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Face mask-wearing detection is of great significance for safety protection during the epidemic. Aiming at the problem of low
detection accuracy due to the problems of occlusion, complex illumination, and density in mask-wearing detection, this paper
proposes a neural network model based on the loss function and attention mechanism for mask-wearing detection in complex
environments. Based on YOLOv5s, we first introduce an attention mechanism in the feature fusion process to improve feature
utilization, study the effect of different attention mechanisms (CBAM, SE, and CA) on improving deep network models, and then
explore the influence of different bounding box loss functions (GIoU, CIoU, and DIoU) on mask-wearing recognition. CIoU is
used as the frame regression loss function to improve the positioning accuracy. By collecting 7,958 mask-wearing images and a
large number of images of people without masks as a dataset and using YOLOv5s as the benchmark model, the mAP of the model
proposed in the paper reached 90.96% on the validation set, which is significantly better than the traditional deep learningmethod.
Mask-wearing detection is carried out in a real environment, and the experimental results of the proposed method can meet the
daily detection requirements.

1. Introduction

,e spread of COVID-19 endangers public safety, and its
known transmission routes mainly include droplet trans-
mission and close contact. ,erefore, wearing masks has
become the mainmeans of preventing the spread of the virus
[1, 2]. ,e traditional methods of inspecting mask-wearing
are mostly manual inspections, which not only consume
manpower andmaterial resources and are inefficient but also
cause certain difficulties in personnel management, which is
more likely to cause crowds to gather and increase the risk of
virus spread.

Mask-wearing detection technology is one of the key
prevention means supervised by epidemic prevention de-
partments, and the stability and robustness of mask de-
tection algorithms are particularly important. Mask-wearing
detection is developed based on face detection and target
classification. Compared with simple face detection, mask-
wearing detection needs to address many problems, such as
different lighting, side faces, occlusion, and density.

However, solving these problems and improving mask-
wearing detection accuracy are of great significance [3, 4].

With the development of deep learning technology,
mask-wearing detection technology based on deep learning
has been widely used [5, 6]. However, due to the influence of
a complex environment, the existing algorithms have the
problems of low accuracy and slow detection speed, which
cannot achieve real-time detection. To this end, based on
the YOLOv5 model, this paper introduces an attention
mechanism to selectively enhance the fused features,
highlight important features, reduce the impact of redun-
dant features, and use the CIoU loss function as a new
bounding regression loss function to make the regression of
the target model more documented and the positioning
more accurate. ,e main contributions of the paper are as
follows:

(1) Study the effect of different attention mechanisms
(CBAM, SE, and CA) on improving the deep net-
work model.
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(2) Explore the impact of different bounding box loss
functions (GIoU, CIoU, and DIoU) on mask-
wearing recognition.

,e rest of the content is arranged as follows: Section 2
introduces the work related to mask-wearing detection.
Section 3 focuses on describing the framework and imple-
mentation details of the mask-wearing detection model.
Section 4 verifies the performance of the proposed method
through experimental tests and finally gives a summary and
outlook.

2. Related Works

Mask-wearing detection is an object detection task that
determines the location and category of each object in the
image. Mask-wearing detection methods based on deep
learning are divided into two categories. One is a two-stage
target detection model based on region extraction, such as
RCNN (regions convolutional neural networks) [7], Fast
R-CNN [8], Faster R- CNN [9], R-FCN [10], Cascade
R-CNN [11], and DeRPN [12], which divide the target
detection into two steps: feature extraction and feature
classification. ,e other is to obtain the classification results
directly based on the regression method, which can realize
real-time detection in terms of detection speed, but it is
slightly insufficient in detection accuracy, such as SSD
(single shot multibox detector) [13], YOLO (you only look
once) [14, 15] series, RetinaNet [16], and RefineDet [17].
Recently, researchers have proposed various mask-wearing
detection technologies based on the above methods. Fan and
Jiang [18] proposed a high-performance single-stage mask-
wearing detector named RetinaFaceMask, which includes a
new dataset, a contextual attention module, and transfer
learning. Jignesh Chowdary et al. [19] proposed a transfer
learning model to automatically detect mask-wearing, which
was performed by fine-tuning the pretrained InceptionV3
model. Rahman et al. [20] proposed a system to limit the
growth of COVID-19 by using deep learning models and
cameras to discover people who are not wearing masks in
urban networks. Loey et al. [21] proposed a hybrid model
based on deep learning and classical machine learning,
including two parts: the first part uses ResNet50 for feature
extraction, and the second part uses SVM and ensemble
algorithms for classification. Ren and Liu [22] designed a
YOLOv3-based convolutional neural network named
Face_mask Net.

Attention mechanisms have achieved great success in
various computer vision tasks [23]. ,e purpose of intro-
ducing an attention mechanism is to select key information
from many redundant pieces of information to submit the
detection ability of the network. Attention-based models
include four stages in the field of computer vision: com-
bining deep neural networks with attention mechanisms,
representative methods include RAM [24]; in explicit pre-
diction of discriminative input features, representative
methods include STN [24, 25] and DCN [26]; to implicitly
and adaptively predict potential key features, representative
methods are SENet [27], CBAM [28], and CA [29]; attention

methods are related to the self-attentionmechanism, and the
representative methods are nonlocal [30] and ViT [31].
Attention mechanisms are also divided into channel at-
tention, spatial attention, temporal attention, branch at-
tention, and multiple class mixing methods.

Bounding box regression is a mainstream technique in
object detection that uses a rectangular bounding box to
predict the location of the target object in the image, aiming
to refine the predicted bounding box location. Bounding box
regression adopts the overlapping area between the pre-
dicted bounding box and the ground-truth bounding box as
the loss function, which is called the IoU-based loss function.
Deep learning optimization suffers when the predicted and
ground-truth bounding boxes do not intersect. GIoU [32] is
an improvement on IoU. While maintaining the advantages
of IoU, it also addresses other non-overlapping regions,
reflecting the degree of overlap between the two to a certain
extent. DIoU [33] considers the overlapping area and the
center point distance. When the target frame wraps the
prediction frame, it directly measures the distance between
the two frames, so the convergence is faster. Based on DIoU,
CIoU uses the aspect ratio of the prediction box and the
target box as an impact factor. Alpha-IoU [34] can signif-
icantly outperform existing IoU-based losses and is more
robust to small datasets and noise. Aiming at the problem of
dense targets inmask recognition, Zhang et al. [35] proposed
to learn the IoU-Aware classification score and design a new
loss function named Varfocal Loss to propose a new
bounding box feature representation method for prediction
and boundary refinement. At the same time, real-time mask-
wearing detection [36, 37] and transfer learning methods
[38–40] have been widely studied. For example, Mahmoud
et al. [36] proposed a real-time feature extraction module
based on deep convolutional neural network. Xu [37]
proposed a lightweight YOLOv5 model and used alpha-
CIoU as the loss function. Mercaldo and Santone [38]
proposed a transfer learning method that uses the Mobi-
leNetV2 model to identify illegal mask-wearing behaviors in
videos. Su et al. [39] proposed a mask-wearing recognition
method that integrates transfer learning and Efcient-Yolov3,
using EfcientNet as the backbone network and CIoU as the
loss function.

3. Methodology

3.1. Improved YOLOv5. YOLOv5 is a representative of a
single-stage detection model, which has the advantages of
fast speed and high accuracy. Compared with YOLOv4, the
model has fewer parameters, simple operation, and easier
transplantation to the mobile terminal. It was proposed by
Ultralytics in May, 2020. ,ere are four network models,
namely, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
Among them, YOLOv5s has the smallest network depth and
feature map width, and the other three models are con-
tinuously deepened and widened based on YOLOv5s.

Based on YOLOv5s, this paper adds the CBAM attention
mechanism in the feature fusion process to improve feature
utilization and uses CIoU as the bounding loss function to
improve the positioning accuracy. ,e model structure is
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shown in Figure 1. ,e improved model is the same as the
traditional YOLOv5s, including four parts: input, backbone,
neck, and prediction:

(1) ,e input includes an adaptive anchor box and an
adaptive image scaling.

(2) ,e backbone includes the focus module and the
CSP module. ,e slicing operation in the focus
module reduces the number of computations and
improves the speed while realizing downsampling.
,e CSP module is beneficial for improving the
network learning ability and reducing the memory
cost. Two structures, CSP1 and CSP2, are designed in
YOLOv5s. ,e CSP1 structure and the CSP2
structure are applied to the backbone and neck
networks, respectively, to further speed up the in-
ference speed of the network model.

(3) ,e core of the neck adopts FPN and PAN struc-
tures.,e FPN and PAN structures realize the fusion
and complementation of high-level features and low-
level features. FPN is top-down and uses upsampling
process to transfer and fuse the new type to obtain
the predicted feature map. ,e PAN adopts a bot-
tom-up feature pyramid. In this paper, CBAM is
introduced into FPN, and the fused feature map is
sent to CBAM to reduce the influence of redundant
features after fusion.

(4) ,e prediction includes the bounding box loss
function and nonmaximum suppression (NMS). In
this paper, CIoU is used as the loss function to locate
the target box more accurately. In the target de-
tection prediction result processing stage, the opti-
mal target frame is obtained by using the weighted
NMS operation for screening numerous target
frames.

3.2. Attention Mechanism. ,e convolutional block attention
module (CBAM) is a lightweight convolutional attention
module that combines channel and spatial attention mecha-
nism modules. CBAM includes two submodules, the channel
attention module (CAM) and the partial attention module
(SAM), which perform channel and spatial attention, respec-
tively. ,is not only saves parameters and computing power
but also ensures that it can be integrated into the existing
network architecture as a plug-and-play module. CAM is an
adjustment to the structure of the SE module. Based on the SE
module, a global maximum pooling operation is added to the
CAM. CAM compresses the feature map into a one-dimen-
sional vector in the spatial dimension, uses global average
pooling and global maximum pooling to aggregate the feature
information of the spatial map, and performs an element-by-
element sum operation on the results by sharing the fully
connected layer. ,e structure setting of the double pooling
operation canmake the extracted high-level features richer and
provide more detailed information. SAM performs the con-
catenating operation on the result of the CAM operation based
on the channel and performs single-channel dimensionality
reduction through convolution. Similar to CAM, SAMadopts a

double pooling operation. CBAM is similar to the SE module.
,e module structure mostly uses a 1× 1 convolution to
operate and completes the information extraction of the feature
map through the entire channel dimension of the SAM, as
shown in Figure 2.

Since the CBAMmodel adds a global maximum pooling
operation to the CAM, it can make up for the information
lost by the global average pooling to a certain extent. In
addition, the generated 2D spatial attention map is encoded
using a convolutional layer with a kernel size of 7, and a
larger kernel is good for preserving important spatial re-
gions. ,e YOLOv5s network with CBAM added can not
only classify and identify the target more accurately but also
locate the target more accurately.

3.3. Complete-IoU. ,e loss function of the target detection
task consists of two parts: classification loss and bounding
box regression loss. ,e most commonly used bounding box
regression loss is IoU and its improved algorithm. ,e full
name of the IoU algorithm is the intersection and union
ratio, which is obtained by calculating the ratio of the in-
tersection and union of the predicted box and ground-truth
box, that is, IoU(A, B) � (A∩B)/(A ∩B), where A is the
predicted box and B is the ground-truth box. IoU can be
used as the distance; then, LossIoU � 1 − IoU. ,e advantage
of IoU is that it can reflect the detection effect between the
predicted box and the ground-truth box. IoU has two dis-
advantages: when the prediction bounding box and the
ground-truth bounding box do not intersect and IoU(A,B)�

0, the distance between A and B cannot be reflected. At this
time, the loss function is not steerable and IoU loss cannot
optimize the situation where the two bounding boxes do not
intersect. Assuming that the sizes of the prediction bounding
box and the ground-truth bounding box are determined, as
long as the intersection value of the two boxes is determined
and their IoU values are the same, the IoU value cannot
reflect how the two boxes intersect. To this end, the paper
adopts the CIoU loss function, and its formula is as follows:

IoU � IoU −
p
2

b, b
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v
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,

(1)

where b and bgt represent the center points of prediction box
B and ground-truth box Bgt, respectively, c represents the
square of the diagonal length of the minimum bounding box
C, p represents the calculation of the Euclidean distance
between the two center points, α is the weight parameter,
and v is used to measure the similarity of the aspect ratio. In
addition, it can be seen that the CIoU loss function not only
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considers the overlapping area of the predicted frame and
the real frame but also considers the distance between the
center points and the aspect ratio of the two. ,erefore, in
the mask-wearing detection environment, the performance
is better than other loss functions.

4. Experimental Results

4.1. Experimental Data and Environment. ,e paper collects
7,958 pictures of people wearing masks and not wearing
masks in the network and real scenes as a dataset, including
7,158 training sets and 800 test sets. ,e ratio of the training
set and test set is 9 :1, and 0 and 1 are used to label the two
categories. ,e sample images are shown in Figure 3.

,e experimental environment of this paper was com-
pleted on the Ubuntu18.04 operating system. ,e GPU
model is an NVIDIA GeForce RTX3060 12G, and the
software environment is CUDA11 and PyTorch 1.7.

4.2. Evaluation Standard. In this paper, the precision rate,
recall rate, average precision (AP), and mean average pre-
cision (mAP@0.5) are used as model accuracy evaluation

indicators, where AP represents the area under the PR curve
and mAP@0.5 represents the average precision (AP) of all
categories when IoU is set to 0.5. ,e specific formula is as
follows:

precision �
TP

(TP + FP)
,

recall �
TP

(TP + FN)
,

AP � 
1

0
PdR,

mAP �


N
i�1 APi

N
,

(2)

where TP is the number of correctly classified bounding
boxes that are predicted and the bounding box coordinates
that are correct, FN is the number of all unpredicted
bounding boxes, and FP is the number of predicted
bounding boxes that are misclassified or whose bounding
box coordinates that are not up to the standard.
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4.3. Experimental Results. In the training phase of the
YOLOv5s model, the initial parameter batchSize is set to 8
and 8 images are randomly selected for training each time.
,e epoch is set to 450 rounds, and the rect is true. By setting
the same parameters, different loss functions are used to
train the network. When the model is trained to 300 epochs,
the model begins to converge. After 450 epochs, each model
takes the optimal result.

4.3.1. Comparison of Attention Mechanisms. To verify the
performance of the CBAM, this paper uses SE, CBAM, and
CA to conduct comparative experiments. Among them, SE
attention is channel attention, to solve the loss problem
caused by the different weights occupied by different
channels of the feature map in the process of neural network
feature extraction. CBAM attention is additional spatial
attention based on SE attention.,e feature of CA is that the
channel attention is divided into two different directions,
horizontal and vertical, so that the information of the po-
sition and spatial direction of the input feature image can be
fused, which can make the model more accurately locate the
detection target.

By adding three attention mechanisms of SE, CBAM,
and CA to different positions of the YOLOv5 network model
(such as backbone network and neck network), the paper
found that the performance of the same attention in different
positions is different. Table 1 presents the optimal results of
different attention mechanisms, where CA is the worst and
CBAM performs the best, which can improve mAP by 0.52%
compared to the normal model without increasing the
network complexity. Figure 4 shows the comparison ex-
periment curves based on the CBAM and the traditional
network. It can be seen in the figure that adding the CBAM
has a certain improvement effect.

4.3.2. Comparison of Loss Functions. To verify the detection
performance of the CIoU loss function, the paper uses IoU,
GIoU, DIoU, alpha-IoU [34], and Varifocal [35] for com-
parative experiments. Among them, alpha-IoU (aIoU for

short) is a unified exponentiation of existing losses based on
IoU for accurate bbox regression and object detection. In
this paper, the alpha-IoU is improved based on CIoU and
the alpha is set to 2 and 3 for experimental comparison.
When alpha� 1, it corresponds to the original CIoU loss
function. Varifocal is a new loss function for training dense
object detectors.

Table 2 presents the detection results of different loss
functions. As can be seen from Table 2, CIoU is better than
DIoU, GIoU, and aIoU and slightly lower than Varifocal.
Figure 5 represents the precision, recall, and mAP curves for
different algorithms. When alpha� 3, the recall curve of
aIoU-3 has obvious advantages. In addition, Figure 6 shows
the detection result pictures based on Varifocal and CIoU.
Although Varifocal achieves slightly better mAP, there will
be obvious false positives in the case of the side face. Overall,
the CIoU loss function is better.

To further verify the effectiveness of the method pro-
posed in the paper, Table 3 also gives the traditional two-
stage algorithm Faster R-CNN and the one-stage algorithm
YOLOv3 as comparative experiments and uses mAP, pre-
cision, and recall to evaluate and compare each mainstream
algorithm. Table 3 shows that the comprehensive perfor-
mance of the network model proposed in the paper is the
best; its mAP is 1.18% higher than that of Faster R-CNN and
4.85% higher than that of the YOLOv3 network model
structure. After adding the CBAM to the backbone network,
the performance of the network model is further improved
and the final mAP reaches 90.96%.

Pictures of people wearing masks and pictures of people
without masks in real scenes are collected, and the
YOLOv5s +CIoU and YOLOv5s +CIoU+CBAM network
models are used to evaluate the collected pictures. ,e

Figure 3: Sample images from the dataset.

Table 1: ,e performance of different attention mechanisms.

Model Precision (%) Recall (%) mAP@0.5 (%)
YOLOv5s + SE 95.00 84.03 89.70
YOLOv5s +CBAM 94.78 85.56 90.95
YOLOv5s +CA 95.15 76.91 82.51

Computational Intelligence and Neuroscience 5



Precision Recall mAP@0.5

0.950 0.85 0.90

0.850.80

0.75

0.70

0.80

0.75

0.700.65

0.925

0.900

0.875

0.850

0.825

0.800

0.775
0 100 200 300

Epoch

P R

m
A
P

400 0 100 200 300
Epoch

400 0 100 200 300
Epoch

YOLOv5s
YOLOv5s+CBAM

400

Figure 4: Performance detection curves of different attention mechanisms.

Table 2: ,e performance of different loss functions.

Loss function Precision (%) Recall (%) mAP@0.5 (%)
IoU 93.99 84.15 89.68
GIoU 93.87 85.24 90.17
DIoU 94.57 83.51 90.21
aIoU-2 95.13 85.06 89.87
aIoU-3 95.05 90.78 89.01
Varifocal 96.20 86.23 90.78
CIoU 93.69 84.90 90.43
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Figure 5: Continued.
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detection results in the real environment are shown in
Figure 7. As can be seen from the figure, the two face targets
on the left are occluded. ,e above picture does not use the
CBAM attention mechanism, resulting in missed detection,
while the following picture can be applied to face detection
under occlusion. From the above experimental results,
YOLOv5s has occlusion and missed detection in the real

environment. In contrast, the model proposed in this paper
performs relatively well, especially for small target detection,
which can achieve relatively accurate detection, but there is
still missing detection in the shadow area. With the addition
of the CBAM, the performance of the network model can be
enhanced, corresponding with the expected experimental
results.
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Figure 5: Performance curves of different loss functions. (a) Precision. (b) Recall. (c) mAP@0.5.

(a) (b)

Figure 6: Detection results with different loss function. (a) Varifocal. (b) CIoU.

Table 3: ,e performance of different models.

Model Precision (%) Recall (%) mAP@0.5 (%)
YOLOv3 95.73 78.01 86.11
Faster R-CNN 72.99 90.51 89.78
YOLOv5s +CIoU 93.69 84.90 90.43
YOLOv5s +CBAM+CIoU 94.68 85.63 90.96
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5. Conclusion

Aiming at the occlusion and density problems of mask-
wearing detection, this paper proposes a mask-wearing
detection model based on an attention mechanism and loss
function and carries out experimental tests based on dif-
ferent attention mechanisms and loss functions. Taking
YOLOv5s as the basic framework, the experimental results
show that the CBAM is significantly better than the other
two attention mechanisms. Experimental tests on different
loss functions show that the CIoU loss function is slightly
better than the other three loss functions. ,e experimental
results tested in the real environment show that the pro-
posed model is robust to small targets and occlusion.
Future work will further study the new network model to
improve the accuracy of mask detection.

Data Availability

,e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is research was funded by the National Natural Science
Foundation of China (No. 61976198), Natural Science Re-
search Key Project for Colleges and University of Anhui
Province (No. KJ2019A0726), High-Level Scientific

(a)

(b)

Figure 7: Detection results with the proposed model. (a) YOLOv5s +CIoU and (b) YOLOv5s +CBAM+CIoU.

8 Computational Intelligence and Neuroscience



Research Foundation for the Introduction of Talent of Hefei
Normal University (No. 2020RCJJ44), the University-In-
dustry Collaborative Education Program (No.
202102373013), and the Scientific Research Project by En-
terprises of Hefei Normal University (HXXM2022007).

References

[1] C. W. Yang, T. H. Phung, H. H. Shuai, and W. H. Cheng,
“Mask or non-mask? robust face mask detector via triplet-
consistency representation learning,” ACM Transactions on
Multimedia Computing, Communications, and Applications,
vol. 18, no. 1s, pp. 1–20, 2022.

[2] B. Wang, Y. Zhao, and C. L. P. Chen, “Hybrid transfer
learning and broad learning system for wearing mask de-
tection in the covid-19 era,” IEEE Transactions on Instru-
mentation and Measurement, vol. 70, pp. 1–12, 2021.

[3] H. Goyal, K. Sidana, C. Singh, A. Jain, and S. Jindal, “A real
time face mask detection system using convolutional neural
network,” Multimedia Tools and Applications, vol. 81,
pp. 1–17, 2022.

[4] J. Zhang, F. Han, and Y. Chun, “A novel detection framework
about conditions of wearing face mask for helping control the
spread of covid-19,” IEEE Access, vol. 9, pp. 42975–42984,
2021.

[5] A. Kumar, A. Kalia, A. Sharma, and M. Kaushal, “A hybrid
tiny YOLO v4-SPP module based improved face mask de-
tection vision system,” Journal of Ambient Intelligence and
Humanized Computing, pp. 1–14, 2021.

[6] Z. Zhao, K. Hao, X. Ma et al., “SAI-YOLO: a lightweight
network for real-time detection of driver mask-wearing
specification on resource-constrained devices,” Computa-
tional Intelligence and Neuroscience, vol. 2021, Article ID
4529107, 15 pages, 2021.

[7] R. Girshick, J. Donahue, and T. Darrell, “Rich feature hier-
archies for accurate object detection and semantic segmen-
tation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580–587, Columbus, OH,
USA, June 2014.

[8] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE in-
ternational conference on computer vision, pp. 1440–1448,
Santiago, CI, USA, December 2015.

[9] S. Ren, K. He, and R. Girshick, “FasterR. Cnn: towards real-
time object detection with region proposal networks,” in
Proceedings of the Advances in Neural Information Processing
Systems, pp. 91–99, Grenada, Spain, June 2015.

[10] J. Dai, Y. Li, and K. He, “R-fcn: object detection via region-
based fully convolutional networks,” in Proceedings of the-
Advances in Neural Information Processing Systems, New
York, NY, USA, December 2016.

[11] Z. Cai, N. Vasconcelos, and R.-C. N. N. Cascade, “Delving
into high quality object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 6154–6162, Salt Lake City, UT, USA, June 2018.

[12] L. Xie, Y. Liu, L. Jin, and Z. Xie, “DeRPN: taking a further step
toward more general object detection,” in Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 9046–9053,
Honolulu, HI, USA, February 2019.

[13] W. Liu, D. Anguelov, D. Erhan et al., “Ssd: Single ShotMultibox
detector,” in Proceedings of the European Conference on
Computer Vision, pp. 21–37, Munich, Germany, October 2016.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788, Las Vegas, NV, USA, June 2016.

[15] J. Redmon and A. Farhadi, “YOLO9000 better faster stronger,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7263–7271, Vegas, NV,USA, June 2016.

[16] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal
loss for dense object detection,” in Proceedings of the IEEE
International Conference On Computer Vision, vol. 42,
pp. 2980–2988, Chongqing, China, July 2020.

[17] S. Zhang, L. Wen, and X. Bian, “Single-shot refinement neural
network for object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 4203–4212, Lake City, UT, USA, June 2018.

[18] X. Fan and M. Jiang, “A single stage face mask detector for
assisting control of the COVID-19 pandemic,” IEEE, in
Proceedings of the 2021 IEEE international conference on
systems, man, and cybernetics (SMC), pp. 832–837, Mel-
bourne, Australia, October 2021.

[19] G. Jignesh Chowdary, N. S. Punn, S. K. Sonbhadra, and
S. Agarwal, “Face mask detection using transfer learning of
inceptionv3,” in Proceedings of the International Conference
on Big Data Analytics, pp. 81–90, Ahmedabad, India, De-
cember 2020.

[20] M. M. Rahman, M. M. H. Manik, M. M. Islam, S. Mahmud,
and J. H. Kim, “An Automated System to Limit COVID-19
Using Facial Mask Detection in Smart City network,” in
Proceedings of the 2020 IEEE International IOT, Electronics
and Mechatronics Conference (IEMTRONICS), IEEE, Van-
couver, Canada, September 2020.

[21] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa,
“A hybrid deep transfer learningmodel withmachine learning
methods for face mask detection in the era of the COVID-19
pandemic,” Measurement, vol. 167, Article ID 108288, 2021.

[22] X. Ren and X. Liu, “Mask wearing detection based on
YOLOv3[C]//Journal of physics: conference series,” IOP
Publishing, vol. 1678, no. 1, Article ID 012089, 2020.

[23] M. H. Guo, T. X. Xu, J. J. Liu et al., “Attention mechanisms in
computer vision: a survey,” Computational Visual Media,
vol. 8, no. 3, pp. 331–368, 2022.

[24] V.Mnih, N. Heess, and A. Graves, “Recurrent models of visual
attention,” in Proceedings of the Advances in Neural Infor-
mation Processing Systems, pp. 2204–2212, New York, NY,
USA, December 2014.

[25] M. Jaderberg, K. Simonyan, and A. Zisserman, “Spatial
transformer networks,” in Proceedings of the Advances in
Neural Information Processing Systems, pp. 2017–2025, New
York, NY, USA, December 2015.

[26] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2:
more deformable, better results,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
Beach, CA, USA, June 2019.

[27] J. Hu, L. Shen, S. Albanie et al., “Squeeze-and-Excitation
networks,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 42, no. 8, pp. 2011–2023.

[28] S. Woo, J. Park, J. Y. Lee, and I. S Kweon, “Cbam: Con-
volutional Block Attention module,” European Conference on
Computer Vision (ECCV), pp. 3–19, 2018.

[29] Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for
efficient mobile network design,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
pp. 13713–13722, Nashville, TN, USA, June 2021.

[30] X.Wang, R. Girshick, A. Gupta, and K. He, “Non-local Neural
networks,” in Proceedings of the IEEE Conference on Computer

Computational Intelligence and Neuroscience 9



Vision and Pattern Recognition, pp. 7794–7803, Lake City, UT,
USA, June 2018.

[31] A. Dosovitskiy, L. Beyer, A. Kolesnikov et al., “An image is
worth 16x16 words: transformers for image recognition at
scale,” in Proceedings of the International conference on
learning representations, pp. 1–21, Vienna, Austria, May 2021.

[32] H. Rezatofighi, N. Tsoi, and J. Y. Gwak, “Generalized Inter-
section over union: A Metric and a Loss for Bounding Box
regression,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Beach, CA, USA,
June 2019.

[33] Z. Zheng, P. Wang, andW. Liu, “Distance-IoU loss: faster and
better learning for bounding box regression,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 7,
pp. 12993–13000, April 2020.

[34] J. He, S. Erfani, X. Ma, J. Bailey, Y. Chi, and X. S. Hua, “Alpha-
IoU: a family of power intersection over union losses for
bounding box regression,” Advances in Neural Information
Processing Systemspp. 1–13, Montreal, Canada, 2021.

[35] H. Zhang, Y. Wang, F. Dayoub, and N. Sunderhauf, “Vari-
focalnet: an iou-aware dense object detector,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Ashville, TN, USA, June 2021.

[36] H. A. H. Mahmoud, N. S. Alghamdi, and A. H. Alharbi, “Real
time feature extraction deep-CNN for mask detection,” In-
telligent Automation and Soft Computing, vol. 31, pp. 1423–
1434, 2022.

[37] S. Xu, “An improved lightweight yolov5 model based on
attention mechanism for face mask detection,” 2022, https://
arxiv.org/abs/2203.16506.

[38] F. Mercaldo and A. Santone, “Transfer learning for mobile
real-time face mask detection and localization,” Journal of the
American Medical Informatics Association, vol. 28, no. 7,
pp. 1548–1554, 2021.

[39] X. Su, M. Gao, J. Ren, Y. Li, M. Dong, and X. Liu, “Face mask
detection and classification via deep transfer learning,”
Multimedia Tools and Applications, vol. 81, no. 3, pp. 4475–
4494, 2022.

[40] M. F. S. Sabir, I. Mehmood, W. A. Alsaggaf et al., “An au-
tomated real-time face mask detection system using transfer
learning with faster-rcnn in the era of the covid-19 pan-
demic,” Computers, Materials & Continua, vol. 71, pp. 4151–
4166, 2022.

10 Computational Intelligence and Neuroscience

https://arxiv.org/abs/2203.16506
https://arxiv.org/abs/2203.16506

