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Abstract

Local adaptation toclimateallowsplants tocopewith temporally andspatiallyheterogeneousenvironments, andparallel phenotypic

clines provide a natural experiment to uncover the genomic architecture of adaptation. Though extensive effort has been made to

investigate the genomic basis of local adaptation to climate across the latitudinal range of tree species, less is known for altitudinal

clines. We used exome capture to genotype 451 Populus trichocarpa genotypes across altitudinal and latitudinal gradients spanning

the natural species range, and phenotyped these trees for a variety of adaptive traits in two common gardens. We observed clinal

variation in phenotypic traits across the two transects, which indicates climate-driven selection, and coupled gene-based genotype–

phenotype and genotype–environment association scans to identify imprints of climatic adaptation on the genome. Although many

of thephenotype-andclimate-associatedgeneswereunique toonetransect,wefoundevidenceofparallelismbetween latitudeand

altitude,aswell as significantconvergencewhenwecomparedouroutliergeneswith thoseputatively involved inclimaticadaptation

in two gymnosperm species. These results suggest that not only genomic constraint during adaptation to similar environmental

gradients in poplar but also different environmental contexts, spatial scale, and perhaps redundant function among potentially

adaptive genes and polymorphisms lead to divergent adaptive architectures.
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Introduction

Predicting the evolutionary and ecological outcomes of envi-

ronmental change requires an understanding of the genomic

basis of quantitative, locally adaptive traits in order to assess

the magnitude of allele frequency shifts necessary to track

novel climatic regimes. If the underlying genotype–

environment relationships are generalizable among related

species that inhabit shared environments, such predictions

could be advanced without exhaustive characterization of

the genomic architecture of these traits at the species level.

Convergent adaptation occurs when distantly related species

independently develop similar phenotypes, whereas parallel

adaptation refers to populations or closely related lineages

evolving repeated patterns of phenotypic divergence in dis-

tinct geographical locations (Ralph and Coop 2010; Westram

et al. 2014). The formation of phenotypic parallelism relies on

standing variation, gene flow, and shared selective regimes

(Faria et al. 2014; Westram et al. 2014). When shared

standing genetic variation and adaptive loci are transmitted

between populations or species, selection may target the

same genetic loci to generate similar phenotypes across

“replicate” environments (Westram et al. 2014). Factors

such as demographic history, effective population size, extent

of geographic and genetic separation between populations,

and mutation rate could also influence the level of parallelism

(Ord and Summers 2015; Kess et al. 2018), and recent

theory suggests that nonrandom repeatability of evolutionary

trajectories at the genomic level is likely due in part to low

redundancy constraining possible paths to adaptation

(Yeaman et al. 2018).

Although there are numerous examples of genetic paral-

lelism or convergence for relatively simple traits (e.g., armor

plating in sticklebacks [Jones et al. 2012], coat color in

mice [Manceau et al. 2010], toxin resistance in snakes
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[McGlothlin et al. 2016]), less is known about the extent to

which shared environmental pressures lead to similar archi-

tectures of adaptation for quantitative traits, which encom-

pass the majority of ecologically relevant traits. Range shifts

for plant species associated with past climate change have

resulted in steep latitudinal and altitudinal gradients that pro-

vide natural experiments to test the degree to which parallel

environmental clines lead to parallel phenotypic and genomic

changes for quantitative, locally adaptive traits (Oubida et al.

2015; Holliday et al. 2016). Functional studies suggest that

some of the same genes govern seasonal dormancy, a key

adaptive trait, in both angiosperm and gymnosperm trees. For

example, downregulation of FLOWRERING LOCUS T leads to

bud set in both aspen and spruce trees, the timing of which

varies with a tree’s latitudinal origins (Böhlenius et al. 2006;

Gyllenstrand et al. 2007). Moreover, population genomic

studies have documented parallel or convergent signatures

of selection on additional genes involved in local climatic ad-

aptation (Holliday et al. 2016; Yeaman et al. 2016). Despite

efforts to understand repeated evolution within and between

plant species, questions remain. Is the genetic basis underlying

phenotypic adaptation conserved across lineages along

parallel ecological clines? Do shared life history characteristics,

ecological context, and selection regimes increase the likeli-

hood of parallel genomic architecture of adaptation? Are the

same environmental factors driving phenotypic and genetic

adaptation?

Populus trichocarpa is a model tree species native to ripar-

ian areas of temperate western North America (Gornall and

Guy 2007) and is widely distribution from southern Alaska to

California. Patterns of variation across the species range for

traits, such as bud phenology, biomass and growth, wood

biochemistry, and lignin content, suggest that these traits

are subject to spatially varying selection (Gornall and Guy

2007; Gailing et al. 2009; McKown, Guy, et al. 2014;

Oubida et al. 2015; Wang et al. 2018). Although several stud-

ies of phenotypic and genomic adaptation across latitudinal

gradients have been reported for Populus species, less

attention has been paid to variation along altitudinal

clines (Klepsatel et al. 2014; Halbritter et al. 2015).

Altitude resembles latitude in forming a gradient of tem-

perature and precipitation but may differ in other climate

drivers such as frost, snowfall, evaporative demand, and

solar radiation (Thomas 2011). A recent study in P. tricho-

carpa found a high level of shared loci under divergent

selection across latitudinal and altitudinal clines, which is

likely a result of parallel environmental selection (Oubida

et al. 2015; Holliday et al. 2016). In this study, we aim to

further understand parallel adaptation by investigating

phenotypic adaptation and climatic selection among

P. trichocarpa populations distributed across altitude

and latitude. We combine genome-wide association anal-

ysis (GWAS) and genotype–environment association

analysis to identify key loci underlying adaptive traits or

targeted by climate selection in both transects and assess

the extent of genetic parallelism across two parallel clines.

Materials and Methods

Plant Material and Exome Sequencing

Branch cuttings representing 182 provenances spanning 20�

of latitude (fig. 1) were rooted in a greenhouse and four

replicates of each genotype were subsequently randomized

to one of four blocks and planted in 2012 at two common

gardens located at Critz, VA (36.63�N, 80.15�W) and

Campbell River, British Columbia, Canada (50.06�N,

125.32�W). Genomic DNA was extracted from young leaves

with the Qiagen DNeasy Plant Mini Kit (Qiagen, Inc, Valencia,

CA). Oligonucleotide baits targeting the exome were

designed using Agilent SureSelect eArray software (Agilent

Technologies, Santa Clara, CA) based on the v2.0 reference

P. trichocarpa genome (http://phytozome.jgi.doe.gov; last

accessed July 25, 2019). Library preparation and target en-

richment procedures were described previously (Zhou and

Holliday 2012; Zhou et al. 2014; Holliday et al. 2016; Zhang

et al. 2016). The captured libraries were sequenced on

Illumina HiSeq 2000 System in paired end format (2� 100)

at the Virginia Bioinformatics Institute.

Genotyping and Single-Nucleotide Polymorphism Calling

Following demultiplexing, trimming of adapter sequence, and

removal of low quality reads (Zhou et al. 2014), reads were

aligned to the P. trichocarpa genome with the BWA sampe

function (Li and Durbin 2009). Indels were realigned using the

GATK IndelRealigner function, and duplicate reads marked

and removed with Picard MarkDuplicates and GATK

DuplicateReadFilter, respectively (DePristo et al. 2011).

Single nucleotide polymorphisms (SNPs) were called with

the GATK HaplotypeCaller (https://www.broadinstitute.org/

gatk/; last accessed July 25, 2019) (Poplin et al. 2018).

Variants were flagged and removed as low quality if they

had the following characteristics: low map quality (MQ <

40); high strand bias (FS > 40); differential map quality be-

tween reads supporting the reference and alternative alleles

(MQRankSum < �12.5); bias between the reference and al-

ternate alleles in the position of alleles within the reads

(ReadPosRankSum < �8.0); and low depth of coverage (DP

< 5). Missing genotypes on chromosomes 1–19 were im-

puted using BEAGLE software (Browning BL and Browning

SR 2016).

Population Structure and Spatial Grouping

We divided the poplar clones into two spatial transects: A

latitudinal transect consisting of 68 provenances spanning

the latitudinal species range (285 genotypes), and an altitudi-

nal transect composed of 13 provenances distributed across
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the Coquihalla Highway (49.75�N, 121.00�W; 63 genotypes)

and Highway 99 (50.08�N, 123.06�W; 103 genotypes) in

southwest British Columbia (fig. 1). We divided the 285

latitudinal samples into six broad geographic areas (Alaska,

California, Oregon, Washington, North British Columbia,

Interior British Columbia, and South British Columbia)

and the 166 altitudinal samples into three elevational bands

(elevation < 300 m ¼ low, 300–800 m ¼ middle, and

>800 m ¼ high). To visualize overall population structure

across all samples, we randomly selected 10,000 SNPs

with linkage disequilibrium (r2) < 0.2 to perform principal

component analysis using the prcomp function in R (R Core

Team 2015) for latitudinal and altitudinal samples (supple-

mentary fig. S1, Supplementary Material online).

Phenotyping of Climate-Related Traits

Height and diameter were measured after all trees set bud in

the fall of 2013. The stages of bud set and bud flush were

scored weekly until most trees formed terminal bud or until all

trees had a fully expanded leaf, respectively (Frewen et al.

2000; Rohde 2002). Bud set timing was calculated as the

days elapsed for trees to reach a fully developed bud from

January 1, whereas timing of bud flush was expressed as the

number of days to the first fully unfolded leaf. Cold hardiness

was measured in 2012 by sectioning lateral shoots into

�0.5-cm discs and treated samples with temperature of

�8,�14, and�20 �C (starting temperature: 4 �C; decreasing

rate 4 �C/h) for 1 h before transferring them back to 4 �C to

thaw. Control samples were maintained at 4 �C throughout

the experiment. The electrolytic conductivity of the solution

was measured and cold injury index calculated after Hannerz

et al. (1999), averaged across temperatures for each clone.

Finally, after coppicing trees in the Virgina garden in May

2014, we recorded the average height of the regenerated

main branches and the number of regenerated branches

in March 2015.

Phenotypic Best Linear Unbiased Predictors

We estimated clonal best linear unbiased predictors (BLUPs)

for each trait with a linear mixed model using the lmer
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FIG. 1.—Sample origin of 451 clones collected across the Populus trichocarpa species range (green shading). Yellow points indicate sampling locations

along the latitudinal transect, and blue triangles indicate sampling locations of the altitudinal transect.
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function in lmerTest package in R (Kuznetsova et al. 2017) as

follows:

yijk ¼ lþ bi þ cj þ eijk;

where yijk is the phenotype of the kth replicate of jth clone in

ith block, l is the grand mean, bi is the random effect of ith

block, cj is the random effect of jth clone, and eijk is the ran-

dom error following Nð0; r2
e IÞ, where r2

e is variance and I is

the identity matrix. The resulting BLUPs were used as pheno-

types in the following GWAS.

Association Analysis of Climate-Related Traits

To control for population structure in our association analyses,

we evaluated the fit of several alternative models, namely a

simple model (no population structure controlled), models

with principal components as covariates (2, 5, and 10 of the

leading principal components as covariates), models with fa-

milial kinship controlled (K; estimated in TASSEL [Bradbury

et al. 2007], and the combined model (2PCþ K), and selected

the best structured models using the genomic inflation factor

kGC and QQ plots (supplementary table S1 and supplemen-

tary fig. S2, Supplementary Material online). With dense SNP

coverage and linkage among SNPs, as well as polygenic ge-

netic inheritance underlying the phenotypic traits, the false

positive rate is expected to increase (Yang et al. 2011;

McKown, Kl�ap�st�e, et al. 2014). As a compromise between

false positives and false negatives, we selected the most par-

simonious model with a genomic inflation factor (kGCÞ of at

least 0.98 but not more than 1.22.

The GLM (generalized linear model) models were as

follows:

y ¼ Saþ Q� þ e;

where y is a vector of phenotypic observations, a is a vector of

SNP effects, � is a covariate of population structure (PC)

effects, and � is residuals following Nð0; r2
� IÞ. S and Q are

incidence matrices of 1s and 0s relating y to a; �, respectively.

The MLMs (mixed effects linear models) were fitted as follows:

y ¼ Xbþ Zuþ e;

where y is a vector of observed phenotype, b is a vector

containing coefficients of the fixed effects (SNP effects and

population structure effects), u is a vector of random additive

effect for individuals with Var uð Þ ¼ r2
gK, where K is the kin-

ship matrix. X and Z are incidence matrices mapping y to b
and u. e is the random residual effect following Nð0; r2

e IÞ
(Bradbury et al. 2007).

Identification of Top Candidate Genes

Because natural selection is likely to lead to elevated LD

across relevant genes or regulatory regions, we performed a

gene-based analysis of SNP–phenotype associations to iden-

tify candidate genes or genomic regions underlying adaptive

traits for both transects. We first annotated all SNPs to genes

that contained them or to genes within 2 kb based on the P.

trichocarpa v3.0 genome annotation. We then collapsed

intergenic regions into 5-kb clusters to capture SNPs that

fall outside the neighborhood of any gene. This resulted in

binning of the 1.3 million SNPs into 42,970 genes or inter-

genic regions. For each trait, we identified SNPs in the first

percentile of P values from the selected model as outliers. The

number of SNP outliers and total number of SNPs were

counted for each gene or intergenic region, and classified

as top candidate genes when their proportions of significant

SNPs exceeded the 0.999 quantile of the binomial expectation

(Yeaman et al. 2016). The expected proportion of outliers per

gene was defined as the mean proportion of SNP outliers

across genes with at least five SNPs in total and with at least

one SNP outlier. Finally, we assigned gene-wise P values for

each gene or intergenic region based on a binomial distribu-

tion (Yeaman et al. 2016). This gene-based method has more

power to detect genomic clusters of loci possessing pro-

nounced association signals that exceed the genomic back-

ground and reduces false positives caused by isolated outliers

(Liu et al. 2010; Kang et al. 2013).

Test of Parallel Evolution across Two Transects

The null-W test of convergence, first proposed by Yeaman

et al. (2016), is a more powerful test for uncovering signatures

of convergence, which may not be detected by comparing

direct overlap in gene outliers. The null-W test adjusts for

factors such as gene size and linkage that may influence the

test’s significance by comparing candidate and noncandidate

genes to a SNP control panel (Yeaman et al. 2016). For each

candidate gene in one transect, this test evaluates the asso-

ciation strength of the same gene in the other transect by

comparing it to a null distribution. To construct the null dis-

tribution, we extracted the R2 of a random sample of 10,000

SNPs from noncandidate genes (i.e., those not identified as

“top candidates”) as the control panel, and the R2 of all SNPs

annotated to noncandidate genes. We then calculated the

test statistic W with a Wilcoxon-signed rank test by comparing

SNP R2’s of each noncandidate genes versus that of the SNP

control panel, using the R function “wilcox.test.” These

10,000 null-W test statistics were converted into a null distri-

bution of Z scores using Z ¼ 2W � n1n2ð Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðn1 þ n2 þ 1Þ=3

p
, where n1 and n2 are the number

of SNPs in the SNP control panel and noncandidate genes

(Whitlock and Schluter 2009; Yeaman et al. 2016). Finally,

the R2 of SNPs annotated to candidate genes were compared

with the 10k control panel their W test statistic calculated and

converted into Z scores. The P value for the null-W test was

calculated as the number of genes with Z score exceeding the

observed Z score in the null distribution divided by the total
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number of genes in the null distribution. The empirical P

values were further adjusted using the false discovery rate

(Benjamini and Hochberg 1995) and candidate genes with

adjusted P value � 0.05 were considered as parallel outliers.

Genotype–Environment Association Analysis

Climate variables were estimated for each sampling site with

ClimateWNA software (Wang, Hamann, et al. 2012) based

on averages for the period 1961–1990. Annual climate vari-

ables included MAT, MWMT, MCMT, MWMT, MAP, MSP,

AHM, and SHM. Derived variables included DD_0, DD5,

DD_18, DD18, NFFD, FFP, bFFP, eFFP, PAS, EMT, EXT, Eref,

and CMD (supplementary table S2, Supplementary Material

online). We used Bayenv2 (Gunther and Coop 2013) to test

for univariate associations between allele frequency and the

21 environment variables, as well as latitude, altitude, and

elevation. We first estimated the population covariance matrix

based on a set of 10,000 intergenic SNPs, and then tested for

correlations between allele frequencies and the climatic vari-

ables using 100,000 iterations, averaged across three runs.

For each climate variable, we classified SNPs with average

log10(BF) > 2 as selection outliers. We also performed a

gene-based analysis as above to identify candidate genes

with excessive number of climate-associated SNPs, and null-

W tests for parallel adaptation were performed on top candi-

date genes identified in each transect. The squared spearman

correlation coefficients were used in constructing the null

distribution and the null-W test.

We also used redundancy analysis (RDA), a multivariate

constrained ordination method, to test for gene–environment

relationships (Forester et al. 2016, 2018). RDA fits multivariate

linear regressions between genotype and environment to ob-

tain a matrix of fitted values, and then uses principal compo-

nent analysis on the fitted values to produce ordination axes.

To reduce the multicollinearity among climate variables, we

estimated correlations among them and retained seven rep-

resentative and relatively uncorrelated variables (MAT,

MWMT, TD, MAP, AHM, SHM, FFP, PAS, EMT, EXT, and

Eref). For each of the first three axes, SNPs with a “locus

score” exceeding the mean 6 3 SD were considered outliers

associated with their most highly correlated climate variable.

All RDA calculations were performed with the R package

“vegan” (Forester et al. 2018).

Annotation of Top Candidate Genes

To identify overrepresented biological processes or molecular

functions among top candidate genes identified for each trait,

we first performed gene ontology (GO) enrichment analysis

with R package topGO. Genes with at least five SNPs and at

least one SNP outliers were used as background sets for each

trait and each transect. The parent–child method is employed

in the GO enrichment analysis to account for the dependency

structure among GO terms. Only GO terms associated with at

least five genes were tested for GO enrichment and those

with P value < 0.05 were considered as interesting biological

processes. The same GO enrichment analysis procedure was

performed on parallel adaptation outliers with all candidate

genes as the background gene set.

Results

Clinal Variation of Phenotypic Traits and Climatic Variables

We observed moderate to strong clinal variation among traits

along the latitudinal and altitudinal transects (fig. 2; supple-

mentary figs. S3 and S4, Supplementary Material online).

Latitude and elevation showed similar patterns for timing of

bud phenology, cold hardiness, and coppice regeneration.

As latitude or altitude increased, the date of bud set and

cold injury significantly decreased, whereas the date of

bud flush increased (fig. 2; supplementary figs. S3 and S4,

Supplementary Material online). Plant height, diameter, re-

generation height, and regenerated branch number signifi-

cantly decreased as altitude or clone distance to range center

increased (supplementary figs. S3 and S4, Supplementary

Material online). The correlation pattern between traits and

latitude/elevation was consistent in direction for both Virginia

and British Columbia common gardens despite some differ-

ences in strength (fig. 2; supplementary figs. S3 and S4,

Supplementary Material online).

Most phenotypic traits showed significant covariation

with climate and geographical variables across both transects

(supplementary fig. S5 and supplementary table S3,

Supplementary Material online). Among latitudinal samples,

there was a positive correlation between the timing of bud set

and temperature-related variables (MAT, MWMT, MCMT,

DD5, and FFP), whereas bud flush showed a negative rela-

tionship with the same set of variables (supplementary table

S3, Supplementary Material online). Height and diameter

both showed positive relationships with MAT, MWMT,

MCMT, DD5, FFP, and Eref, and negative relationships with

TD, MAP, and DD_0 (supplementary table S3, Supplementary

Material online). Cold injury, regeneration height, and regen-

eration branch number had the same correlation direction

with all climatic variables as height and diameter but different

strengths (supplementary table S3, Supplementary Material

online). Most phenotypic traits along the altitudinal transect

displayed the same correlation direction as for latitude, but

these correlations were weaker with climatic variables com-

pared with latitudinal samples (supplementary table S3,

Supplementary Material online). The relationship between lat-

itude and climate was driven by temperature (MAT, MWT,

MCMT, and TD), moisture (MSP, AHM, SHM, and Eref), and

degree-days (DD_0, DD5, and FFP) (supplementary table S3,

Supplementary Material online), whereas temperature (MAT,

MWT, MCMT, and TD) and degree-days (DD_0, DD5, and

FFP) were most strongly correlated with altitudinal variation.
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Phenotype–Genotype Associations across Two Transects

After filtering, we obtained 1,311,373 SNPs with<25% miss-

ing data per SNP and minor allele frequency (MAF)> 0.05. Of

these, 1,215,483 SNPs were mapped to chromosomes 1–19

and 95,890 SNPs to other scaffolds. We identified candidate

genes for each phenotypic trait as those genes or intergenic

regions harboring excessive number of SNP outliers above the

0.999 binomial quantile (fig. 3; supplementary figs. S6 and

S7, Supplementary Material online). To visualize these candi-

dates, we plotted their gene-wise P values in relation to their

physical location in the poplar genome (fig. 4; supplementary

figs. S8 and S9, Supplementary Material online). Among alti-

tudinal samples, we detected 333 unique candidate genes for

plant height, 353 for timing of bud set, 318 for timing of bud

flush, 193 for diameter, 194 for regeneration height, 197 for

regeneration branch number, and 172 for cold hardiness. A

comparable number of candidate genes were identified for

the latitudinal transect (table 1). Annotations of the top can-

didate genes along the altitude transect suggest a variety of

biological processes involved. For bud phenology, these in-

cluded glycosyl compound metabolic process

(GO:1901657), transmembrane transport (GO:0055085),

and cellular response to stress (GO:0033554) (supplementary

table S4, Supplementary Material online). Across latitude, bud

phenology candidates were enriched for small molecule met-

abolic process (GO:0044281), response to cold

(GO:0009409), cellular response to stress (GO:0033554),

R2 = 0.22

P < 0.001
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FIG. 2.—Phenotype BLUPs in relation to latitude and elevation among latitudinal and altitudinal samples. Phenotypic traits include timing of bud set in VA

garden (A, C) and timing of bud set in BC garden (B, D).
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FIG. 3.—Gene-based analysis to identify top candidate genes associated with timing of bud set in the Virginia garden among altitudinal samples (A) and

latitudinal samples (B). Red line indicates the expected number of SNP outliers based on 99.9% binomial quantiles given the total number of SNPs within

each gene or genomic region. Red points are candidate genes or intergenic regions with an enriched number of SNP outliers.

FIG. 4.—Manhattan plot of gene-wise P values from association analysis of timing of bud set (A, C) and bud flush (B, D) at the Virginia (VA) common

garden in altitudinal (alt) and latitudinal (lat) samples.
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and lipid transport (GO:0006869) (supplementary table S5,

Supplementary Material online). Height-associated candidate

genes were overrepresented in developmental process

including cellular localization process (GO:0051641), cat-

abolic process (GO:0009056), and cell wall organization

or biogenesis (GO:0071554) across the altitude transect

(supplementary table S4, Supplementary Material online),

whereas for latitude, carbohydrate metabolic process

(GO:0044723), carbohydrate transport (GO:0008643),

and regulation of cellular component size (GO:0032535) were

overrepresented (supplementary table S5, Supplementary

Material online).

A few genomic regions uncovered by the gene-based anal-

ysis showed association with multiple traits in both transects

(fig. 5). For example, genes associated with both timing of

bud flush and bud set for the altitude transect included

Potri.001G349900 (leucine-rich repeat protein kinase family

protein), Potri.002G056300 (PSB27; photosystem II family

protein), and Potri.014G134900 (NHX2; sodium hydrogen

exchanger 2). Potri.014G132800 (LD; LUMINIDEPENDENS)

and Potri.008G166600 (CRY2; Cryptochrome 2) were asso-

ciated with both bud phenology and diameter. Across

the latitude transect, Potri.017G033100 (GPX3; glutathione

peroxidase 3) was associated with timing of bud flush, cold

Table 1

Number of Candidate Genes and Parallel Outliers for the Altitudinal and Latitudinal Groups

Traits and Climate Variables Altitude transect Latitude transect Direct Overlap P Value

Candidate Genes Parallel Genes (Null-W) Candidate Genes Parallel Genes (Null-W)

Height_VA 170 0 186 0 2 0.168

Bud set_VA 197 0 175 0 4 0.0088

Bud flush_VA 185 0 187 0 6 0.0002

Diameter_VA 193 0 167 0 3 0.0398

Regen_height_VA 194 0 143 0 2 0.1367

Regen_branch_VA 197 0 161 0 2 0.1688

Cold_VA 172 0 191 0 0 —

Height_BC 168 0 187 0 0 —

Bud set_BC 156 0 156 0 1 0.4336

Bud flush_BC 134 0 145 0 0 —

Latitude 233 0 16 2 2 0.003

Longitude 96 0 5 0 0 —

Elevation 201 0 32 0 2 0.01

MAT 192 0 35 0 2 0.011

MWMT 189 0 19 0 0 —

MCMT 215 0 45 0 5 3.11E-06

TD 216 0 50 12 9 3.63E-12

MAP 77 0 110 0 4 4.76E-05

MSP 26 0 36 0 0 —

AHM 86 0 98 3 2 0.017

SHM 76 0 57 7 1 0.096

DD_0 190 0 62 0 5 8.46E-06

DD5 192 0 25 0 0 —

DD_18 197 0 41 2 2 0.015

DD18 178 0 20 1 2 0.003

NFFD 204 0 49 0 2 0.023

bFFP 210 0 36 0 0 —

eFFP 218 0 63 3 5 1.78E-05

FFP 212 0 45 6 0 —

PAS 93 6 17 0 0 —

EMT 199 0 50 0 2 0.023

EXT 275 0 28 0 3 0.001

Eref 245 0 20 0 1 0.108

CMD 72 3 53 0 1 0.085

NOTE.—The first four columns show the number of gene-based outliers from the binomial distribution and respective number of these identified as parallel outliers by the
null-W test. The final two columns show number of candidate genes exceeding the 99.9th percentile of the binomial distribution in both transects, and P values estimated using a
hypergeometric test.
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hardiness, height, and regeneration height. Candidate genes,

such as Potri.003G131300 (BEL1; BELL 1), Potri.006G277500

(CRY3; Cryptochrome 3), Potri.017G016200 (Homeodomain-

like transcriptional regulator), were associated with both

timing of bud flush and bud set.

Parallel Phenotype–Genotype Associations between
Spatial Transects

Using the null-W test, between 3% and 10% of candidate

genes showed signatures of parallel association for both

transects (table 1). Genes associated with timing of bud set

and bud flush had the most significant overlap across two

transect (P< 1.0e�4 in all hypergeometric tests). Among

shared gene outliers, Potri.016G088300 (NAM; No apical

meristem) and Potri.016G088800 (transducin family protein)

were associated with timing of bud break in both transects,

whereas Potri.001G464700 (FAD-binding Berberine family

protein) was associated with plant height and diameter in

both transects (supplementary table S6, Supplementary

Material online).

Genotype–Environment Associations across Two Transects

Bayenv2 analysis suggested a number of candidate genes or

genomic regions strongly correlated with one or more of the

21 climate variables and 3 geographic variables (fig. 6; sup-

plementary figs. S10 and S11, Supplementary Material online;

table 1) for either the latitude or the altitude transect. Among

genes associated with mean annual temperature (MAT), GO

terms including cellular response to stress and carbohydrate

metabolic process were enriched across altitude, and steroid

biosynthesis and response to cold across latitude (supplemen-

tary tables S7 and S8, Supplementary Material online). More

than 40% of candidates associated with MWMT and MCMT

were also associated with MAT across both transects.

Candidate genes associated with these temperature variables

across altitude included Potri.001G261300 (LRR and NB-ARC

domains-containing disease resistance protein), Potri.

001G444700 (NB-ARC domain-containing disease resistance

protein), and Potri.015G110100 (FRI; FRIGIDA-like protein).

Candidate genes associated with mean annual precipita-

tion (MAP) were mostly involved in cellular component

organization, histone modification, and establishment of

protein localization (table 1; supplementary tables S7 and

S8, Supplementary Material online). The MAP-associated

genes had <4% overlap with temperature-related climate

variables across both transects. Heat-moisture related

genes were enriched in response to abiotic stimulus and poly-

saccharide biosynthetic process across altitude, and cellular

aldehyde metabolic process and response to endogenous

stimulus across latitude (supplementary tables S7 and S8,

Supplementary Material online). For altitude, one SHM-

associated candidate gene—Potri.014G170600 (COL9;

CONSTANS-like 9)—may downregulate expression of

CONSTANS and FT and control bud dormancy in poplar

(Böhlenius et al. 2006). In general, pathways including cellular

response to stress (GO:0033554), lipid binding

(GO:0008289), response to cold (GO:0009409) were over-

represented among candidate genes associated with most

climate variables (supplementary tables S7 and S8,

Supplementary Material online).

Parallelism in Climate-Selected Loci between Transects

We detected a significant number of candidates that directly

overlapped based on the binomial test in each transect. These

were associated with MCMT, TD, MAP, DD_0, and eFFP

(table 1; P< 1.0e�4 based on a hypergeometric test).

Additionally, the Null-W test revealed additional candidate

251

6

152

32

0

1

0

8

537

5
0 22

62

374

32

Bud Phenology Height Diameter

Regeneration Cold hardiness

196

3

175

18

0

1

2

2

565

8
0 15

54

378

20

Bud Phenology Height Diameter

Regeneration Cold hardinessA B
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genes with signatures of climatic selection in both transects

(supplementary tables S9 and S10, Supplementary Material

online). For example, nine outliers in the altitude transect were

significant based on the null-W test in the latitude transect,

including Potri.011G136100 (DAWDLE; DDL), which was as-

sociated with AHM, MSP, PAS, and SHM. This gene encodes a

protein similar to DAWDLE, and its ortholog in Arabidopsis is

involved in biogenesis of miRNAs (Zhang et al. 2018). Among

climate-associated genes identified in the latitude transect, 27

displayed parallel association with the same climate variable

across altitude. One gene Potri.001G282300 (UGT87A2;

UDP-GLUCOSYL TRANSFERASE 87A2) associated with

mean monthly temperature difference (TD), encodes a puta-

tive glycosyltransferase, which regulates abiotic stress re-

sponse and flowering time via FLC (FLOWERING LOCUS C)

in Arabidopsis (Wang, Jin, et al. 2012; Li et al. 2017).

Multilocus Genotype–Climate Association

Using RDA, we identified the major climate agents driving the

formation of ecotypes among latitudinal and altitudinal

samples. Across the latitude transect, California and Oregon

sampling locations were positively related to high MAT, high

heat-moisture, and growth period (positive MAT, MWMT,

AHM, SHM, and FFP); Alasak sites were characterized by

low annual temperature and frost free period; northern and

interior British Columbia were correlated with high precipita-

tion as snow and continentality (positive TD, PAS, and nega-

tive SHM, AHM); and Washington and southern British

Columbia were positively correlated with high MAP

(fig. 7A). For the altitude transect, high elevation sites were

positively related to precipitation as snow and continentality,

similar to Alaska (fig. 8A). In contrast, middle and low eleva-

tions had higher MAT, MAP, and heat-moisture.

On the first three RDA axes, we identified 16,621 candi-

date SNPs across altitude and 22,693 across latitude (figs. 7B

and 8B). In general, SNP outliers on altitude axis one reflected

associations with heat-moisture and precipitation; outliers on

axis two reflected continentality, extreme temperature and

frost free period; and outliers on axis three reflected temper-

ature (MWMT, MAT) and precipitation as snow (fig. 8B and

supplementary fig. S12, Supplementary Material online).

Across latitude, candidate SNPs on axis one reflected associ-

ations with heat-moisture, MWMT, and Eref; SNPs on axis

two were associated with temperature and precipitation;

and SNPs on axis three were associated with TD and FFP

(fig. 7B and supplementary fig. S12, Supplementary

Material online).

Among SNP outliers detected across altitude, MAT,

MWMT, MAP, and TD had the highest number of candidate

loci. For latitude, MAT, SHM, FFP, and Eref had the most

correlated candidate SNPs. There were 2,710 overlapping

SNP outliers found in both transects, among which 24 were

identified based on the same environmental predictor in both

transects. One SNP associated with SHM in both transect was

located in an intron of Potri.002G180800 (LATE ELONGATED

HYPOCOTYL; LHY), which encodes a MYB-related protein

regulating circadian clock by interacting with CCA1 in

FIG. 6.—Gene-based analysis to identify top candidate genes associated with MAT among altitudinal (A) and latitudinal samples (B). Red line is the

expected number of SNP outliers based on 99.9% binomial quantile given total number of SNPs within each gene or genomic region, and red points are

candidate genes or intergenic regions enriched for SNP outliers.
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Arabidopsis (Kim et al. 2003). In another case, four outlier

SNPs strongly associated SHM across latitude were also cor-

related with MAT, FFP, EMT, and PAS across altitude. These

four SNPs are located on chromosome 10 within the introns

of gene Potri.010G179700, which encodes flowering regula-

tor FT2 (FLOWERING LOCUS T). This gene was previously

found regulating growth and dormancy cycling in poplar

(Hsu et al. 2011; Wang et al. 2018).

FIG. 7.—Triplots of six latitudinal groups (A) and SNP loadings (B) on RDA axis 1 and axis 2 along the latitudinal transect. Points in (A) represent 285

poplar clones colored by geography, and points in (B) represent candidate SNPs colored by their most highly correlated environmental predictor. Blue vectors

represent environmental predictors.

FIG. 8.—Triplots of three elevation groups (A) and SNP loadings (B) on RDA axis 1 and axis 2 along the altitudinal transect. Points in (A) represent 166

poplar clones colored by geography, and points in (B) represent candidate SNPs colored by their most highly correlated environmental predictor. Blue vectors

represent environmental predictors.
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Overlapping Signals between Genotype–Phenotype and
Genotype–Climate Associations

There was a significant overlap between gene outliers from

GWAS and Bayenv2 for both altitude (5.67% of GWAS and

8.85% of Bayenv were in common; P¼ 4.91e�15 based on a

hypergeometric test) and latitude (2.78% of GWAS and

9.73% of Bayenv outliers were in common; P¼ 2.16e�9

based on hypergeometric test) (supplementary fig. S13,

Supplementary Material online). We also observed substantial

overlap between SNP outliers detected with the two geno-

type–environment association analysis approaches. Among

candidate SNPs identified by RDA, 47.3% were in common

with Bayenv2 results for altitude and 55.0% for latitude.

Among the eight selected climate predictors, MAT and

MAP had the most significant overlap in SNP outliers detected

in both Bayenv2 and RDA across both transects (P< 2.53e�5

in all hypergeometric tests; supplementary table S11,

Supplementary Material online).

Discussion

Phenotypic Variation Reflects Adaptation to Climate
Regimes

Our results support previous findings of adaptive phenotypic

gradients among natural populations along the latitudinal

species range of P. trichocarpa (Evans et al. 2014; McKown,

Guy, et al. 2014), and we further demonstrated that clines

related to altitudinal adaptation also drive phenotypic differ-

entiation. The strong phenotypic differentiation among natu-

ral accessions of P. trichocarpa along altitudinal and latitudinal

gradients suggests that divergent selection related to local

climate shapes phenotypic variation in the seasonal growth,

cold hardiness, and regeneration ability of local populations

across both coarse and fine spatial scales. Among the traits

we measured, timing of bud phenology is a key adaptive re-

sponse to seasonal variation in temperature. Provenances

from high latitudes usually require a longer critical day length

to induce bud formation and thus have earlier growth cessa-

tion and timing of bud set (Hurme et al. 1997; Rohde et al.

2011). In spring, bud break requires autumn chilling between

0 and 5 �C, followed by sufficient heat-sum (Campbell and

Sugano 1975; Hunter and Lechowicz 1992; Li et al. 2010).

The late bud flush of northern and high elevational genotypes

in our study may in part be due to an unsatisfied chilling or

heat-sum requirements (Li et al. 2010; Basler and Korner

2014). With shorter growing seasons after transfer to non-

local environment, most northern and high elevation geno-

types displayed less growth than those originating from the

center of the species range or low elevation. Although devel-

opment and release of cold hardiness depends in part on

daylength, it is also controlled by temperature. The spatially

varying freezing tolerance we observed also reveals adapta-

tion to different temperature regimes. Finally, regeneration

ability is an important fitness measure for species that repro-

duce partially through clonality (Mart�ınkov�a and Klime�sov�a

2016), but less is known about the molecular determinants

of these traits. The clinal pattern of regeneration ability may

reflect adaptive differentiation in regeneration potential

(Ikeuchi et al. 2016).

Phenotype-Associated Genes Conserved across
Geographic Transects

We uncovered numerous loci with annotations suggestive

of their involvement in timing of bud phenology, height,

diameter, regeneration height, and branch number. The

gene-based approach we employed captured genomic

regions harboring concentrations of significant SNP associa-

tions in excess of the genomic background. Compared with

traditional GWAS, gene-based analysis aims to identify clus-

ters of SNP outliers and thus is less prone to false positives.

Annotations of some candidate loci suggested their possible

roles in controlling the corresponding phenotypes. For exam-

ple, Potri.015G107000 (Regulator of chromosome condensa-

tion [RCC1] family protein), which was associated with timing

of bud set, may be involved in cold acclimation (Ji et al. 2015).

Another gene associated with timing of bud flush,

Potri.016G088300 (No apical meristem protein; NAM) enco-

des a key regulator in shoot apical meristem determination

(Souer et al. 1996).

By assessing the direct overlap between candidate genes,

we observed common phenotype-associated genes shared by

the two transects. Among them, genes associated with timing

of bud set and bud flush in Virgina garden showed the most

overlap in the hypergeometric test. The null-W test results

provided limited evidence of shared genetic architecture un-

derlying phenotypic adaptation to our two geographic clines.

This lack of parallelism may due to divergent selection forces

targeting different genes or genomic regions between lati-

tude and altitude. However, we cannot rule out the possibility

that limited sample size and control for population structure

may misclassify some true positives and reduce the power of

the null-W test.

Parallel and Discordant Patterns of Climate-Related
Selection

The latitude and altitude transects we studied represent sim-

ilar environmental clines that vary in the type and amount of

precipitation, mean and seasonal temperatures, and yearly

timing of growing seasons. One major shared selection agent

across these two transect is local differences in MAT. Northern

genotypes and those from high altitude are adapted to lower

MAT and colder winters. Consequently, we expect the

genomes of local populations that experience similar temper-

ature regimes to respond in parallel, to the extent that genetic

constraints exist for the loci of adaptation. To detect these

signatures, we performed Bayenv2 and RDA scans and
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discovered a significant level of shared outlier SNPs and genes

between the two transects, which is unlikely to have occurred

by chance. This suggests that local selection may target similar

standing genetic variations and drive adaptive allele frequency

shifts across spatial groups. The GO enrichment analysis also

pointed out three key pathways—carbohydrate metabolic

process, cellular component organization, and lipid bind-

ing—enriched across both transects. The climate variables

that showed the greatest degree of overlap between trans-

ects were related to temperature and precipitation, whereas

genotype–environment relationships for variables related to

evaporative demand (i.e., the interaction between tempera-

ture and precipitation in summer) did not significantly overlap.

This dichotomy likely reflects the strong gradient in evapora-

tive demand across latitude, and the lack of such a gradient

across the altitudinal transect.

Despite the parallel selection signals, we also observed a

large number of discordant selection outliers between the

latitude and altitude transects. This is likely in part due to

selective constraints unique to each transect favoring different

genetic variants. For example, atmospheric pressure and daily

temperature difference tend to influence plant physiology

and metabolism across altitudinal gradients, whereas day

length and solar angle of incidence vary across latitudinal

gradients (Altshuler and Dudley 2006). The RDA revealed

that temperature-related variables and yearly temperature

difference are key selective forces driving population differen-

tiation across our altitude transect, whereas temperature,

heat-moisture, and seasonal growth period are the prominent

selection factors for latitude. With climate gradients of varied

scale across the two transects, the association strength of

causal genes and pathways differ correspondingly. At the

same time, historical distributions and complex demographic

processes specific to local populations likely also contribute to

the lack of concordance between two transects (Renaut et al.

2014; Holliday et al. 2016). Future analysis should explore

how genomic features and population history may limit

parallelism.

Convergence and Discordance between Selection Scans

The gene-based analysis of structured GWAS and Bayenv2

results identified genes underlying phenotypic adaptation

and climatic selection, respectively. Many climate selection

signals overlapped with genotype–phenotype associations,

which suggests that phenotypic adaptation during coloniza-

tion of the two transects was driven by selection agents cap-

tured by climate variables. For example, Potri.008G166600

(CRY2; Cryptochrome 2) was associated with timing of bud

set and annual heat-moisture (AHM) in the latitude transect

(fig. 9A), and a height-associated gene (Potri.015G002300;

PSEUDO RESPONSE REGULATOR 5; PPR5) also contained

SNPs strongly associated with MAT and TD (fig. 9B). This latter

gene was also associated with plant height in an independent

GWAS study (McKown, Guy, et al. 2014). Although we iden-

tified many cases of convergence between GWAS and cli-

mate outliers, there was also extensive discordance between

these two methods, which may be due to the two methods

scanning the genome for different type of association signa-

tures. That is, the traits we measured for GWAS likely did not

capture the full breadth of phenotypes responsive to climatic

variation across our sampling sites.

Although there was substantial concordance, many out-

liers were unique to Bayenv2 or RDA, which may reflect the

different logic behind the two methods. Bayenv looks for

single SNP allele frequency shift across spatial groups with

sample size difference and population structure accounted

(Gunther and Coop 2013), while RDA considers multilocus
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genetic variation across multivariate environment (Forester

et al. 2016). However, the common selection outliers

detected with different scanning methods provide reliable

candidate targets for climate-related selection.

Comparison to Previous Local Adaptation Studies in Poplar
and Other Tree Species

A moderate proportion of our phenotype- and climate-related

genes were concordant with findings in two recent studies in

P. trichocarapa (fig. 10 and supplementary fig. S14,

Supplementary Material online), although we did not find a

significant enrichment based on a hypergeometric test. Five

bud set associated genes overlapping with McKown, Guy,

et al. (2014) and McKown, Kl�ap�st�e, et al. (2014), and 60

overlapped with Evans et al. (2014) (fig. 10A). The two genes

shared by all three studies were Potri.002G165900, an ABA-

insensitive like protein that suggests a response to ABA during

fall bud set, and Potri.003G214200, a glucan synthase-like

protein that may be essential for 1,3-beta glucan synthesis

and formation of callose deposition. The latter is particularly

interesting as experimental evidence suggests that short-day

induced callose deposition seals cell wall plasmodesmata in

the shoot apical meristem and disconnects growth regulator

transport to the dormant bud, thus maintaining dormancy

(van der Schoot and Rinne 2011; Paul et al. 2014). We also

found overlap between our Bayenv2 outliers and those iden-

tified with Bayenv in Evans et al. (2014) (fig. 10B). The con-

served environment-associated genes between these studies

include Potri.009G058900 (similar to DNA topoisomerase),

Potri.012G003300, and Potri.001G359100 (Glycogen

branching enzyme). The samples studied in McKown, Guy,

et al. (2014) and McKown, Kl�ap�st�e, et al. (2014) mainly

covered British Columbia and northern Oregon, whereas

those from Evans et al. (2014) span California, Oregon,

Washington, and British Columbia. Each of these partially

overlapped with our sampling locations. However, neither

McKown nor Evans included samples along altitudinal trans-

ects. Thus, each of these analyses addressed a different por-

tion of the climate space occupied by P. trichocarpa, which

may partly explain the outliers that were unique to each study.

Finally, we compared our results with those of three addi-

tional temperate/boreal tree species that exhibit similar pat-

terns of local adaptation to climate. Among candidate genes

identified in European aspen (Populus tremula) by Wang et al.

(2018), 19 out of 91 overlapped with candidates in our RDA in

both altitude and latitude transects. Among these overlapping

genes was Potri.010G179700.1, which encodes FT2, a PEBP

family protein that was previously found regulate growth

cessation in poplar (Hsu et al. 2011). The FT2 ortholog

Potra001246g10694 in Populus tremula governs clinal varia-

tion in bud set timing through variation in its transcript

abundance and timing of expression (Wang et al. 2018).

In addition, we found six overlapping genes between the local

adaptation candidates identified by Wang et al. and our

GWAS results, but no overlap with our Bayenv2 outliers.

We further evaluated level of overlap between our candidate

genes and adaptive loci identified in the much more distantly
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FIG. 10.—Venn diagram showing overlap between our bud set candidate genes and those identified in two other studies (Evans et al. 2014; McKown,

Guy, et al. 2014; McKown, Kl�ap�st�e, et al. 2014) (A). Candidate genes detected with gene-based Bayenv analysis across latitude and altitude transect were

compared with Bayenv outliers from Evans et al. (2014) (B).
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related interior spruce (Picea glauca � P. engelmanii) and

lodgepole pine (Pinus contorta) (Yeaman et al. 2016) and

found a relatively large number of overlapping candidates

(supplementary table S12, Supplementary Material online).

There was significant overlap between both pine and spruce

gene outliers and our Bayenv2 candidate genes across altitude

(P< 0.01 in both hypergeometric tests), and our RDA candi-

date genes also showed significant overlap across both trans-

ects with convergent outliers in both pine and spruce

(P< 0.001 in hypergeometric tests). The common outliers

included several genes with roles in response to abiotic

stress or seasonal light signaling: Potri.003G044200 and

Potri.006G224600, which are homologs of HAB1

(HYPERSENSITIVE TO ABA1); Potri.004G102100 and Potri.

017G112700, which are homologs of the chloroplast

protein APE1 (ACCLIMATION OF PHOTOSYNTHESIS TO

ENVIRONMENT); Potri.002G089000, which encodes PHYA

(PHYTOCHROME A); and Potri.011G119500, which encodes

SPA-related 3 (SUPPRESSOR OF PHYA1) (supplementary table

S12, Supplementary Material online). The large number of

common genes between these studies may reflect that

each used the same gene-based strategy to discern candidate

genes or contigs, which emphasizes the power of this ap-

proach to define constraints in the genotype–phenotype–

environment map, even over deep evolutionary time.

Conclusions

Climate is a primary abiotic constraint directing adaptive

change in morphology, phenology, and physiology of plants.

We demonstrated that adaptive traits among P. trichocarpa

populations vary as a function of the local climate at their

geographic origin. By employing a gene-based analysis

approach to GWAS, we discovered a number of candidate

loci underlying timing of bud phenology, biomass, and regen-

eration ability and found significant genetic parallelism

underlying phenotypic adaptation between latitudinal and

altitudinal transects. We also used two complementary geno-

type–environment scans and detected regions of the genome

that have been targeted by climate-related selection, partic-

ularly temperature and its interaction with heat, and some

of these regions overlapped between our altitudinal and lat-

itudinal transects. Taken together, these results suggest some

constraint in the genetics of climatic adaptation across latitude

and altitude in P. trichocparpa. At the same time, adaptation

along these two clines involve a large number of unique loci,

which may reflect differences in their respective environmen-

tal constraints, and possibly also the demographic details of

postglacial recolonization.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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