section (Extended Data Fig.
1-2F).

The ridges extracted from dendritic spines of super-
resolution images of F-actin presented a highly branched
structure, which was variable between spines (Extended
Data Fig. 1-2F). We evaluated whether this structure was
indeed present in spines or whether it was an artifact of
dSTORM imaging. We verified this using PREM images of
F-actin obtained from rat hippocampal neurons (Fig. 3A;
Extended Data Fig. 3-1A–C; Efimova et al., 2017). The
sampling for super-resolution images obtained by

dSTORM was 20 nm/px, while that obtained from PREM
was 1 nm/px. The PREM images were a mix of different
kinds of filamentous structures that are observed inside
neurons (Fig. 3A). However, only the filaments which were
smaller than 10 nm including the platinum layer repre-
sented F-actin. To overcome the sampling difference, we
extracted exclusively F-actin thin filaments (	10 nm) from
PREM images using TWS and used ANNA-PALM to fit the
segmented image by a tubular model (Fig. 3B,C). The
ridge detection module was then applied to identify the
skeleton of this distribution, which we refer to as ridges
(Fig. 3D). We found that the ridges overlapped with the
F-actin network with a correlation of 0.89 (Fig. 3E, insets
1, 2), indicating that F-actin in spines could be fit with the
tubular model and the detected ridges represented the
skeleton of the F-actin network in spines.

At 20-nm/px sampling, the dense network of F-actin was
undersampled, resulting in loss of resolution of F-actin fea-
tures. The difference in the lateral resolution between a
PREM image (1 nm/px, resolution 2.5 nm) and a dSTORM
image (20 nm/px, 40–45 nm) is 16–20 times. Using
SuReSim, we simulated a dSTORM image of the PREM
image to mimic the loss of resolution (Extended Data Fig.

Figure 4. Tubular model of F-actin represents its actual distribution in spines. A, Super-resolution image of F-actin in neurons
obtained by dSTORM. Scale bar � 1 �m. B, Mask of F-actin rich compartments in neuronal processes. C, Tubular model of F-actin
obtained by ANNA-PALM. D, RSE maps indicating the correlation between dSTORM image and F-actin mask. E, RSE maps of the
dSTORM image with a tubular model of F-actin. Scale bar � 1 �m. The pseudocolor bar ranging from purple to yellow indicates low
to high error. G, RSP of dSTORM image with the F-actin mask (red) and with the tubular model of F-actin from ANNA-PALM (blue).
I, RSE of the dSTORM image with the F-actin mask (red) and with the tubular model of F-actin from ANNA-PALM (blue).

Methods/New Tools 8 of 13

July/August 2019, 6(4) ENEURO.0425-18.2019 eNeuro.org

https://doi.org/10.1523/ENEURO.0425-18.2019.f1-2
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-2
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-2
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-2
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-2
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-2
https://doi.org/10.1523/ENEURO.0425-18.2019.f1-2
https://doi.org/10.1523/ENEURO.0425-18.2019.f3-1
https://doi.org/10.1523/ENEURO.0425-18.2019.f3-1


3-1D–F). We performed ANNA-PALM on the simulated im-
age to verify the cumulative content of F-actin after ridge
detection. The cumulative length of F-actin from ridges was
64.8–71.7 �m at 1 nm/pixel in contrast to 4.3–6.6 �m at 20
nm/px. This suggested that despite a resolution difference of
20 times between PREM and super-resolution light micros-
copy, the average change in the detected ridges of F-actin
was only 10- to 12-fold. This indicated that although the
same PREM data sampled at different resolutions provided
reduced information, this reduction was much less com-
pared to the change in resolution between these regimes.
Interestingly, super-resolution experiments in primary rat
hippocampal neurons estimated the cumulative F-actin con-
tent in mushroom spines to be 4–6 �m (data not shown),
corresponding well with the range predicted by the simu-
lated experiments above. This confirmed that the resolution
was consistent between simulation and experiment, validat-
ing the robustness of dSTORM despite its lower resolution
compared to PREM. Furthermore, when we compared the

simulated dSTORM image at 20nm/px to its corresponding
tubular model of F-actin network, the RSP was 0.89 (Ex-
tended Data Fig. 3-1K–M), indicating a high correlation be-
tween experimentally observed dSTORM images and their
corresponding tubular model (0.90). This correlation be-
tween simulation and the experiment reiterated the valid-
ity of dSTORM in extracting branched network features of
F-actin through a combination of ANNA-PALM and ridge
detection.

To further validate the robustness of our data, super-
resolution images were acquired from neurons co-labeled
with phalloidin-Alexa Fluor 647 (dSTORM) and Homer 1c
(Alexa Fluor 532). The localization precision of the exper-
imental system generated was 19 nm, with a sampling of
20 nm/px (similar to simulated dSTORM images), and the
final experimental resolution of the image was calculated
to be 44 nm/px (Kommaddi et al., 2018). Similar to the
analysis performed for the PREM images, we quantified
the extent of mismatch between the tubular model and

Figure 5. Comparison of morphologic features of spines obtained by supervised learning algorithm from WT and APP/PS1 primary
mice cortical neurons. A, A gallery of different morphologies of F-actin-enriched compartments in primary mice cortical cultures
identified as spines. Scale bar � 1 �m; please refer to Extended Data Fig. 5-1 for the validation of supervised learning algorithm for
morphological characterization of spines from primary mice cortical neurons. B, A pie-chart representing proportion of mushroom,
stubby and thin spines in WT. C, A pie-chart representing proportion of mushroom, stubby and thin spines in the entire population
of dendritic spines in APP/PS1; please refer to Extended Data Fig. 5-2 to view a set of morphologies of spines characterized as
mushroom and thin spines.
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Figure 6. Objective paradigm for segmentation and feature detection in dendritic spines. A, Representative gallery of different classes
of dendritic spines are depicted with each class containing six representative spines. Scale bar � 500 nm. We found that the
cumulative length of F-actin filaments in mushroom spines were significantly higher in WT spines compared to APP/PS1 spines
(average actin filament length: WT mushroom � 5634.5 � 2034 nm; and APP/PS1 mushroom � 3665.1 � 1299.2 nm; p 	 0.005 for
a rank sum test on cumulative F-actin filament lengths for individual spines of WT and APP/PS1 groups), while there was no significant
difference in the lengths of the F-actin networks in stubby and thin spines (WT stubby � 2288.5 � 982.6 nm; APP/PS1 stubby �
2045.4 � 763.9 nm; WT thin � 2927.3 � 2023.5 nm; APP/PS1 thin � 3098.9 � 1439.9 nm; p � 0.12 and p � 0.42 for a rank sum
test on cumulative F-actin lengths of stubby and thin spines, respectively). B, The paradigm for feature extraction was performed in
two steps. (1) The branch endpoints of the detected ridge of the spine were compared to the centroid of the Homer puncta to define
the neck (yellow) and head regions (cyan) of the spine. (2) The length of the ridges was plotted for analysis. B, The difference in the
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the dSTORM super-resolution image (Fig. 4). For this, we
calculated the RSP (Fig. 4D) and RSE (Fig. 4E) between
the original super-resolution image of F-actin correspond-
ing to the dendritic spines extracted through TWS seg-
mentation, and the tubular model obtained by ANNA-
PALM, respectively (Fig. 4A–C). We found that RSP of
super-resolution image of F-actin with either the tubular
model or the mask obtained through TWS was above
0.90, indicating a good correlation. On evaluating the
RSE, the ANNA-PALM modeling showed the least error
with the dSTORM data, indicating a good fit between the
network model and super-resolution image, further vali-
dating the robustness of the analysis in the experimental
conditions (Fig. 4).

Quantification of F-actin architecture in dendritic
spines of primary cortical neuronal cultures derived
from the transgenic mouse model of AD

Using the supervised learning classification method es-
tablished previously in rat primary hippocampal neurons,
we investigated F-actin distribution in dendritic spines of
primary cortical neurons of WT mice (Fig. 5A). The labeling
of spines was obtained through expert human annota-
tions with the pairwise agreement of 88% (Extended Data
Fig. 5-1A). Further, the linear SVM classifier reached an
accuracy of 86.2% for the same, with 4-fold cross-
validation (Extended Data Fig. 5-1A). The mask of super-
resolution images of dendritic spines was a better marker
for their morphology. It was possible to classify mush-
room spines with shorter necks and oddly shaped thin
spines with intricate morphologies which would otherwise
have fallen into the category of stubby spines if acquired
by conventional light microscopy (Extended Data Fig.
5-2). We applied the same analysis for spines obtained
from cultures of transgenic mice (APPSwe/PS1�E9 [APP/
PS1]) encoding genetic mutations in Amyloid Precursor
Protein (APP) and Presenilin 1 (PS1). This enabled a direct
comparison of spine shapes based on F-actin content
across healthy and diseased conditions. This automated
classification showed a reduction of mushroom spines
from 47% to 16%, and a corresponding increase in both
stubby and thin spines from 43% and 10% to 67% and
17%, respectively, from WT to transgenic mice (Fig.
5B,C).

The previous report had shown specific differences in
the cumulative length of F-actin in WT and APP/PS1
spines. Here, we validated our analysis paradigm by rep-
licating this result. We first classified the cumulative length
of branched F-actin based on different spine morpholo-
gies (Fig. 6A). The average cumulative length of F-actin in
the mushroom spines of WT and the APP/PS1 cultures
were 5634.5 � 2034 and 3665.1 � 1299.2 nm, respec-
tively. On the other hand, stubby and thin spines dis-
played a negligible change from 2288.5 � 982.6 and
2927.3 � 2023.5 nm in WT conditions to 2045.4 � 763.9
nm and 3098.9 � 1439.9 nm in APP/PS1 cultures, re-
spectively. Since the cumulative F-actin content of mush-
room spines from WT and APP/PS1 mice showed a
significant difference in contrast to the other spine
classes, the former was selected for further investigation
(Table 1). We then explored whether the reduction of
F-actin in the mushroom spines were predominantly from
the spine head or from the neck. For this, we used an
additional classification to spatially annotate the spine
head and the neck (Fig. 6B). The branch points of the
F-actin filaments closer to the centroid of the Homer 1c
staining was denoted as the endpoint for the actin
branches in the head, while the farthest endpoint of the
actin filament from the Homer 1c was denoted as the
endpoint of the spine neck. This procedure enabled us to
extract cumulative F-actin lengths from the head and
neck regions of the spine. Head region showed a signifi-
cant reduction of cumulative length of F-actin from 5075.7
� 2048.6 nm in WT to 3126.2 � 1284.3 nm in APP/PS1,
while in the neck region the values remained unaltered
(Table 1; Fig. 6C).

Our results match well with the subjective evaluation of
F-actin distribution reported previously (Kommaddi et al.,
2018), which presented only the cumulative length of
F-actin from mushroom spines. In addition to the F-actin
distribution, we have presented an automated morpho-
logic classifier which separated the spines using shape-
based-features. This morphologic classifier enabled us to
separate the F-actin distribution in mushroom, thin and
stubby spines. Furthermore, we were able to extract the
cumulative F-actin length from subspine compartments
like spine head and spine neck, which was also not
reported earlier. We show that the objective paradigm that

continued
cumulative F-actin filament lengths in mushroom spines was due to difference in their lengths in the head region, rather than the neck
(average actin filament length: 5075.7 � 2048.6 nm and 3126.2 � 1284.3 nm for WT and APP/PS1 head regions, respectively, p 	
0.005 for a rank sum test; 558.7 � 331.7 and 538.9 � 404.5 nm for WT and APP/PS1 neck regions, respectively, p � 0.31 for a rank
sum test).

Table 1. Cumulative length of F-actin in spines and subspine compartments

Cumulative length of F-actin (nm)
Spine type Subspine compartment WT APP/PS1 Significance
Mushroom - 5634.5 � 2034 3665.1 � 1299.2 	0.005, yes

Spine head 5075.7 � 2048.6 3126.2 � 1284.3 	0.005, yes
Spine neck 558.7 � 331.7 538.9 � 404.5 0.31, no

Stubby - 2288.5 � 982.6 2045.4 � 763.9 0.12, no
Thin - 2927.3 � 2023.5 3098.9 � 1439.9 0.42, no
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we present in the manuscript describes an unbiased
quantification of nanoscale organization of F-actin from
individual spines, which can be used to analyze large
datasets.

Discussion
Because of a growing need to analyze the role of

F-actin cytoskeleton in morpho-functional changes in
spines, automated analysis is required to obtain an ob-
jective measure of changes in F-actin organization at the
level of individual synapses. Although super-resolution
imaging (20–150 nm) is routinely used in many laborato-
ries, most of the morphologic characterization of spines is
still performed using volume markers and conventional
microscopy, either alone or co-labeled with synaptic
markers. Thin spines with complex orientation or mush-
room spines with shorter neck could also be mislabeled
when imaged by a conventional light microscope. This
argues for a need to acquire super-resolution light micros-
copy images to increase the accuracy of shape-based
classification of spines (Tønnesen et al., 2014; Bartol
et al., 2015; Kasthuri et al., 2015). Here, we explain a user
guided objective protocol whose results are comparable
to subjective analysis. This paradigm is automated and
can be used for high throughput analysis, thus making it
efficient and reproducible. We have illustrated this using
data of spines from primary hippocampal (rat) and cortical
(mice) cultures co-labeled for F-actin and the postsynap-
tic marker Homer 1c. We have also compared differences
in the F-actin distribution in individual synapses between
WT and a transgenic model for Alzheimer’s disease (APP/
PS1). A key feature of this automated paradigm is its
ability to extend the morphologic classes to include
stubby and thin spines in super-resolution images. This
has enabled us to classify spines in neurons under differ-
ent conditions, which was difficult with conventional light
microscopy. We show that in primary cortical cultures of
WT versus transgenic, the predominant effect on the cu-
mulative length of F-actin was observed in mushroom
spines, while the same in stubby and thin spines remain
unaltered. In addition, the paradigm enabled quantifica-
tion of F-actin length from subspine compartments such
as head and neck, where there was a significant reduction
of cumulative F-actin in the spine head. In the transgenic,
there was also a notable reduction in the proportion of
mushroom spines with a corresponding increase in
stubby and thin spines. This validates the previous obser-
vation in hippocampal slices, where there was an aug-
mentation of stubby spines in the transgenic mouse
model for Alzheimer’s disease in comparison to the con-
trol. However, those experiments performed on hip-
pocampal slices were from three-month-old animals
(Androuin et al., 2018), while the effect observed in this
work is at a much earlier stage as DIV 21. This indicated
that besides a large change in morphologic features of
spines, the major regulation of F-actin during early stages
of Alzheimer’s disease occurs predominantly in the head
region of mushroom spines.

Automated spine classification by supervised learning
has been recently used to classify spines imaged by

conventional light microscopy (Zhang et al., 2007; Ghani
et al., 2017). Here, we show that by exploiting F-actin
dSTORM signal in primary neuronal cultures, the super-
vised learning approach can also be extended to any
subdiffraction limited image. In the future, attempts could
be made to use predictive tools to guess how F-actin
network organization would appear at electron micro-
scopic resolution using super-resolution images as input
(Ouyang and Zimmer, 2017). This would imply that the
F-actin characteristics that we define could be improved
at an even better resolution. Here, we present significant
differences in F-actin organization in subsets of spines in
different conditions. Future experiments combining cor-
relative electron microscopy and 3-dimensional super-
resolution light microscopy would be optimal to confirm
these results, which is beyond the scope of the present
study.

In the present work, we have quantified changes in the
branched F-actin network in spines and evaluated some
of the early changes predicted to occur during the onset
of AD. Most of the neurodegenerative diseases, genetic
disorders and changes in the strength of the synapses are
correlated with changes in spine morphology and F-actin
organization. Thus, it is interesting to see whether this
paradigm could be used as a common resource to ana-
lyze large datasets that can be obtained for different
conditions. It remains to be seen whether the same model
of analysis could also be used for understanding
branched F-actin networks in the growth cone, axonal
boutons and inhibitory synapses.

Conclusion
The supervised learning protocols as predictive models

in well-characterized systems is an efficient tool for high
throughput analysis of the nanoscale organization. In the
present case, using supervised learning along with effec-
tive segmentation strategies, we have characterized both
morphologies of spines and nanoscale organization of
F-actin cytoskeleton. Future work may focus on acquiring
and analyzing F-actin structures in spines in 3-dimension
at an improved resolution to allow more accurate identi-
fication of changes accompanying plasticity or neurode-
generative diseases.

References
Androuin A, Potier B, Nägerl UV, Cattaert D, Danglot L, Thierry M,

Youssef I, Triller A, Duyckaerts C, El Hachimi KH, Dutar P, Delatour
B, Marty S (2018) Evidence for altered dendritic spine compart-
mentalization in Alzheimer’s disease and functional effects in a
mouse model. Acta Neuropathol 135:839–854.

Ansari AM, Ahmed AK, Matsangos AE, Lay F, Born LJ, Marti G,
Harmon JW, Sun Z (2016) Cellular GFP toxicity and immunoge-
nicity: potential confounders in in vivo cell tracking experiments.
Stem Cell Rev 12:553–559.

Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J,
Cardona A, Sebastian Seung H (2017) Trainable Weka segmenta-
tion: a machine learning tool for microscopy pixel classification.
Bioinformatics 33:2424–2426.

Bamburg JR, Bernstein BW (2016) Actin dynamics and cofilin-actin
rods in alzheimer disease. Cytoskeleton (Hoboken) 73:477–97.

Bartol TM, Bromer C, Kinney J, Chirillo MA, Bourne JN, Harris KM,
Sejnowski TJ (2015) Nanoconnectomic upper bound on the vari-
ability of synaptic plasticity. Elife 4:e10778.

Methods/New Tools 12 of 13

July/August 2019, 6(4) ENEURO.0425-18.2019 eNeuro.org



Chazeau A, Mehidi A, Nair D, Gautier JJ, Leduc C, Chamma I, Kage
F, Kechkar A, Thoumine O, Rottner K, Choquet D, Gautreau A,
Sibarita JB, Giannone G (2014) Nanoscale segregation of actin
nucleation and elongation factors determines dendritic spine pro-
trusion. EMBO J 33:2745–2764.

Culley S, Albrecht D, Jacobs C, Pereira PM, Leterrier C, Mercer J,
Henriques R (2018) Quantitative mapping and minimization of
super-resolution optical imaging artifacts. Nat Methods 15:263–
266.

Dani A, Huang B, Bergan J, Dulac C, Zhuang X (2010) Superresolu-
tion imaging of chemical synapses in the brain. Neuron 68:843–
856.

Efimova N, Korobova F, Stankewich MC, Moberly AH, Stolz DB,
Wang J, Kashina A, Ma M, Svitkina T (2017) �III spectrin is necessary
for formation of the constricted neck of dendritic spines and regulation of
synaptic activity in neurons. J Neurosci 37:6442–6459.

Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA (2010) Single-
molecule discrimination of discrete perisynaptic and distributed
sites of actin filament assembly within dendritic spines. Neuron
67:86–99.

Ghani MU, Mesadi F, Kanık SD, Argunşah AO, Hobbiss AF, Israely I,
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