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Abstract

LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-

wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge

this gap, we investigated and compared the performance of LiDAR and field data to model

habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high moun-

tain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were

summarized by means of Principal Component Analyses (PCA). We then analyzed wood

mouse’s habitat preferences using three different models based on: (i) field PCs predictors,

(ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a

variance partitioning analysis. Elevation was also included as a predictor in the three mod-

els. Our results indicate that LiDAR derived variables were better predictors than field-

based variables. The model combining both data sets slightly improved the predictive power

of the model. Field derived variables indicated that wood mouse was positively influenced

by the gradient of increasing shrub cover and negatively affected by elevation. Regarding

LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest ver-

tical structure positively influenced wood mouse, although elevation interacted negatively

with the complexity in vertical structure, indicating wood mouse’s preferences for plots with

lower elevations but with complex forest vertical structure. The combined model was similar

to the LiDAR-based model and included the gradient of shrub cover measured in the field.

Variance partitioning showed that LiDAR-based variables, together with elevation, were the

most important predictors and that part of the variation explained by shrub cover was

shared. LiDAR derived variables were good surrogates of environmental characteristics

explaining habitat preferences by the wood mouse. Our LiDAR metrics represented struc-

tural features of the forest patch, such as the presence and cover of shrubs, as well as other

characteristics likely including time since perturbation, food availability and predation risk.

Our results suggest that LiDAR is a promising technology for further exploring habitat prefer-

ences by small mammal communities.
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Introduction

Forest ecosystems and the biodiversity they hold are facing increasing pressures due to natural

factors and management practices that alter and, in many cases, simplify habitat heterogeneity

[1]. These a priori complex habitats are mainly determined by vegetation structure, which is

widely recognized as being one of the most important factors in habitat selection for numerous

taxonomic groups [2]. Among them, birds are by far the most investigated taxa after the semi-

nal study of MacArthur and MacArthur [3] linking bird species diversity to canopy vertical

heterogeneity.

Vegetation structure is commonly described by canopy cover/openness, canopy height,

canopy vertical complexity or biomass [4, 5]. Until the advent of remote sensing technologies

such as Light Detection and Ranging (LiDAR), this type of fine-scaled variables was largely

restricted to observational field surveys, which are often laborious, difficult to measure and

subjective by an observer on the ground [6–8]. For that reason, LiDAR technology has brought

back with renewed strength the classical study of MacArthur and MacArthur [3], while it has

contributed to revitalize the “habitat heterogeneity hypothesis” (structurally complex habitats

can provide more niches and thus increase species diversity; [2]) by providing accurate and

objective measures of vegetation architecture to model wildlife-habitat structure relationships.

A growing list of LiDAR-based studies has been published during the last decade, although

studies on three-dimensional (3-D) animal ecology are strongly biased toward flying verte-

brates, mainly birds (but also bats), given the 3D nature of bird ecology [9, 10]. The most

relevant predictor regarding vegetation structure for flying vertebrates was canopy vertical

heterogeneity, as it leads to an increase in available niches (see review by [9]). The paucity of

studies of nonflying vertebrates in forests probably has to do with not-so-obvious relevance of

habitat structure for these other taxa (except for tree-dwelling squirrels and primates; [11, 12]).

Nevertheless, canopy cover and understory vegetation derived from LiDAR data have been

shown to influence hunting or foraging decisions and habitat use under contrasting weather

conditions in some terrestrial mammals such as ungulates or meso-carnivores [9, 13–15].

One group for which LiDAR data has not been applied is ground-dwelling small rodents

(hereinafter small mammals). This heterogeneous group play important roles in the dynamics

of forest ecosystems, acting, for example, as seed and seedling predators, but also as dispersers

of seeds and spores of plants and fungi, or contributing to organic matter decomposition and

soil mixing [16, 17]. Further, they are important food resources for other species, comprising

the main prey for many avian and terrestrial predators [18, 19].

In this study, we use wood mouse (Apodemus sylvaticus) as the target species. The wood

mouse is a common scatter-hoarding rodent in Mediterranean habitats [20], and probably the

most abundant mammal in forest systems in the Iberian Peninsula due to its generalist charac-

ter and ability to adapt to different environments [21]. Previous research has examined wood

mouse’s habitat preferences in forests and assessed the role of different elements such as the

amount of coarse woody debris, litter or understory vegetation and the age, structure or het-

erogeneity of forests stands [22–27]. These studies (based on field measurements) found that

these factors influenced the abundance of this species through their effects on food provision

and availability of nesting sites and shelter from predators [28]. In this regard, Airborne

LiDAR data may be a powerful tool used in studies on small mammals, provided it can accu-

rately capture habitat features important for this ground-dwelling species. For example, char-

acterization of lower layers using LiDAR data may be less precise in closed habitats dominated

by perennial trees, such as pine forests (e.g. [29–31]). However, the accuracy of LiDAR derived

variables has been broadly demonstrated in early applications to forest inventory and later use

in ecological research [9, 10].
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Given that the majority of published literature using LiDAR investigate bird responses to

habitat structure [9, 10], this study aimed to narrow this gap by providing new insights on

small mammals-habitat structure relationships through the combined use of field and LiDAR

derived environmental variables in a Mediterranean high mountain pine forest. Our first

objective was to assess the value of airborne LiDAR to model wood mouse habitat preferences.

Our second objective was to evaluate the performance of traditional field-based variables to

explain wood mouse preferences. Finally, we combined LiDAR- and field-based variables in

the same predictive model to determine whether the predictive power of the model increased

compared to models using one dataset. Moreover, we used variance partitioning to assess the

independent and joint contribution of each type of explanatory variables. To our knowledge,

this is the first attempt to model habitat preferences of a small mammal using LiDAR data.

We hypothesized that habitat features measured in the field such as shrub and litter cover

would better explain wood mouse habitat preferences rather than LiDAR-based measures,

since (i) this type of fine-scale microhabitat variables has been previously described as relevant

for small mammals; (ii) previous studies have shown the difficulty of obtaining accurate

understory LiDAR-based measures in closed-canopy forests of perennial-dominated species,

and (iii) small non-flying vertebrates do not seem to be directly affected by canopy cover or

vertical structure of the canopy.

Materials and methods

Study area

The study was conducted in the forest of Valsaı́n (7622 ha), located on the northern slope of

the Guadarrama Mountain Range, central Spain (40˚ 51´N, 4˚ 3´W). The forest is mostly dom-

inated by Scots pine (Pinus sylvestris), a typically boreal species, mainly restricted in southern

Europe to the high mountains of the Mediterranean basin [32], with Pyrenean oak (Quercus
pyrenaica) being more abundant at lower elevations. The shrub layer is mainly comprised by

Genista florida, Cytisus scoparius, Juniperus communis, Rosa sp., Rubus sp. and Ilex aquifolium.

The pine forest occurs between 1200 m and 2100 m on acidic soils. The climate is continental

Mediterranean, with hot, dry summers and cold winters, with mean precipitation ranging

from over 900 to 1500 mm, depending on elevation, and mean annual temperature of around

9.8˚C.

The management that is carried out in this pine forest consists of the exploitation of timber

resources while maintaining natural forest productivity, with a complete reliance on natural

regeneration success. Using a group shelterwood method, a new stand is established by gradu-

ally removing all trees in a series of repeated partial harvests over a rotation period of 120

years. To do so, thinning of the tree mass is made, combined with the creation of small gaps

(0.1–0.2 ha) in the forest. This allows the progressive establishment of natural regeneration

under the protection of seed trees, without additional treatments [33].

Plot setting and live trapping

Fifty 25 m radius circular plots (0.196 ha) were located in the pine forest of Valsaı́n along the

whole altitudinal range (Fig 1), with a minimum distance of 250 m between them. The separa-

tion between plots was aimed to cover a wide gradient of forest structures. At each circular

plot, a grid of 16 Sherman traps (20 x 6 x 6 cm) was set up to trap small mammals. Two traps

were placed in the direction of each of the four cardinal points and its four diagonals, at a dis-

tance of 8 and 16 m from the center of the plot, thus creating two evenly spaced concentric

rings of traps. Traps were set as horizontal as possible to increase the likelihood of captures,

and covered with leaf litter to improve thermal insulation and to conceal them. Each trap was
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baited with bread fried in rancid oil and waterproof cotton was added to reduce the risk of

hypothermia [34]. Trapping sessions were conducted from mid-June to mid-July 2014, coin-

ciding with an increase in wood mouse activity in Mediterranean high mountain areas [21].

Traps were active during four consecutive nights and were checked early each morning. Total

trapping effort was therefore 3200 traps over the four nights.

Trapped individuals were identified to species, sexed, weighed with a digital scale to the

nearest 0.1 g and their breeding condition was determined following Gurnell and Flowerdew

[35]. Before releasing, each individual was marked with a temporary color code to control for

potential recaptures. Manipulation time was kept at minimum to avoid disturbance to animals

and each individual was released at its trapping site.

Ethics statement

Capture and handling of individuals were done in compliance with the Spanish Royal Decree-

Law 53/2013 and the European Union Directive 2010/63/EU on the protection of animals

used for scientific purposes and were conducted under permit from Servicio Territorial de

Medio Ambiente de la Junta de Castilla y León, Spain (Reference: EP/SG/608/2013). The Insti-

tutional Animal Care and Use Committee from the Universidad Autónoma de Madrid was

Fig 1. Sampling plots in the pine forest of Valsaı́n. Location of Valsaı́n (red dot) in the Central Mountain Range in the Iberian Peninsula, Southern

Europe (right). Digital Elevation Model of Valsaı́n (left) showing the sampling plots (green dots).

https://doi.org/10.1371/journal.pone.0182451.g001
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prospectively consulted about the need of a specific permit for animal trapping and handling.

Captures did not involve endangered nor protected species and trapping and handling did not

include invasive procedures or others that could negatively affect animal welfare, thus a spe-

cific permit was not necessary.

Field-based understory composition and structure

At each of the 50 plots, 8–11 2 x 2 m quadrats were set up next to the live traps sited in the four

cardinal directions or its diagonals, for a total of 446 quadrats measured. In each quadrat, we

visually estimated the percent cover of shrubs and small trees (G. florida, C. scoparius, J. com-
munis, Rosa sp., Rubus sp. and I. aquifolium), forbs, ferns (Pteridium aquilinum), mosses, nee-

dle litter, woody debris and bare rock. We also measured the average height of shrubs and

ferns using a metric tape. Cover variables were estimated independently for each species, so

total cover may exceed 100% [36]. We finally calculated the mean for each variable to obtain

average values per plot.

LiDAR-based forest structure

Forest structure variables (horizontal and vertical) at the plot level were derived from LiDAR

data collected in a Piper PA31 Navajo aircraft provided by Blom Sistemas Geoespaciales, S.L.U

in 2009. The LiDAR sensor used was a Leica ALS 60 with a pulse density between 4.7 and 7.3

pulses m2. Flight speed and altitude were 85 m/s and 891 m respectively. The processing of the

raw data from the LiDAR point cloud was performed with the software FUSION ([37]; Fig 2).

Vegetation 3D structure was assessed by thirteen variables. These variables were grouped

into four categories, that informed us about (i) canopy cover, (ii) composition of vertical

Fig 2. Elevation and plan illustrations of two plots situated at opposing extremes of the structural

gradient. (a) plot with an open structure, consisting of tree and regeneration layers and well developed

understory, in which individuals of A. sylvaticus were captured. (b) plot with a closed canopy cover and with an

absence of understory vegetation, in which no small mammals were captured. The colour gradient represents

the variation in height (m) of the forest structure obtained from the LiDAR point data.

https://doi.org/10.1371/journal.pone.0182451.g002
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structure, (iii) heterogeneity of vertical structure, and (iv) canopy mean height. The horizontal

structure was estimated from the percentage of first laser returns in the LiDAR point cloud at

5, 2 and 0.2 m, which is an indicator of canopy cover at each height. Therefore, canopy cover

at 5 m indicates the cover of mature trees, whereas canopy cover at 2 m includes the cover of

mature trees plus young trees (i.e., the regeneration layer). Canopy cover at 0.2 m includes the

latter plus the shrub cover.

The complexity of the vertical structure was estimated for four forest layers: mature tree

layer (>5 m), regeneration layer (2–5 m), shrub layer (0.2–2 m) and herbaceous layer (<0.2

m). The contribution of the four layers sums up to 1. Thus, values close to one in the mature

tree layer indicate dense tree crowns with limited presence of additional vertical structure at

lower layers. On the other hand, values close to zero indicate open canopies with lower layers

comprising most of the total vertical structure.

We also calculated the heterogeneity of canopy height for the mature tree layer (>5 m), for

the mature plus regeneration layer (>2 m) and for the mature plus regeneration plus shrub

layer (>0.2 m), as the standard deviation of height values for first returns up to 5, 2 and 0.2 m,

respectively [9]. Finally, the mean height of vegetation was also estimated for tree, regeneration

and shrub layers. As the year of small mammal trapping (2014) differed from the acquisition

of LiDAR data (2009), the choice of sampling plots was made according to the information

provided by forest managers, in order to avoid areas where silvicultural activities had occurred

in the intervening 5 years, and this was ground-truthed in the field.

Statistical analyses

Mean height of shrubs and ferns measured in quadrats were both highly correlated with their

corresponding cover variables (r> 0.89, in both cases), so we excluded heights from further

analyses. Field- and LiDAR-based habitat variables at the plot scale were summarized by two

separate principal component analyses (PCA) from their respective correlation matrices due

to the high collinearity among the original variables. Varimax rotated components with

eigenvalues > 1 were retained in order to extract factors that represented major underlying

gradients with ecological meaning, that were then used as predictors in models of habitat pref-

erence by wood mice. Because the abundance of small mammals usually decreases with eleva-

tion in Mediterranean mountains [38], and elevation may interact with forest structure, we

calculated the elevation of each sampling plot from a 5-m resolution digital elevation model of

the study area. Plot elevation was standardized to zero mean and unit variance for the analyses.

In order to assess whether wood mouse habitat preferences were better predicted by field-

or LiDAR-based variables, we firstly built a generalized linear model for each sampling

approach (field versus LiDAR data), and secondly a full model including both sets of variables.

The response variable for the three models was the number of individuals captured per plot

(excluding recaptures). The predictor variables were the components extracted from the PCA

of field-based variables, the components extracted from the PCA of LiDAR-based variables or

all components for the full model. Plot elevation and the interaction between elevation and

each component of the PCA were also included as predictors in the models. A Poisson distri-

bution of residuals was assumed in all models. Initial models were simplified by progressively

removing the least significant terms and their goodness of fit were assessed using the Akaike’s

Information Criterion (AIC; [39]).

To evaluate the relative importance of the independent versus the shared part of variance

explained by the explanatory variables (i.e., field- or LiDAR-based variables and elevation) on

wood mice habitat preferences, we used variance partitioning for the best model obtained after

simplification of the full model (including both groups of explanatory variables). To do so, we

Airborne LiDAR and the wood mouse’s habitat structure
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calculated goodness of fit measures (Log-Likelihood) for the entire hierarchy of models (i.e.,

models including all combinations of independent variables). Then, the hierarchical partition-

ing algorithm of Chevan and Sutherland [40] was applied taking the list of goodness of fit mea-

sures to calculate the independent contribution of each variable and its conjoint contribution

with all other variables [41]. All analyses were performed in R 3.1.1 [42] using the stats and the

hier.part packages [41].

Results

Captures

A total of 225 individuals were captured; nearly all were wood mice (n = 223), 56 of which were

recaptures, and 2 were Lusitanian pine voles (Microtus lusitanicus). The 56 recaptured wood mice

and the two Lusitanian pine voles were excluded from further analyses. Wood mice were captured

in 42 of the 50 sampling plots, with the number of captures per plot ranging from 1 to 13 individ-

uals. Most of the 167 first capture wood mice could be aged and sexed: 29% were sub-adults, 32%

were adult males and 36% were adult females; the remaining 3% were of unknown age or sex.

More than half of adult females (72%) showed signs of breeding activity.

Field-based understory composition and structure

Understory field-based variables presented a considerable degree of variation, with most show-

ing some percentage cover of forbs and needle litter, and a patchy cover of shrubs, ferns and

mosses, ranging from zero to 58, 64 and 36%, respectively (Table 1).

Table 1. Summary of field and LiDAR-based variables at plot scale (25-m radius).

Variables Method Range Mean SD

Shrub cover Field 0–58.3 9.3 11.5

Forb cover Field 5.3–83.7 36.0 16.6

Fern cover Field 0–64.4 13.1 16.8

Moss cover Field 0–36.2 9.1 11.1

Needle litter cover Field 5.8–80.6 38.4 15.8

Woody debris cover Field 9.4–38.5 20.6 6.8

Bare rock cover Field 0–39.4 9.8 8.6

Canopy cover at 5 m LiDAR 38.9–94.0 70.1 14.3

Canopy cover at 2 m LiDAR 47.2–94.1 74.9 11.9

Canopy cover at 0.2 m LiDAR 62.0–94.6 80.1 9.4

Contribution of the tree layer LiDAR 36.8–75.3 57.8 10.1

Contribution of the regeneration layer LiDAR 0.1–19.1 4.8 4.7

Contribution of the shrub layer LiDAR 0.5–18.3 6.2 4.5

Contribution of the herbaceous layer LiDAR 16.0–45.6 31.1 7.4

Heterogeneity of the canopy height (>5 m) LiDAR 1.5–8.2 4.1 1.6

Heterogeneity of the canopy height (>2 m) LiDAR 1.9–9.5 4.9 2.0

Heterogeneity of the canopy height (>0.2 m) LiDAR 2.8–11.5 6.1 2.2

Mean canopy height (>5 m) LiDAR 7.4–25.8 16.3 4.4

Mean canopy height (>2 m) LiDAR 6.7–25.7 15.4 4.5

Mean canopy height (>0.2 m) LiDAR 5.1–24.7 13.9 4.6

Plot elevation DEM 1277–1969 1592 210

Variables were measured in the field, derived from LiDAR data or calculated using a digital elevation model (DEM). Range, mean and standard deviation

values are presented for each variable. Cover variables and the contribution of each forest layer are expressed in percentage. Canopy heights and plot

elevation are expressed in meters.

https://doi.org/10.1371/journal.pone.0182451.t001
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The principal component analysis conducted with the seven field-based understory descrip-

tors extracted four components, absorbing 81% of the variance. The first component was nega-

tively associated with forb cover, positively so with woody debris cover and to a lesser extent

with needle litter cover. The second component was negatively associated with bare rock cover

and positively associated with moss cover. The third component was negatively associated

with fern cover. Finally, the fourth component was associated almost exclusively and positively

with shrub cover (Table 2).

LiDAR-based forest structure

The average canopy cover of mature trees was relatively high (70%), and even the more open

plots had a minimum of 39% canopy cover (Table 1). When including the regeneration and

shrub layers, minimum canopy cover was 62% and the average for all plots was 80% (Table 1). On

average, tree layer was the main contributor to the vertical structure in all plots, followed by the

herbaceous layer (Table 1). The relative contribution of the regeneration and shrub layers was low

in all cases (Table 1). Height values for the tree layer (> 5 m) were less variable (i.e., lower hetero-

geneity) than those for the tree-plus-regeneration and tree-plus-regeneration-plus-shrub layers

(canopy height heterogeneity> 2 m and canopy height heterogeneity> 0.2 m, respectively;

Table 1). The principal component analysis performed with the thirteen LiDAR-based forest

structure variables extracted three components that between them accounted for 85% of the over-

all variance. The first component was positively associated with canopy cover at different heights

(5, 2 and 0.2 m) and with the relative contribution of the tree layer, and negatively correlated with

the contribution of the herbaceous layer. This component can be interpreted as a gradient of for-

est openness, with closed canopy plots with a low herbaceous layer at one extreme and with more

open plots with better developed herbaceous layers at the other (Table 3). The second component

was positively associated with the contribution of the regeneration layer and the heterogeneity of

canopy height at the three levels (Table 3). Thus, this component could be interpreted as a gradi-

ent of increasing complexity in plot vertical structure. Finally, the third component was positively

correlated with mean canopy heights for the tree and regeneration layers. This component can be

interpreted as a gradient in forest canopy height.

Relationships among field- and LiDAR-based components

Some components of the PCAs derived from field-based and LiDAR derived variables showed

significant correlations (Table 4). Plots with more closed canopies had more cover of woody

Table 2. Principal component analysis from the understory variables of the 50 forest plots, measured at 446 vegetation quadrats.

Understory structure fPC1 fPC2 fPC3 fPC4

Shrub cover 0.077 -0.012 0.127 0.897

Forb cover -0.854 0.168 0.312 -0.125

Fern cover 0.078 -0.029 -0.961 -0.156

Moss cover -0.080 0.747 0.014 0.406

Needle litter cover 0.668 -0.286 0.449 -0.381

Woody debris cover 0.759 0.314 0.059 0.063

Bare rock cover -0.083 -0.838 0.003 0.223

Eigenvalue 1.78 1.47 1.24 1.21

Explained variance (%) 25.38 21.01 17.74 17.26

Factor loadings for each variable after varimax rotation are shown for each extracted component (eigenvalue > 1). Factor loadings > |0.60| for each

component (fPC1 to fPC4) are presented in bold type.

https://doi.org/10.1371/journal.pone.0182451.t002
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debris and needle litter, and less cover of forbs (Table 4). Plots that showed more complex for-

est vertical structure had more cover of shrubs and less cover of ferns. Finally, forest plots with

tall canopies had more cover of moss and less rocks in the understory (Table 4).

Habitat modelling

The model fitted with structural variables derived from LiDAR included the first two compo-

nents extracted from the PCA, elevation and the interaction between the second component

(lPC2) and elevation (AIC = 233.5; Table 5). The model showed that the abundance of wood

mouse decreased in plots with closed canopies and low contribution of the herbaceous layer

(lPC1; Table 5; Fig 2), was negatively affected by elevation (Table 5), and increased with greater

complexity of forest vertical structure (lPC2) at lower elevations (negative lPC2 × elevation

interaction; Table 5). The best model based on field surveys (AIC = 246.5) only included the

fourth component (fPC4) and elevation after model simplification, indicating that the abun-

dance of wood mouse was positively influenced by the cover of shrubs in the plot and nega-

tively influenced by elevation (Table 5). Simplification of the full model including elevation

and predictors derived from LiDAR as well as field variables resulted in a model (AIC = 230.9)

Table 3. Principal component loadings from the thirteen LiDAR-based forest structure variables,

measured at 50 circular plots.

Forest structure lPC1 lPC2 lPC3

Canopy cover at 5 m 0.845 -0.429 0.285

Canopy cover at 2 m 0.944 -0.224 0.120

Canopy cover at 0.2 m 0.971 -0.022 0.050

Contribution of the tree layer 0.866 -0.316 0.330

Contribution of the regeneration layer -0.145 0.738 -0.504

Contribution of the shrub layer -0.397 0.572 -0.202

Contribution of the herbaceous layer -0.857 -0.385 -0.009

Heterogeneity of the canopy height (>5 m) -0.040 0.864 0.173

Heterogeneity of the canopy height (>2 m) -0.090 0.929 0.175

Heterogeneity of the canopy height (>0.2 m) -0.234 0.829 0.456

Mean canopy height (>5 m) 0.124 0.228 0.939

Mean canopy height (>2 m) 0.165 0.040 0.968

Mean canopy height (>0.2 m) 0.620 -0.277 -0.062

Eigenvalue 4.70 3.78 2.59

Explained variance (%) 36.17 29.10 19.95

Loadings after varimax rotation for the three extracted components (eigenvalue > 1) are shown. Factor

loadings > |0.60| for each component (lPC1, lPC2, lPC3) are presented in bold type.

https://doi.org/10.1371/journal.pone.0182451.t003

Table 4. Product-moment pairwise correlations between field-based (fPC) and LiDAR-based components (lPC) extracted from the two principal

component analyses.

PCA components fPC1 fPC2 fPC3 fPC4

lPC1 0.343* 0.241 -0.074 -0.218

lPC2 0.141 0.271 -0.285* 0.348*

lPC3 -0.145 0.504** -0.231 0.002

* P < 0.05

** P < 0.01

https://doi.org/10.1371/journal.pone.0182451.t004
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including two LiDAR-based predictors (lPC1, lPC2), elevation, the interaction between lPC2

and elevation, and one field-based (fPC4) predictor (Table 5). The simple model showed that

the abundance of wood mouse was negatively influenced by elevation and positively associated

with more open canopies and more herbaceous layer, with greater complexity of forest vertical

structure at lower elevations, and more cover of shrubs (Table 5).

Variance partitioning

Hierarchical partitioning of variance showed that the four variables in the model and the

interaction accounted for 87.4% of the explained variance, and that the remainder 12.6%

was shared by the predictors (Fig 3). The proportion of explained variance was mainly

accounted by the second LiDAR-based component (lPC2) and its interaction with eleva-

tion, followed by the field-based variable (fPC4), elevation and the first LiDAR-based com-

ponent (lPC1) (Fig 3).

Discussion

LiDAR has recently arisen as a useful technology to model wildlife-habitat structure relation-

ships [9, 10]. However, the majority of studies using this technology have focused on flying

animals, mostly vertebrates, whereas studies on non-flying fauna are still lacking [9, 10]. Our

results modelling the habitat preferences of wood mouse in a Mediterranean pine high moun-

tain forest indicate that LiDAR derived variables were better predictors than field-based vari-

ables. The model combining both data sets slightly improved the predictive power of the

model. Our results suggest that LiDAR is a promising technology for further exploring habitat

preferences by small mammal communities.

Table 5. Generalized linear models for wood mouse abundance in the Valsaı́n Scots pine forest.

Variable Estimate SE Z P D2(%)

(a) LiDAR-based model: 26.9

Intercept 0.975 0.095 10.3 <0.001

lPC1 -0.285 0.082 -3.5 <0.001

lPC2 0.124 0.088 1.4 0.158

lPC2 × Elevation -0.343 0.091 -3.7 <0.001

Elevation -0.316 0.099 -3.2 0.001

(b) Field-based model: 14.1

Intercept 1.112 0.083 13.4 <0.001

fPC4 0.242 0.062 3.9 <0.001

Elevation -0.170 0.085 -2.0 0.046

(c) Full model: 30.3

Intercept 0.962 0.096 10.0 <0.001

lPC1 -0.255 0.083 -3.1 0.002

lPC2 0.069 0.093 0.7 0.460

lPC2 × Elevation -0.329 0.093 -3.5 <0.001

Elevation -0.309 0.102 -3.0 0.002

fPC4 0.166 0.074 2.2 0.024

Estimates and standard errors (SE) from the best generalized linear model, using elevation and habitat predictors derived from (a) LiDAR, (b) field, or (c)

both groups of variables. The amount of deviance accounted for the models is represented by D2.

https://doi.org/10.1371/journal.pone.0182451.t005
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LiDAR and field derived models

The model based on LiDAR variables accounted for almost double of the variation in wood

mouse abundance compared to the model based on field data. This result set light on the

potential of using airborne LiDAR data to model habitat preferences of small mammals in for-

ested habitats. LiDAR derived variables were summarized into three components that sorted

forest patches in gradients of canopy openness, complexity of plot vertical structure and can-

opy height. Elevation and two of the structural features were associated with the abundance of

wood mouse, particularly the complexity of vertical structure. Elevation has a negative effect

on the diversity and abundance of small mammal communities in Mediterranean mountains

[38, 43], as has been previously described for the wood mouse in central Spain [21]. In addi-

tion, elevation modulated the response of wood mouse to the vertical complexity of forest

structure.

The complexity of vertical structure has been consistently found as a key habitat component

for flying vertebrates in LiDAR studies due to the intrinsic ecology of these organisms [44–47].

LiDAR studies in terrestrial species are still limited and have shown that canopy openness was

important for terrestrial species, although the importance of the vertical component has not

previously been identified affecting preferences in terrestrial species [9, 10]. In our study area,

forest patches with greater complexity in vertical structure corresponded to patches including

mature trees as well as regeneration and shrub layers (Fig 2A). Forest structure in these patches

is the result of management practices through successive partial harvests leaving older trees as

seed sources and protection for regeneration [33]. Harvests create gaps promoting regenera-

tion and the presence and cover of understory vegetation [48, 49], that provides food and shel-

ter for terrestrial species [28, 50]. Interestingly, our results agree with previous findings

relating forest structural characteristics to small mammal communities using traditional field

measurements. Small mammals were more abundant in regeneration stands where patches

Fig 3. Variance partitioning from linear model using elevation, field- and LiDAR derived variables for

wood mouse abundance in Valsaı́n forest. Percentage of variance explained by the combined model

(small pie chart), and percentage of that variation explained by elevation, LiDAR- and field-based variables,

and their shared contribution to the model (large pie chart). LiDAR and field-based variables correspond to

those in the best simple model with both sets of variables (see Table 5).

https://doi.org/10.1371/journal.pone.0182451.g003
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retain features of mature stands together with greater understory cover, typical of early succes-

sional stages after disturbance [24, 27, 51].

The abundance of wood mouse was also negatively influenced by closer canopies. Patches

with close canopies in the forest of Valsaı́n are characteristic of relatively even-aged stands

before initiating successive harvests to foster regeneration [33]. These structurally simple

patches mostly show developed canopy layers with few gaps and nearly no regeneration and

shrub layers (Fig 2B).

The model using structural characteristics of the understory measured in the field indicated

that patches with greater cover of shrubs positively influenced the abundance of wood mouse

and that the abundance decreased with elevation. This expected result is in line with many

studies that highlight the relevance of shrub cover for rodent mammals [22, 34, 52]; shrubs

offer safe sites for small mammals reducing predation risk and increasing foraging efficiency.

Because shrubs provide crucial resources for small mammals (i.e., shelter, food, nesting sites),

and are relatively scarce in this pine forest (as in other temperate pine forests), they could be

considered as ‘keystone structures’ (sensu [2]; see review in [53]) that should be kept during sil-

vicultural treatments. On the other hand, other components of the ground layer were not sig-

nificant for wood mouse in this pine forest. For example, woody debris and needle litter may

increase the availability of invertebrates and fungi, which are potential food resources for small

mammals [54–56]. However, woody debris and needle litter (fPC1) tended to increase in forest

patches with closed canopies (lPC1; r = 0.34, P = 0.015), where the abundance of wood mouse

decreased. Our results suggest that some features of the ground layer may not be important if

the key structure (i.e., shrub cover) is not present in the forest patch.

Combined model and variance partitioning

The model predicting the abundance of wood mouse using LiDAR and field derived variables

slightly increased the fraction of variability explained (30%) compared to the LiDAR model

(27%). The model was similar to the LiDAR model and included one field derived environ-

mental variable, indicating that the abundance was positively associated with greater complex-

ity of forest vertical structure at lower elevations and greater cover of shrubs, and negatively

influenced by elevation and close canopies with low herbaceous layer.

Variance partitioning showed that LiDAR-derived structural components, together with

elevation, explained most of the variation, although shrub cover still explained an important

fraction of the variance, and there was a 13% of shared variance between variables (Fig 3). This

result further supports the importance of shrubs as a key structure in this pine forest with low

and sparse cover of shrubs (9% on average). Variations in shrub cover among forest patches

were mainly captured by the second component of the PCA derived from LiDAR data

(Table 4), although shrub layer contributed less to that component than other structural vari-

ables. Therefore, field measurement of shrub cover seems to be an efficient, although more

time-consuming, approach to estimate an important habitat feature for wood mouse in this

pine forest. However, the predictive power of LiDAR derived variables was much greater than

that of field-based measurements, and only slightly improved when combining both data sets.

Consequently, LiDAR derived variables were good surrogates of environmental characteristics

favoring the abundance of wood mouse. Our LiDAR metrics represented structural features of

the forest patch, such as the presence and cover of shrubs, as well as other characteristics likely

including time since perturbation, food availability and predation risk.

However, our results should be taken with caution due to the time frame of the study. It is

known that habitat preferences in small mammals can vary with time as a consequence of fluc-

tuations in population density (see e.g. [56, 57]). Thus, it would be desirable to conduct long-
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term studies to minimize potential biases due to changes in the population dynamics of wood

mouse.

Management implications

Small mammals play important roles in diverse ecological processes in forest ecosystems [58].

In order to counteract negative impacts on wood mouse populations, forest managers should

avoid the destruction of understory vegetation during silvicultural practices. Wood mouse

benefited from the environmental conditions generated by the opening of small gaps through

partial harvesting to promote natural pine regeneration that favor the development of under-

story vegetation and increasing the heterogeneity of the vertical structure. Because long regen-

eration periods increase stand structural diversity throughout the whole rotation period [33,

59], forest management should be oriented to long rotation periods. In addition, dense stands

of even-aged trees with close canopies lacking understory vegetation should be avoided.

Conclusions

Wood mouse was influenced by forest vegetation structure and elevation. Structural variables

derived from airborne LiDAR were able to capture variations in the shrub layer and likely cor-

related with other unmeasured abiotic and biotic variables that are relevant to wood mouse,

thus showing greater predictive performance than field-based variables. Airborne LiDAR pro-

vides information on forest structure at fine scales, relevant to biodiversity, and across large

areas at affordable costs that cannot be reliably collected in the field.

Therefore, LiDAR information allows the upscaling and mapping of biodiversity and eco-

system processes to broad spatial extents. We recommend the use of LiDAR data (e.g., LiDAR

data derived from national inventories) to conduct more research on wildlife-habitat relation-

ships, particularly on less well-studied terrestrial species such as small rodent communities.

This will help expand our knowledge on biodiversity distribution at various spatial scales and

assist conservation managers in decision-making.
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for helping during the field work, A. Santamarı́a and J. Seoane for providing helpful handling

and statistical suggestions, and D. Brown for reviewing the English. I. Torre and an anony-

mous reviewer provided helpful comments that improved a previous version of the

manuscript.

Author Contributions
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53. Morán-López T, Wiegand T, Morales JM, Valladares F, Dı́az M. Predicting forest management effects

on oak–rodent mutualisms. Oikos. 2016; 125(10):1445–1457.

54. McCay TS. Use of woody debris by cotton mice (Peromyscus gossypinus) in a southeastern pine forest.

Journal of Mammalogy. 2000; 81(2):527–535.

55. Naxara L, Pinotti BT, Pardini R. Seasonal microhabitat selection by terrestrial rodents in an old-growth

Atlantic Forest. Journal of Mammalogy. 2009; 90(2):404–415.

56. Zwolak R, Bogdziewicz M, Rychlik L. Beech masting modifies the response of rodents to forest man-

agement. Forest Ecology and Management. 2016; 359:268–276.

57. Morris DW. Toward an ecological synthesis: a case for habitat selection. Oecologia. 2003; 136(1):1–13.

https://doi.org/10.1007/s00442-003-1241-4 PMID: 12690550

58. Bertolino S, Colangelo P, Mori E, Capizzi D. Good for management, not for conservation: an overview

of research, conservation and management of Italian small mammals. Hystrix, the Italian Journal of

Mammalogy. 2015; 26(1):25–35.

59. Barbeito I, Fortin MJ, Montes F, Canellas I. Response of pine natural regeneration to small-scale spatial

variation in a managed Mediterranean mountain forest. Applied Vegetation Science. 2009; 12(4):488–

503.

Airborne LiDAR and the wood mouse’s habitat structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0182451 August 3, 2017 16 / 16

https://doi.org/10.1007/s00442-003-1241-4
http://www.ncbi.nlm.nih.gov/pubmed/12690550
https://doi.org/10.1371/journal.pone.0182451

