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Abstract

We introduce McDAPS, an interactive software for assessing autonomic imbalance from non-

invasive multi-channel physiological recordings. McDAPS provides a graphical user interface 

for data visualization, beat-to-beat processing and interactive analyses. The software extracts 

beat-to-beat RR interval systolic blood pressure, diastolic blood pressure, the pulse amplitude 

of photoplethysmogram and the pulse-to-pulse interval. The analysis modules include stationary 

and time-varying power spectral analyses, moving-correlation analysis and univariate analyses. 

Analyses can also be performed in batch mode if multiple datasets have to be processed in the 

same way. The program exports results in standard CSV format.

McDAPS runs in MATLAB, and is supported on MS Windows and MAC OS systems. The 

MATLAB source code is available at https://github.com/thuptimd/McDAPS.git.
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1. Motivation and significance

The autonomic nervous system (ANS) is divided into two divisions — the sympathetic 

(SNS) and the parasympathetic nervous system (PNS). The imbalance between these two 

divisions, specifically when the SNS is hyperactive, may interrupt complex interactions 

among several physiologic mechanisms that act to maintain physiological parameters such 

as cardiac output, heart rate or blood pressure within normal limits. In many cohort studies, 

it has been shown that autonomic imbalance is a significant indicator of overall health and 

associated with worsening conditions of several diseases such as hypertension [1], chronic 

heart failure [2,3], metabolic syndrome [4], diabetes [5–7] and obstructive sleep apnea [8].

In laboratory setting, it is common to assess autonomic function in human subjects by 

having a participant perform physical maneuver or mental tasks [9] while autonomic-

mediated physiological responses are recorded. The most important autonomic markers, 

such as the statistical features or the frequency power of the R-to-R interval (RRI) of 

the electrocardiogram (ECG), indicate the overall balance of cardiac autonomic activity 

[10–12]. Other autonomic markers, such as the frequency power of beat-to-beat blood 

pressure (BP) variability or photoplethysmographic pulse wave (PPG) variability, indicate 

sympathetic and local modulation of vasomotor activity [13–18]. More complex markers, 

such as cardiac baroreflex sensitivity [19,20], involve adjusting heart rate variability with 

blood pressure variability.

Most available packages to assess autonomic imbalance such as Kubios [21], HRVanalysis 

[22], gHRV [23], Kardia [24] primarily focus on utilizing one signal, especially RRI to 

analyze heart rate variability. This is impractical for modern experimental settings that adopt 

a multi-modality platform to aggregate data such as AcqKnowledge (Biopac, Inc.) and 

LabChart (ADInstruments). To the best of our knowledge, only a few toolboxes are available 

to analyze other physiological recordings such as BP or PPG. The examples are ANSlab 
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[25], PhysioNet Cardiovascular Signal Toolbox (PCST) [26] and pyphysio [27]. However, 

only a commercialized version of ANSlab provides beat-to-beat processing for ECG, BP and 

PPG. PCST and pyphysio do not provide a graphical user interface and are designed for 

creating custom processing pipelines that require users to write programs for data analysis. 

Most of the available programs also lack sophisticated tools to define, select or save multiple 

segments for analyses. Moreover, results are not exported in a format that can be easily 

transferred to standard statistical packages for further analyses with clinical data.

Herein, we introduce McDAPS, an alternative software to evaluate autonomic imbalance 

from noninvasive physiological recordings. McDAPS was developed with the goal of 

assessing autonomic regulation through the visualization and analysis of respiratory and 

cardiovascular signals, in addition to ECG, that are commonly monitored in the clinical 

environment. The software provides basic signal operations, beat-to-beat processing as 

well as stationary power spectral analysis, time-varying power spectral analysis, moving 

correlation analysis and descriptive statistics. The user can visually define, select, and 

analyze multiple segments from multiple signals using a batch processing option. The 

package outputs derived parameters as well as subject identification variables in a format 

that can be imported into standard statistical packages.

2. Software description

2.1. Software architecture

McDAPS is developed using a UI design environment of MATLAB known as GUIDE. 

McDAPS is comprised of six sub-modules specifically built for three different purposes — 

(1) data visualization (2) beat-to-beat preprocessing and (3) analyses.

All the modules are treated as separated components because they interact with the 

data and display results differently. Thus, each module is represented by one MATLAB 

figure file (Fig-file), and one MATLAB script file (M-file) associated with the graphic 

components. For example, the main module is represented by main_DataBrowser.fig and 

main_DataBrowser.m.

main_DataBrowser.fig and main_DataBrowser.m are located in a top-level folder, while the 

rest of the Fig-files and M-files are stored in sub-folders. To use our software package, 

the user can simply add the folder of McDAPS to MATLAB search path, then run 

main_DataBrowser.m.

2.2. Software functionalities

For ease of use, the user accesses all the modules via the main module called “Data 

Browser”. In Data Browser, the user imports data as a MATLAB-binary file (MAT-file), 

and can visualize signals up to thirteen plots. Its main function is to help the user visually 

inspect the patterns in physiological signals induced by autonomic stimuli. Using the Data 

Browser’s toolkit, the user labels the analysis regions as “tags” for analysis with other 

modules.
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In a typical analysis workflow, the user may need to extract beat-to-beat signals from raw 

measurements via the beat-to-beat module before defining tags. After preprocessing, the 

user can access the analysis modules to perform power spectral analysis, moving correlation 

or calculate descriptive statistics.

2.2.1. The main module: Data browser—Fig. 1. shows a screenshot of Data Browser 

after importing a MAT-file containing raw measurements and processed beat-tobeat signals 

from a single subject participating in the heat-pain study [28]. This example specifically 

involves the selection and plotting of the pain stimulus (therm), PPG and the pulse amplitude 

of a photoplethysmogram (PPGa) using the visualization tool (Fig. 1(a), (b)). The reduction 

in PPGa during the pain stimulus (“Pain” tag) indicated a decrease in microvascular blood 

flow. Users can save the plotted signals and their order as a plot template (.MAT). They 

have control over window size, plot order, line color, and style. Users can zoom, retrieve 

data point values, pan axes view, and use “Jump” to navigate to specific time points. Data 

transformations like normalization, scaling, and shifting are also available.

The tagging feature of Data Browser offers the most functionality. The user can draw 

regions on the plotted signal to create tags (Fig. 1(c)). When a tag is created, another row 

appears on the tag table (Fig. 1(d)). The row has the tag’s name, the start position, the end 

position, its duration, the signal and the MATfile from which the tag was created. Tags can 

be exported into a comma-separated (CSV) file (Fig. 1(e), Fig S1). These tags can then be 

used to restrict analysis in other signals to the same time region and can be accessed in batch 

processing of multiple data files.

Events during an experiment, such as application of a stimulus can be marked and stored 

with the data file (Fig. 1(f)). When the user imports a MAT-file with event marks, they 

appear on the event table. The user can click on the event table to locate the time the event 

occurs on the plots.

2.2.2. The beat-to-beat module (B2B)—B2B (Fig. 2.) provides three processing 

options to extract beat-to-beat values of ECG, BP and PPG. The beat-to-beat values 

available on McDAPS are RRI, systolic blood pressure (SBP), diastolic blood pressure 

(DBP), mean arterial pressure (MAP), the pulse-to-pulse interval (PPI) and PPGa.

B2B, detects the R-peaks from the ECG using an in-house adaptive thresholding algorithm. 

The R-peak is the maximum point which exceeds the 90th percentile value of the ECG 

in 1.5-second window. Once the first R-peak in the ECG is identified, a new threshold is 

determined from the next 1.5-second window beginning from the most recently identified 

R-peak. The process repeats until the end of the signal.

The systolic peaks of BP and PPG are detected using a published algorithm [29]. The 

detected systolic peaks are then used to search for the corresponding troughs. For BP 

processing, the systolic peak and the trough are SBP and DBP respectively. MAP is 

calculated as the sum of 2/3 DBP and 1/3 SBP.
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While the processing is automatic, users can correct the algorithm detection via Add/Reject 

buttons. B2B exports the interpolated beat-to-beat time-series that is uniformly sampled at 2 

Hz [30] to Data Browser.

2.2.3. Power spectral modules—Stationary power spectral density (Stationary PSD) 

and time-varying power spectral density (Time-varying PSD) modules (Fig. 3.) compute 

power spectrum of a signal within the selected tag.

By default, stationary PSD calculates total power, low-frequency power (LF; 0.04–0.15 Hz) 

and high-frequency power (HF; 0.15– 0.4 Hz) of the selected data segments (e.g. Fig. 3. 

“pain” tag). However, the user can modify the frequency ranges, frequency resolution and 

detrending order in the module’s setting. Stationary PSD displays the power spectra and 

exports the results into a CSV file.

Time-varying PSD applies the stationary PSD analysis to a sliding 60 s window that is 

moved along the signal one sample at a time. For each sliding step, LF and HF are derived 

from the calculated PSD. The outputs of this analysis are the time-series of LF and HF of the 

signal under investigation. The outputs are exported to Data Browser.

The PSD can be estimated using Welch’s method [31], an autoregressive (AR) model [32] 

or an input-adjusted autoregressive model [33,34]. The PSD estimate from Welch’s method 

is the average of periodograms obtained from the overlapping and windowed data segments. 

The AR method assumes that the signal can be modeled as the output of an AR filter 

(regressed on its own past values) driven by white noise, where the AR filter coefficients 

are estimated and optimized using the Akaike information criterion [35]. The PSD estimate 

can then be obtained by taking the Fourier transform of the optimized AR filter. The 

input-adjusted autoregressive method is an extension of the AR method and is used when 

the influence of a correlating factor (a time-varying input, most commonly respiration) 

needs to be attenuated. This method was originally developed to correct for the influence of 

non-uniform ventilatory patterns on heart rate variability [33,34] — i.e. it would produce an 

estimate what the heart rate variability index would be under tidal breathing conditions with 

the same ventilation.

2.2.4. Moving correlation module (MC)—MC detects similarity between two signals 

within the selected tag by cross-correlation analysis (Fig. 4). The analysis yields the Pearson 

and Spearman correlation coefficients and the time lag between two signals where the 

strongest correlation occurs. The maximum correlation was determined from the start of the 

analysis tag to 10 s after (based on the defined search window. The follow-up significance 

test is used to statistically distinguish the pattern identified as a response from the pattern 

that may arise simply from spontaneous fluctuations in the signal that coincide with the 

stimulus [36]. The outputs of the module are shown in the result table and can be saved as a 

CSV file.

2.2.5. Feature extraction module (FEX)—FEX computes descriptive statistics, e.g. 

mean, median, min, max, coefficient of variation, as well as fits a curve (exponential, 

polynomial and sigmoid) of the data within the selected tags.
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2.2.6. Batch analyses—In clinical research, the same analysis of physiological signals 

may be performed on multiple subjects with difference characteristics. Batch analyses (Fig. 

5.) simplify this process by allowing each analysis module to run on the directory of 

MAT-files to output analysis within pre-defined tags. Fig. 6. displays the outputs of batch 

processing performed in Stationary PSD module. In each data-file, two signals – RRI and 

SBP were analyzed within two tagged regions – Extbaseline1 and Task1. Each calculated 

parameter was output as a row. The “operation tag” is the name of the output variables 

particular to the analysis module (“operation”). The number of rows per analysis can vary 

depending on the output of the particular analysis module (see Fig S2. for the batch analysis 

output of moving-correlation analysis); however, the number of columns is always the same. 

Thus, all of the analyses for all of the subjects can be concatenated into one file for loading 

into the statistical software. As the subject ID is carried in every row of the output, the 

investigator can join this result table with a separate file that contains the subject ID and 

clinical data like diagnosis, gender, age etc. This approach allows modification and addition 

of the analysis modules without having to change the output format.

3. Illustrative examples

In this section, we illustrate how the software is used to analyze autonomic changes 

in response to heat-pain pulses applied to the forearm [28,36]. In this experiment, the 

magnitude of the heat-pain stimuli was measured as changes in voltage which is negatively 

proportional to changes in skin temperature induced by the thermal pain device (TSI-II).

In the first example (Fig. 4.), we were interested to see if decreases in microvascular blood 

flow measured by PPGa (Fig. 4: 2nd panel) were associated with the thermal pattern (Fig. 

4; 1st signal). We performed cross-correlation between the thermal pain signal and PPGa to 

determine if the pattern of pain stimuli was present in the blood flow response. Using the 

moving correlation module, we cross-correlated “therm” and “ppga” during the pain pulses 

labeled as “Pain Tag”.

The table entries in Fig. 4. include the identified maximum correlation coefficients (Pearson 

and Spearman) and the time lag between ‘therm’ and ‘ppga’ where the maximum correlation 

occurs. The third and fourth panels of Fig. 4. display the Pearson and Spearman cumulative 

distribution functions constructed from correlation coefficients between “therm” (in the 

test region) and “ppga” in all possible sections of the baseline region. The vertical line 

indicates where the maximum correlation during pain is relative to the baseline “null” 

distribution. In this subject, the maximum correlation locates to the far left of the cumulative 

null distribution function. This indicates that the pattern observed in the peripheral blood 

flow during pain application is caused by pain rather than by random fluctuations in the 

peripheral blood flow.

In the second example (Fig. 3.), we present an example of heart rate variability analysis 

(HRV) using the Stationary PSD. We applied Welch method to calculate power spectra of 

sections of the RRI signal during the pain pulses marked by the PAIN tag indicated in red in 

the left panel of Fig. 3. The left section of the browser screen (Fig. 3.) shows the options for 

the PSD module analysis, including the signal of interest, in this case “rri”, and the tagged 
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section of the signal to be analyzed, in this case “Pain”. The right panel displays the power 

spectrum of HRV calculated within the “Pain” tag. This run produced one row in the result 

table for the total power, and one for HF and LF. The output parameters were concatenated 

to the parameters produced by the previous calculation on the “Extbaseline1” tag.

In this particular subject, we found that the total power dropped during the pain stimulus, 

suggesting that the overall HRV decreased. In addition, both LF and HF decreased during 

the stimulus, indicating that the reduction in HRV was from parasympathetic withdrawal.

4. Impact

The ANS alterations not only heighten the risk of cardiovascular mortality but may also 

worsen other complications as disease progresses [37,38]. Therefore, understanding the 

role of ANS dysfunction in the pathophysiology of diseases may be helpful in (1) making 

diagnosis of diseases in early stages (2) stratifying risk among patients and (3) preventing 

adverse outcomes.

In research setting, autonomic assessment is commonly carried out by stimulating 

cardiovascular responses with stressors such as head-up tilt, isometric hand grip test 

or mental arithmetic [9]. McDAPS provides a valuable tool to process beat-to-beat 

cardiovascular signals and inspect deviations in the signals by means of power calculations, 

moving correlation and descriptive statistics.

With its interface, users can easily define analysis regions directly from the plots to evaluate 

how autonomic biomarkers, change from one condition to another. Computation can be 

performed in batch. Results are exported into a CSV file and organized in a long format 

such that autonomic biomarkers are listed based on analysis regions, signals and data-files to 

support further statistical analysis.

McDAPS has been used with our previous work to derive physiological biomarkers that 

represent autonomic control of the heart and microvascular blood flow associated with heat-

pain, cold-pain and mental stress vasoconstriction responses in sickle cell disease patients 

and healthy subjects [39–41].

5. Conclusion

We have developed a software package for assessing autonomic imbalance. The software 

is geared towards users with little to no technical/programming background. While other 

available non-commercial software packages are dedicated to specific types of analysis, e.g. 

heart rate variability, we offer a versatile tool set that can be applied to any set of multiple 

physiological signals. The package offers batch analyses that allow the user to replicate the 

same set of analysis procedures on multiple data files in one session. The output format of 

the analysis results can readily be imported by statistical software and easily be linked to 

clinical information related to the study subjects.
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Fig. 1. 
A snapshot of Data Browser visualizes the signals from the same experiment: (1) heat 

stimulus, (2) raw PPG, (3) beat-to-beat PPGa.
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Fig. 2. 
A snapshot of the B2B module. The user can adjust the processing window, add and reject 

incorrect beat detection. The beat-to-beat signals are exported to the main module.
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Fig. 3. 
Example of heart rate variability analysis over the painful stimulus of one healthy subject.
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Fig. 4. 
Application of the moving correlation module to test the significance of blood flow pattern 

induced by pain pulses.
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Fig. 5. 
The interface of batch mode operation of Stationary PSD. “Task1” tag indicated the duration 

where a specific pattern of heat-pain pulses was given to a subject. “Extbaseline1” tag 

indicated the baseline period.
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Fig. 6. 
The outputs of batch processing performed in Stationary PSD. RRI and SBP were analyzed. 

The parameters of RRI were shown in row 50–65. Then the parameters of SBP were shown 

in row 66–70.
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