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Abstract

This study proposes a method for classifying event-related fMRI responses in a specialized

setting of many known but few unknown stimuli presented in a rapid event-related design.

Compared to block design fMRI signals, classification of the response to a single or a few

stimulus trial(s) is not a trivial problem due to contamination by preceding events as well as

the low signal-to-noise ratio. To overcome such problems, we proposed a single trial-based

classification method of rapid event-related fMRI signals utilizing sparse multivariate Bayes-

ian decoding of spatio-temporal fMRI responses. We applied the proposed method to classi-

fication of memory retrieval processes for two different classes of episodic memories: a

voluntarily conducted experience and a passive experience induced by watching a video of

others’ actions. A cross-validation showed higher classification performance of the pro-

posed method compared to that of a support vector machine or of a classifier based on the

general linear model. Evaluation of classification performances for one, two, and three sti-

muli from the same class and a correlation analysis between classification accuracy and tar-

get stimulus positions among trials suggest that presenting two target stimuli at longer inter-

stimulus intervals is optimal in the design of classification experiments to identify the target

stimuli. The proposed method for decoding subject-specific memory retrieval of voluntary

behavior using fMRI would be useful in forensic applications in a natural environment,

where many known trials can be extracted from a simulation of everyday tasks and few tar-

get stimuli from a crime scene.

Introduction

Decoding brain states using functional magnetic resonance imaging (fMRI) has long been

applied in various research areas; for example, fMRI is used to identify explicit responses in

vision [1, 2] and motor function [3] and to classify implicit brain states such as mental imagery
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[4], emotion [5], visual attention [6], and memory [7, 8]. Most of these studies have used

block-design experiments that are more sensitive for classification than for single trial analysis.

However, presentation of the same stimuli in blocks is less relevant to everyday life experiences

and may lead to unwanted priming effects or intentional regulations, limiting brain decoding

in certain practical environments such as forensic investigation.

For instance, let us consider a case of forensic investigation in which an investigator has

photos from a crime scene. The purpose of the investigation is to identify whether the suspect

voluntarily engaged in the crime or saw the scene in the picture by accident. In this case, we

can design an experiment by asking participants to conduct everyday tasks (such as visiting a

coffee shop and freely deciding how to act) with video recording, which will be presented dur-

ing a memory retrieval task in an fMRI. These everyday tasks can then be used to localize indi-

vidualized memory retrieval processes for voluntary actions versus retrieval of memory after

passively seeing a video of others’ actions. In this case, we have a sufficient number of known

targets, which, though not replicating the real crime scene, are similar in that they reflect actual

voluntary behavior as a series of episodic memories. Here, we focus on classifying the brain

responses of a single (or a few) episode(s) of target memory retrieval processes for a given

cue, rather than the memory content itself, to differentiate voluntary experience from passive

experience (e.g., lie detection) using fMRI. This technique operates on the assumption that vol-

untary action memory may be easily retrieved by spontaneous reconstruction of episodic

memory as a constructive process [9, 10], while passively watching scenes may lead to incom-

plete recollection or memory failure [11].

Under this scenario, we propose a framework of single (or few) trial-based classification of

rapid event-related fMRI signals with many known stimulus trials (acquired experimentally to

localize individual brain responses to similar types of target events as described above) but few

unknown target stimulus trials (e.g., real case). Many known trials are used to model brain

responses and to test the unknown trials based on the model.

Despite observed fMRI responses to many known stimuli, classification of fMRI responses

from a single trial is not trivial, not only because of a low signal-to-noise ratio and high trial-

by-trial signal variation, but also because of contamination from a previous event. Since hemo-

dynamic responses are very slow, with a peak around 6 seconds after the neural event, the spa-

tial pattern of blood-oxygenation-level-dependent (BOLD) signals at a time point is spoiled by

the previous event (see Fig 1), which makes it difficult to classify the event. Furthermore, the

low number of trials, thus the limited information available, is another bottle neck in the classi-

fication because the number of voxels used for training a classifier will highly exceed the num-

ber of scans, leading to a high dimensionality problem.

To solve those problems, the proposed method utilizes a multivariate linear model of fMRI,

which models neuronally induced but hemodynamically mediated continuous “temporal”

BOLD changes. This is particularly important in analyzing responses of a single stimuli with

few observed data. Thus, the information from temporal dynamics should be included in the

classification to compensate for the small amount of data available.

To invert the model parameters, we used a multivariate Bayesian optimization to resolve

the ill-posed many-to-one mapping (many voxels to small scans or samples) [12]. The multi-

variate Bayesian optimization has been widely used to invert functional models involved in

generating observed signals for reward-related areas [13], hippocampal subfields [14], aging

differences in the formation of episodic memory [15], and motor-related areas [16] by appro-

priately weighting brain regions to represent target function. In this study, brain responses

for a trial were modeled using multivariate Bayesian models (we denote it as MVB, hereafter),

under a general linear model (GLM) of BOLD time series, and then classified via a model com-

parison process, i.e., selecting a better model to explain observed signals.

MVB decoding for memory retrieval
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Effectively, this multivariate Bayesian procedure can be regarded as estimating the second

order statistics of the unknown weight parameters (β). This can be variously interpreted in

terms of covariance component estimation of the sort used in EEG source reconstruction

[17,18]. Alternatively, in a machine learning setting, this can be seen as a form of Gaussian

process modelling. Crucially, in both instances, sparsity is introduced into the forward or gen-

erative model through empirical spatial priors on voxel weights that ensure there are a large

number of distributed responses or patterns with a very small variance and a small number

with a large variance. The variance parameters correspond to the posterior distribution over

voxel weights, particularly the expression of spatial patterns that encode voxel weights.

The feasibility of the proposed method in the classification of one or two target trials in the

rapid event-related design was evaluated in an example of episodic memory retrieval of a vol-

untary experience compared to memory of a passive experience formed after seeing others’

actions. We compared the accuracy of the MVB with those of classifiers based on the GLM

and support vector machine (SVM). We also evaluated the classification performance utilizing

one, two, or three stimulus trials in the same class, which is feasible in a practical forensic envi-

ronment. Finally, the performance dependency on target stimulus location was evaluated with

respect to the inter-stimulus interval (ISI) to propose a guideline for designing target stimulus

positions among known stimuli in the randomized setting for better classification in forensic

application.

Fig 1. An illustration for overlapping effects of hemodynamic responses on the spatial patterns. (a) The illustration is based on the

rapid event related design with three classes of events, with short intervals between events. (b) Each stimulus event elicits a class-specific

hemodynamic response. (c) Due to a long hemodynamic response for a neural event, overlapped hemodynamic responses of preceding

events are generally observed at each time point in the rapid event-related design. (d, e) The intrinsic neural responses can construct class-

specific spatial patterns for each event, (f) whereas the overlapped responses contaminated event-specific spatial patterns.

https://doi.org/10.1371/journal.pone.0182657.g001
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Materials and methods

Participants

The data used in the current study were part of a study presented in another paper [submit-

ted]. In brief, 19 healthy subjects (8 males and 11 females, ages from 21 to 32 years, mean =

25.4, SD = 3.9 years) participated in the study. To evaluate all the classification methods with

a same data set, we further excluded two participants who did not show increased activations

in the memory retrieval of passive experience than voluntary experience, which was used as

features in the generalized linear classifier. This study was approved by the Institutional

Review Board of Severance Hospital, and written informed consent was obtained from all

subjects.

Experimental design

All participants visited twice with about a 10-day gap (mean 7.06 ± 3.01 days) between visits.

During the first visit, participants conducted everyday tasks to create episodic memory, and

during the second visit, they conducted a memory recall test in the fMRI.

Step 1: Formation of voluntary and passive episodic memories. On the first visit, partic-

ipants chose and conducted six out of twelve everyday tasks to generate their own voluntary

episodic memories such as visiting a coffee shop, ordering a drink, and asking questions to

the clerk, all of which were recorded using an action video camera (GoPro HERO3 camera,

https://gopro.com). After performing all field tasks, participants wrote what they did in the

tasks. To create passive memories, participants also watched video clips of the other partici-

pants’ activities during their first visit.

Step 2: Generation of visual stimuli. To generate visual stimuli for fMRI memory

retrieval task, we captured pictures from each participant’s video recording according to

his/her report. The captured pictures were categorized into three different memory types: 1)

80 pictures of voluntary active experience extracted from the self-video recording, 2) 80 pic-

tures of involuntary passive experience extracted from others’ video recordings, and 3) 80

pictures unfamiliar to the participant. To help the retrieval process, we added keywords to

the pictures. For voluntary experience condition, we extracted keywords from participants’

self-reports and, for passive experience condition, from the self-reports of participants cho-

sen for others’ video recordings, and for the no experience condition, from the content

materials themselves. Among different conditions, this study focused on classification of the

memory retrieval process for voluntary experience and passive experience, with pictures and

keywords as cues, in order to identify agency (i.e., volitional versus passive) from the target

stimuli.

Step 3: fMRI task procedure. On the second visit, participants performed memory

retrieval for a series of given cues (pictures and keywords) in the fMRI. Forty stimuli (cues)

per condition were presented to participants (voluntary active experience, passive experience,

and unfamiliar stimuli in 2 conditions: pictures with keywords and without keywords, total

240 stimuli) and each stimulus was presented for 2s. During fMRI scanning, participants

watched and judged whether each stimulus belonged to "saw" or "didn’t see" categories by

pressing a button. The visual task for memory retrieval was designed using a rapid event-

related design including Optseq [19] and Psychtoolbox-3 (http://psychtoolbox.org/). A cross-

fixation point followed the stimulus and lasted for 1–10 s as a jitter. In order to induce memory

retrieval, we were careful to ensure participants were unaware of the aim of the visual task;

thus, identifying voluntariness for the stimuli involved choosing between “saw” and “didn’t

see” rather than “did” and “did not do.”

MVB decoding for memory retrieval
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Data acquisition and image processing

Functional magnetic resonance imaging (fMRI) data were acquired axially using T2� weighted

single shot echo planar imaging (EPI) sequences using a 3.0 Tesla MRI scanner (Philips

Achieva; Philips Medical System, Best, The Netherlands): voxel size, 1.72×1.72×4.0 mm3; slice

number, 34 (interleaved); recon matrix, 128×128; flip angle, 90˚; slice thickness, 3.5 mm; slice

gap, 0.5 mm; repetition time (TR), 2000 ms; echo time (TE), 30 ms; and field of view, 220 mm.

To facilitate spatial normalization, a high-resolution structural data set was obtained from

each subject with a SENSE head coil using a 3D T1-TFE sequence configured with the follow-

ing acquisition parameters: axial acquisition with a 224 × 224 matrix, 220 mm field of view,

0.98 × 0.98 × 1.2 mm voxel unit, 4.6 ms TE, 9.6 ms TR, 8˚ flip angle, and 0 mm slice gap.

FMRI data preprocessing was conducted using statistical parametric mapping (SPM12,

http://www.fil.ion.ucl.ac.uk/spm/, Wellcome Trust Centre for Neuroimaging, London, UK)

[20]. After discarding the first 5 scans to address the stability issues, all EPI data underwent

preprocessing steps including correction of the acquisition time delay between different slices,

and correction for head motion by realigning all consecutive volumes to the first image of the

session. The realigned images were co-registered to T1-weighted images, which were used to

spatially normalize functional data into a template space using nonlinear transformation. The

normalized data were spatially smoothed with a 6-mm full-width-at-half-maximum (FWHM)

isotropic Gaussian kernel.

Considering forensic application, we mainly focused on classifying BOLD responses to sti-

muli (pictures with keywords) from voluntary active experiences and involuntary passive expe-

riences. In this respect, we designed contrasts between active and passive experiences to

analyze the fMRI data. To extract task-elicited activation regions as initial feature masks for

each individual, we conducted statistical parametric mapping of BOLD signals in the rapid

event-related design using SPM12. Voxel clusters comprising a minimum of 35 consecutive

voxels with statistical value over a threshold of p< 0.001 (uncorrected) were chosen for each

condition (voluntary and passive experience) in the individual activation map. We combined

activation maps of both voluntary and passive experience (VE and PE) to create a feature mask

for the subsequent analysis. To evaluate a better feature mask in the classification, we also gen-

erated a feature mask composed of voxels showing the statistical difference between voluntary

and passive experiences (VE—PE). In this case, we initially applied a statistical threshold of

p< 0.001 (uncorrected) with 35 consecutive voxels but adjusted the threshold level to include

voxels related to voluntary, passive experiences, or both.

Multivariate Bayesian parameter estimation and basic concept for

classification

To infer brain states from fMRI signals, we proposed two MVB models explained in the fol-

lowing section, utilizing the multivariate Bayesian model parameter estimation (MVBPE) in

the SPM toolbox. Although the details of the multivariate Bayesian model inversion method

can be found in Friston, Chu (12), the method and procedures are briefly described below.

A decoding model is based on the reversal of the conventional GLM, where observed sig-

nals are represented by a design matrix X and its weight vector β. In the MVB, a scalar target

variable X 2 R represents a scan-specific measure of behavioral state and corresponds to a lin-

ear mapping of a voxel intensity vector (number of voxels N), A ¼ fAt
1
; At

2
; . . . ; At

Ng at scan

time t = 1, . . ., M and voxel weights β = (β1, . . ., βN), defined below:

X ¼ Aβ ð1Þ

MVB decoding for memory retrieval
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To include hemodynamic response effects, a temporal convolutional matrix T with an

embedded hemodynamic response function was multiplied to Eq (1).

TX ¼ TAβ ð2Þ

Observed fMRI data {Yt}t = 1, . . ., M correspond to intensities Yt(v) at scan time t at voxels

v = {vi = 1, . . ., N|vi 2 ROI within a localized brain region (ROI) in the initial feature mask. fMRI

responses Y can then be represented by the sum of TA, confounds G scaled by unknown

parameters γ, and noise ε.

Y ¼ TAþ Ggþ ε ð3Þ

By combining Eqs (2) and (3), the following can be derived:

TX ¼ TAβ ¼ Yβ � Ggβ � εβ ð4Þ

where TX can be written by a combination of regressors for events of multiple classes and a

contrast weight vector c, TX = Xc, which corresponds to the subspace of the design matrix

X ¼

X11 X12 � � � X1J

X21 X22 � � � X2J

..

. ..
. ..

.

XM1 XM2 � � � XMJ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

for M scans and J regressors.

By applying a residual forming matrix, R = orth(I − GG−)t, to remove the confounds from

the model, we can have a simplified model for the scalar target variable X weighted by a

weighting matrix W.

WX ¼ RTX ¼ RYβþ B; B ¼ � Rεβ ð5Þ

where B are a vector of unknown random effects, following multivariate Gaussian distribution

with covariance, SB = exp(λB)RVRT. Here, λB is a hyperparmeter and V represents serial

correlations.

To make the ill-posed regression problem tractable, empirical priors on voxel weights β can

be embedded by introducing a second level in the model.

β ¼ UZ ð6Þ

where U contains spatial patterns to impose constraints and η are unknown pattern weights as

second-level random effects with covariance, Sη. We can model the covariance matrix Sη as a

linear combination of m covariance components (or leading diagonal matrices, I(1), . . ., I(m):

SZ ¼ expðlZ

1
ÞIð1Þ þ expðlZ

2
ÞIð2Þ þ � � � þ expðlZ

mÞI
ðmÞ. This exerts empirical priors on the voxel

weights β, p(β) = N(0, USηUT). In the current study, we used spatial patterns, U = I to impose

a sparse constraint.

The two-level model represented in Eqs (5) and (6) can be combined into a single question:

v ¼WX ¼ RYUZþ B ¼ LZþ B; L ¼ RYU ð7Þ

MVB decoding for memory retrieval
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The covariance of v can be written:

Sv ¼ SðlÞ ¼ LSZLT þ SB ¼ expðl1ÞQ1 þ expðl2ÞQ2 þ � � � þ expðlmþ1ÞQmþ1 ð8Þ

l ¼ fl
B
; l

Z

1
; . . . ; l

Z

mg

Q ¼ fRVRT ; LIð1ÞLT ; . . . ; LIðmÞLTg

Since only hyperparameters λ are unknown in this equation, the decomposition of covari-

ance significantly reduces the number of parameters to estimate.

To find a posterior distribution over voxel weights β, a Bayesian model inversion with

expectation maximization optimization algorithm (EM) was used to fit the model by maximiz-

ing free-energy, F, defined under Laplace approximation as below [12].

ln pðXjYÞ � F ¼ �
1

2
ðXtWtSðmlÞ

� 1WX � lnjSðmlÞj � w ln 2pþ lnjPSlj � ðml � pÞ
t
Pðml � pÞÞ; ð9Þ

where X comprises the target variables and W is the (known) weighting matrix. Gaussian prior

leads to a Gaussian likelihood (p(X|Y, λ) = N(0, S(Y, λ)) and is specified by a Gaussian covari-

ance S(Y, λ) with given fMRI data Y and covariance hyperparameter λ. For approximation,

the prior, p(λ) = N(π, P−1) with the prior expectation π, and covariance P, and posterior

q(λ) = N(μλ, Sλ) with the conditional mean μ and covariance S of λ are used.

The class for the unknown target trial with different design matrices is determined by find-

ing a class label with the maximal Free energy approximation value among models with differ-

ent design matrices. This process is summarized in Fig 2a. Fig 2b illustrates regressors with

different assumptions of the class label for the unknown target in the design matrix X, which is

used to determine the class for the target stimulus.

This is an efficient Bayesian model comparison procedure that compares the evidence for

hypothetical target variables (e.g., voluntary or passive experience). The use of Bayesian

model comparison is the innovation introduced by this paper. Originally, MVB was intro-

duced to enable Bayesian model comparison of different spatial patterns in terms of empirical

spatial priors on voxel weights (i.e., spatial coding hypothesis, U). However, in our applica-

tion, we compare models in terms of different design matrices or target variables (i.e., X).

This enables us to convert a classification problem into an evidence-based model comparison

problem.

MVB models for classification

In this study, we proposed a MVB-based classification method to classify single (or few)-

trial(s) fMRI responses from two memory retrieval processes, voluntary and passive

experiences, by utilizing the multivariate Bayesian model inversion of fMRI voxel activities

in the feature mask. Note that the multivariate Bayesian model inversion method in Friston

et al. [12] itself is not a classifier, rather we utilized its model comparison scheme for

the classification. Based on the assumption that retrieval processes for voluntary and pas-

sive experiences are differentially manifested in neural responses, we conducted and com-

pared two Bayesian approaches in classifying each type of memory retrieval. The first

approach employed known trials to build a model and to apply it to test data sets. The

second approach, a model comparison method, constructed two models after assigning a

class to the target in the design matrices. The two types of approaches are explained in

Fig 3.

MVB decoding for memory retrieval
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1. One-model approach. We built a single model only with known stimuli-responses and

inverted the model parameters β (i.e., voxel weights) using MVBPE described in the above

section. More specifically, we generated a design matrix (a regressor) by assigning the target

stimulus as zero as if no event occurred at the time point (Fig 3a). With this design matrix,

we estimated optimal model parameters β (voxel weights) using the MVBPE with a sparsity

prior, which were multiplied by the observed fMRI time series at corresponding voxels to

generate a signal at the target stimulus. The correlations between the target signal and two

model regressors (one assuming the missing target as voluntary experience and the other as

passive experience) after hemodynamic convolution were compared, and the model with a

higher correlation was assigned as the class for the unknown stimulus.

2. Two-model approach. In this approach, we built two MVB models: 1) a model with an

assumption of voluntary experience class and 2) another model with an assumption of pas-

sive experience class for the unknown event. More specifically, we built MVB models with

two different regressors for the stimuli sequence, assigning each to the voluntary experience

and the passive experience for the target event (Fig 3b). We estimated optimal model

parameters β and the free-energy (estimated log evidence) using MVBPE with a sparsity

prior. By comparing the maximized free energy (approximated log evidence) of both mod-

els, we classified an event as the higher free energy class. In this approach, we did not use

model parameters β in the classification but used free-energy associated with optimal β in

the model comparison.

Fig 2. Detecting brain states using multivariate Bayesian inversion scheme. (a) A general overview for

decoding. (b) An example of application in a rapid event related design to models with different design matrices

XA (assigning 1 for the regressor A and 0 for the regressor B at the target stimulus) and XB (assigning 0 for the

regressor A and 1 for the regressor B at the target stimulus) assuming the unknown target class as class A and

class B, respectively. The class for the unknown stimulus was chosen by selecting the model with higher free-

energy F among models with different design matrices XA and XB.

https://doi.org/10.1371/journal.pone.0182657.g002

MVB decoding for memory retrieval
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GLM-based classification

The simplest way to identify missing label is to use a GLM (Y = Xβ+ε). Since the estimate of

coefficient (β) reflects voxel weights for brain activity for a given class, we can interpolate the

brain response corresponding to the target event by multiplying these weights with the fMRI

time series.

In the GLM-based classification, the time series of voxels in the voluntary and passive con-

trast maps were T-value weighted and summed to generate the target variable. This target vari-

able was correlated with two regressors (one for assuming voluntary experience and the other

for assuming passive memory) convolved with hemodynamic response function. The class

with the higher correlation coefficient was chosen as the class for the target (Fig 3c).

SVM classification

We conducted SVM classification of a single trial using the Spider for MATLAB (http://

people.kyb.tuebingen.mpg.de/spider/). We first estimated trial-wise beta estimates using

Fig 3. Illustration of the one-model and two-models MVB approaches. (a) To classify an unknown

stimulus, the one-model method builds a MVB model with a regressor of known stimuli by ignoring the unknown

targets. In this model, multivariate Bayesian parameter estimation (MVBPE) estimates model parameters, β.

The weighted sum of fMRI voxel time series (weighted by the model parameters, β) was correlated with a

regressor of A class (XA) and a regressor of B class (XB), then the regressor with higher correlation was chosen

for the target class label. (b) Two-models approach builds two types of MVB models with two regressors with A

and B classes for the target stimulus. The model with higher free-energy (estimate of log-evidence) was chosen

for the target class label. This model utilizes the free-energy estimated by MVBPE instead of model

parameters, β. (c) The T-value weighted sum of fMRI time series (GLM analysis) was correlated with two

regressors (XA, XB). A class with higher correlation coefficient was chosen as the class for the target. (d) The

class was assigned to class A when the dot-product of weights of SVM classifier (trained with single trial

regression coefficients in the GLM analysis) and the regression coefficients (β) for each single stimulus was

higher than zero, and otherwise class B.

https://doi.org/10.1371/journal.pone.0182657.g003
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GLM, following Mumford et al.[21]. The regression coefficient, β, of each trial was estimated

by applying GLM with a regressor only for that trial (i.e., 1 for the trial and 0 for the other tri-

als) convoluted by a hemodynamic response. Total 80 β-values (VE: 40 trials, PE: 40 trials)

were used as samples in the binary SVM classification. The data were divided into a training

data set (79 β-samples) and a testing data set (one β-sample) similar to leave-one-out approach.

We trained a linear SVM classifier with a regulation parameter C = 1 [5, 6]. In order to reduce

the feature dimension, we conducted Recursive Feature Elimination (RFE), which recursively

excluded weakly informative voxels reflected in the smallest absolute weight value [22, 23]. In

the initial feature mask, RFE selects features with greedy backward selection from all features

using the training data by recursively removing half of weakly informative (small absolute

weights) features (voxels). The process was iterated until the number of features reached about

2,000, the level associated with an average feature number in the MVB optimization (average

1,940 sparse features) (Table 1).

Comparison of classification performance

All processes for classification (i.e., training and testing) using the GLM, SVM, and MVB

model-based classification were conducted for each individual. In theory, when evaluating the

classification performance, the training data and testing data should be independent not only

in model estimation but also in feature selection. In the current study, we had two levels of fea-

ture selection process; 1) initial feature mask from GLM analysis (thresholded with a supra-

threshold) and 2) features after feature selection or optimization in MVB (with a sparsity

prior) or SVM (using RFE). Although we used training and testing data independently for the

second step, we decided to minimize the huge computational demands by choosing a feature

mask of the entire time series (including testing data as well) in the evaluation of each single

trial classification in this special application. This is because we assumed that statistical

Table 1. Summary of individual features and accuracies of MVB optimization according to the number of trials.

Subjects VE & PE

#initial voxels #final features MVB

accuracy (single)

MVB

accuracy (two)

MVB

accuracy (three)

S1 30359 2048 80.00 70.00 85.00

S2 8284 2048 65.00 85.00 77.50

S3 27747 2048 83.75 97.50 100.00

S4 43577 1362 72.50 87.50 100.00

S5 42535 2048 83.75 82.50 86.25

S6 15754 2048 78.75 100.00 100.00

S7 75809 2048 78.75 100.00 100.00

S8 30913 1933 76.25 93.75 87.50

S9 15216 2048 61.25 75.00 67.50

S10 77760 2048 50.00 78.75 75.00

S11 78551 2048 71.25 98.75 98.75

S12 54022 2048 75.00 95.00 93.75

S13 44291 1385 72.50 87.50 83.75

S14 16225 2048 78.75 81.25 76.25

S15 8612 2048 90.00 93.75 98.75

S16 47536 2048 56.25 54.38 52.50

S17 53584 1675 53.75 52.50 51.25

Mean 39457 1940 74.49 87.57 88.31

https://doi.org/10.1371/journal.pone.0182657.t001
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parametric maps generated from any combination of 79 (or 78) trials (exclusion of any

unknown single (or two) test trial(s) out of 80 whole trials for VE and PE) would not be highly

different from that of the whole trials (80 trials). To evaluate this assumption, we compared the

feature masks of VE and PE obtained from all trials (total 80 trials) and from all trials except

one condition scan (total 79 trials) of a participant using the overlap rate, i.e., the ratio of the

number of intersecting voxels to that of total voxels in percentile. We found the two feature

masks were highly consistent (95% overlaps) (Fig 4a).

To evaluate the performance among classification methods, we used a leave-one-out cross-

validation instead of k-folds cross-validation. This is because the purpose of our current

method is to classify a single target trial (two or three trials) using the other trials for model

optimization, and also because BOLD time series are consecutive, which cannot be easily sepa-

rated. Among 80 trials (40 for voluntary experience and 40 for passive experience), we chose a

trial as an unknown target and classified this trial using the other 79 trials. This process was

repeatedly done for each single trial.

Fig 4. Comparison of initial feature masks for decoding. (a) The initial feature masks from statistical

parametric maps generated from all trials (total 80 trials, colored in red and yellow) and all trials except for a

test trial (total 79 trials, colored in green and yellow) of a participant were compared. The initial feature masks

show 95% overlaps (in yellow color). (b) The initial feature masks derived from the statistical parametric maps

of union and difference between voluntary experience and passive experience (VE & PE and VE − PE) in an

individual participant are displayed. Red-yellow color indicates increased activation in memory retrieval of a

voluntary experience than in a passive experience, while reverse for blue colors.

https://doi.org/10.1371/journal.pone.0182657.g004
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We first compared the two types of sparse MVB approaches: 1) one-model and 2) two-

model approaches. Of the two MVB approaches, the one showing better performance was

compared with GLM-based and SVM classifications. We compared classification methods

using paired t-tests of classification accuracy across all subjects.

Performance evaluation for multiple trials

We also conducted classification for two and three trials with the same class as unknown tar-

gets using the GLM classifier, SVM, and sparse MVB. Instead of using two or three consecutive

trials, we randomized the target trials to ensure that the participants did not pay special atten-

tion to the target events, which may reflect an attempt to hide their memories in practical

application.

We first chose a reference trial of a condition (e.g., voluntary experience) that had the

longest ISI. We then chose a trial out of the remaining 39 trials of the same class (voluntary

experience) and conducted MVB optimization of the trial as described above. We repeated

this process for all 39 trials and calculated the mean classification accuracy.

This was repeated for the passive experience condition. For three known stimuli, we first

chose a reference trial and found the second and the third trials that had the next longest ISIs.

Evaluation of classification performance of multiple trials was conducted in the same way as

the two-trial classification.

Performance evaluation for stimulus location

The performance dependency on target stimulus location with respect to pre, post and total

ISI was evaluated by analyzing the correlation coefficient between the target stimulus and its

free-energy. Free-energy for each trial is an approximate of log model evidence, indicating the

model goodness of fit for the observed BOLD signals. In this study, classification of each trial

is based on model comparison using free-energies of two different models with different

design matrices. We conducted correlation analysis between free-energy differences and dura-

tion between the onset time of the preceding stimulus and that of the current stimulus (PRE-

ISI), the duration between the onset time of the current stimulus and that of the following

stimulus (POST-ISI), and the duration between the preceding and following stimulus onset

times (TOTAL-ISI).

Results

Fig 1 shows an example of a rapid event-related design that exhibits event-overlapping effects

on both the temporal and spatial patterns of hemodynamic responses, which poses challenges

in classification by using spatial patterns at a single time point (Fig 1f).

For the evaluation of the classification of each individual, we used two different types of fea-

ture masks from the individual statistical parametric maps: 1) a map showing memory retrieval

of either voluntary experiences or passive experiences, and 2) a map showing statistical differ-

ences between memory retrieval of voluntary versus passive experiences (Fig 4b).

In the GLM-based classification, classification of features in the VE—PE contrast map (voxels

responding more to retrieval of voluntary memory compared to passive memory) showed signif-

icantly higher performance than those in the VE & PE contrast map (voxels responding to

retrieval of either voluntary or passive experience) (one trials: VE−PE = 0.65 ± 0.06 (t(16) = 10.11,

p< 0.001), VE & PE = 0.51 ± 0.03, (t(16) = 1.83, p = 0.0864), paired t-test: p = 4.3e-08; two trials:

VE−PE = 0.69 ± 0.22 (t(16) = 3.60, p = 0.0024), VE & PE = 0.51 ± 0.21 (t(16) = 0.27, p = 0.7910),

p = 0.0446; three trials: VE−PE = 0.76 ± 0.18 (t(16) = 6.22, p< 0.001), VE & PE = 0.52 ± 0.19
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(t(16) = 0.47, p = 0.6449), p = 0.0036). Therefore, we used the GLM-based classification with

VE-PE in the comparison, shown in Fig 5b and Table 2.

Fig 5a shows classification results for single trial classification using one- and two-model

MVB approaches. The two-model approach showed a significantly higher accuracy compared

to that of the one-model approach for single trial analysis (one-model = 0.62 ± 0.07, two-

model = 0.75 ± 0.09, p = 2.2e-05; Fig 5a). We therefore used the two-model approach as a

default MVB method in the evaluation hereafter.

Fig 5b and Table 2 shows the classification performance of the proposed MVB method

compared to those of the GLM and SVM methods for one, two, and three trials. MVB with

voxels responding to retrieval of either voluntary or passive experience (VE & PE) showed the

highest accuracy, in relation to the GLM and SVM procedures. In the MVB with voxels

responding to either voluntary or passive memory retrieval, two- and three-stimuli trials

increased classification accuracy to a significantly higher degree than the single trial (repeated

ANOVA measures, p = 4.2e-07; one = 0.74 ±0.09, two = 0.88 ± 0.09, three = 0.88 ± 0.11;

two> one, p = 9.0e-05; three> one, p = 1.7e-05). However, there was no significant difference

in performance between two and three trials (p = 0.6983). Two trials are optimal in terms of

balance between accuracy and number of trials.

Fig 5. Classification accuracy of the sparse MVB compared to other classification methods. (a) In the

MVB model-based classification for single trial, the two-models approach showed significantly higher accuracy

than the single-model approach (p < 0.001). (b) Comparison results of MVB model-based classification

performance compared to GLM and SVM for single, two and three trials are displayed. The classification

accuracy of all the methods are statistically higher than the chance level of 0.5 after one sample t-tests

(p < 0.05). The proposed MVB (VE & PE) method with a feature mask containing both voluntary experience

(VE) and passive experience (PE) showed greater classification accuracy for single and multiple trials than the

classification method based on GLM (T-weighted), SVM (the parameter C = 1 over the feature mask VE & PE),

and MVB (VE—PE, over the feature mask in the contrast between voluntary experience versus passive

experience).

https://doi.org/10.1371/journal.pone.0182657.g005

Table 2. MVB model-based classification performance compared to GLM and SVM for single and multiple trials. * indicates that the MVB method

using VE and PE (VE & PE) contrast map has significantly higher accuracy compared to the other methods at each trial (*p<0.05, **p<0.01, ***p<0.001).

Mean ± Standard deviation. Accuracy in %. † indicates a tendency of difference between MVB (VE-PE) and MVB (VE & PE) (p = 0.06).

Number of trials GLM

(T-weighted, VE–PE)

SVM

(C = 1, VE & PE)

MVB

(VE–PE)

MVB

(VE & PE)

One **65.1 ± 6.2 **65.1 ± 8.3 72.0 ± 9.1 74.5 ± 9.3

Two **69.0 ± 21.8 ***67.1 ± 16.1 79.3 ± 16.4† 87.6 ± 9.2†

Three *76.5 ± 17.6 ***63.9 ± 15.5 84.3 ± 18.3 88.3 ± 11.2

https://doi.org/10.1371/journal.pone.0182657.t002
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Fig 6 displays examples of the voxel weights in two subjects with high classification accuracy

for a single trial. The voxel weights for discrimination of voluntary and passive memory sti-

muli were distributed sparsely and differentially according to subjects (Fig 6a and 6b). Fig 6c

and 6d show histograms of voxel weights in these subjects. The histogram showed a small pro-

portion of non-zero voxel weights (sparsity) among the feature mask in the MVB.

We evaluated the relationship between the model goodness of fit measured using free

energy approximation and the position of the target stimulus compared to other stimuli with

respect to ISI. Fig 7 shows the effects of ISI on free energy approximation. The free energy

Fig 6. Exemplary display of distributed sparse feature maps used to decode voluntary and passive

visual stimuli in two participants. The feature maps in (a) and (b) were generated based on the voxel weights

from two MVB models. In these examples, model parameters (voxel weights) estimated by assuming the

unknown target stimuli as either voluntary experience class (VE!VE) or passive experience class (VE!PE)

are displayed, with red colors for positive weights and blue colors for negative weights. The size of spheres

indicates the strength of weights. The histograms of the voxel weights (features) show small non-zero values

showing sparsity.

https://doi.org/10.1371/journal.pone.0182657.g006

Fig 7. Effects of interstimulus interval on the free energy approximation. (a) The Free energy

approximation had a significant positive correlation with interstimulus intervals between onset times of present

and next stimulus (POST-ISI) (r = 0.2277, p = 0.0423). (b) There was a tendency toward positive correlation

between the Free energy approximation and the total interstimulus interval (TOTAL-ISI) (r = 0.2169,

p = 0.0532).

https://doi.org/10.1371/journal.pone.0182657.g007
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approximation had a significant positive correlation with the POST-ISI (r = 0.23, p = 0.0423;

Fig 7a). The correlation between the free energy approximation and the TOTAL-ISI showed a

tendency toward positive correlation (r = 0.22, p = 0.053; Fig 7b).

Discussion

This study proposes a framework for trial-by-trial classification in a specialized setting with

many known and few unknown stimuli in a single subject. The framework is based on a multi-

variate Bayesian model comparison to classify noisy hemodynamic responses of the unknown

target stimuli presented in a rapid event-related design for each individual.

In contrast to many block-designed brain decoding studies using fMRI [2–5, 7, 24–28],

very few studies have conducted classification of events using rapid event-related design [21,

29, 30]. Although the spatial pattern (or voxelwise activity pattern) in the block design may

have higher a signal-to-noise ratio than that in event-related design, leading to a better classifi-

cation performance, the block design is not as relevant in natural settings and practical applica-

tions, such as forensics. In these scenarios, an event-related design is a better choice than block

design, and in particular, a rapid event-related design is more advantageous than a slow event-

related design in simulating everyday life task [31].

In terms of event classification, however, a BOLD response to a stimulus in the rapid event-

related design is weaker than in the block design. Furthermore, since the rapid event-related

design does not have sufficient time to recover from a reaction to a stimulus, the BOLD signals

at the time of a stimulus consist of overlapping responses to preceding stimuli, which makes it

difficult to classify a single trial without considering temporal contexts. Therefore, to better

classify hemodynamic responses for a single stimulus and to minimize the overlapping prob-

lem due to consecutive events, gaining more information by utilizing spatio-temporal data is

necessary.

Previous fMRI classification studies with rapid event-related design experiments have tried

diverse methods to utilize temporal information such as averaged activities of events using

temporal compression [30] or beta estimates (regression coefficients) using GLM [21] for clas-

sification. In Connolly et al. [30], features were driven by the average responses for a class of

stimuli. This method did not take into account the impact of previous event in the temporal

model. Mumford and colleagues [21, 32] have used GLM regression coefficients in the classifi-

cation with two regressors; one trial as a regressor and all the other trials as a second regressor.

Janoos et al. [29] proposed a fully spatio-temporal multivariate analysis method using a state-

space model and a hemodynamic response model.

In this study, two spatio-temporal multivariate Bayesian models (MVBs) of fMRI signals

for a given target trial were estimated using sparse multivariate Bayesian parameter estimation

(MVBPE), where sparsity constraint was used as a spatial feature selection. The classification

was carried out by comparing estimated log evidences for the two competing models. The

MVBPE to decode brain states from hemodynamic responses (temporal) across the brain (spa-

tial) seeks to find an optimal set of voxels (features) with different weights to best represent

observed signals. Note that decoding is an ill-posed problem in reducing BOLD signals

obtained from many voxels to a binarized or multiclass label of brain states. To resolve this ill-

posed regression problem in terms of a Bayesian framework, researchers have used different

priors based on various encoding hypotheses to estimate voxel weights. In this study, we used

MVBPE with a distributed sparse constraint, which plays an important role in online feature

selection during model parameter estimation in MVBPE.

Having too many features despite the small sample data generally cause an overfitting prob-

lem, called ‘the curse of dimensionality’. As a method to overcome the overfitting problem in
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the classification, feature selection controls the number of voxels (or features) relative to the

number of samples (or scans) [33], although a greater number of weakly informative voxels

may be useful in discriminating brain states in some cases [34]. In this study, among the

39,457 ± 23,384 voxels (mean ± standard deviation) across subjects in the initial feature masks,

only 1,940 ± 240 voxels were chosen during MVBPE. Since the SVM classifier in this study uti-

lized a similar number of features (2,000) after RFE, the reduced number of features is not the

only reason for the higher performance of the MVB over other classification methods. As

explained in the above, the high accuracy of the sparse MVB may be attributed to the sparsity

constraint, which represents distributed encoding of neural responses. This has largely been

evidenced in previous studies that demonstrated the superior performance of a sparse model

over a clustered model [12, 13, 15, 16].

In addition to the sparse constraint, there are several advantages of the proposed MVB over

other methods, particularly SVM in the feature selection. Due to separation of feature selection

(RFE in this study) and model optimization, it is not trivial to find a better method of feature

selection in SVM before optimizing a classification model. In contrast, the MVB classifier

includes controlling the weights of voxels (feature selection process) as a part of classification

model building. Furthermore, general feature selection in the SVM, such as the searchlight

approach, utilizes univariate or localized information to determine feature mask while sparse

MVB utilizes multivariate features and in particular, spatially distributed information.

In this study, the classification performance was significantly improved by testing two

events of the same class compared with testing a single event. Although three trials showed fur-

ther improvement, two trials in a class resulted in sufficiently improved classification perfor-

mance. Information from more temporal profiles is advantageous in the model optimization

for highly noisy and variable fMRI data. An additional advantage of the proposed method is

that it can be easily extended to multiple trials.

We note that ISI is an important factor for better classification of each single event. The sig-

nificant correlation of ISI with the free energy approximation (log model evidence) suggests

that the appropriate positioning of the target stimuli with regard to longer ISI, especially the

post-stimulus interval, can improve classification performance. This appropriate positioning

will reduce temporal contamination by a consecutive event, which is unavoidable in the rapid

event-related design [33–35] and aggravates classification performance [36]. This is a very cru-

cial aspect in the design of stimulus presentation for practical purposes, such as forensic cases,

as in this study.

The current study is designed for application to forensic investigation, for the purpose of

identifying an individual’s memory retrieval of a voluntary action. The basic scheme is that the

voluntary action will be easily or spontaneously retrieved when a cue is presented. Note that

memory retrieval process differs across individuals as shown in Fig 6. Although previous stud-

ies in groups demonstrated increased activation in various brain regions such as the prefrontal

cortex [37, 38], limbic areas [39], and anterior cingulate cortex and superior frontal gyrus [40],

the group results may not be directly used for the classification of individual responses. There-

fore, we proposed a framework for localizing brain involvement for individualized memory

retrieval process using a stimulatory experiment (real practice with a video recording), in

which real target stimuli can be embedded with stimuli from the simulation task without being

recognizable. The individualized localization results of brain involvement for the memory

retrieval process are subsequently used for feature selection, which is known to enhance fMRI-

based deception detection performance [41].

Although we used stimuli in the stimulatory experiment as target stimuli for the purpose of

evaluation, we can replace these target stimuli with real case stimuli; for example, the photos

used in an interrogation may conform to a similar format as the photos from this experiment.
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By conducting a “saw” and “didn’t see” task rather than an “I did” or “I didn’t do” task in the

fMRI, we avoided participant recognition of the hidden intention of the task, which is a good

strategy for a situation in which subjects may attempt to hide their memory retrieval process.

While participants spontaneously identify “saw” or “didn’t see” for few real case stimuli

among many experimental stimuli, the current method will extract the voluntariness of the

past event by decoding differential memory retrieval processes. An additional strength of the

proposed framework is the capacity to evaluate the accuracy (confidence level) of the classifier

for each individual using a leave-one-out evaluation of known targets. For example, S16 and

S17 in Table 1 showed low classification accuracy. Thus, we can decide not to use the current

method for those subjects in practice, which is a very important requirement in forensic appli-

cations. By evaluating classification accuracy for each individual, we can estimate whether the

classification outcome should be considered or rejected as evidence in the interrogation. In

addition to classification, since the free energy is an approximation to the model evidence, the

two-model MVB approach could be used to produce posterior probabilities of each trial that

falls in a particular category. Although we used classification to ensure comparability with the

SVM in this study, a probabilistic approach could be useful in practical applications of current

MVB approach.

In conclusion, we proposed a framework for classifying responses to few unknown stimuli

among many known stimuli presented as single or several target trials in the rapid event-

related design. We used a multivariate Bayesian approach, which included spatio-temporal

information in the classification of single or multiple trials and showed higher classification

performance compared to the SVM classification. The proposed method can decode subject-

specific memory retrieval of voluntary behavior and may be useful for reliable lie detection in

more natural environments using fMRI.

Author Contributions

Conceptualization: Hae-Jeong Park.

Data curation: Dongha Lee, Sungjae Yun, Changwon Jang.

Formal analysis: Dongha Lee.

Funding acquisition: Hae-Jeong Park.

Investigation: Dongha Lee, Sungjae Yun, Changwon Jang.

Methodology: Dongha Lee, Hae-Jeong Park.

Project administration: Dongha Lee.

Supervision: Hae-Jeong Park.

Visualization: Dongha Lee.

Writing – original draft: Dongha Lee, Hae-Jeong Park.

Writing – review & editing: Dongha Lee, Hae-Jeong Park.

References
1. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping represen-

tations of faces and objects in ventral temporal cortex. Science. 2001; 293(5539):2425–30. Epub 2001/

09/29. https://doi.org/10.1126/science.1063736 PMID: 11577229.

2. Diana RA, Yonelinas AP, Ranganath C. High-resolution multi-voxel pattern analysis of category selec-

tivity in the medial temporal lobes. Hippocampus. 2008; 18(6):536–41. Epub 2008/05/01. https://doi.

org/10.1002/hipo.20433 PMID: 18446830;

MVB decoding for memory retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0182657 August 4, 2017 17 / 19

https://doi.org/10.1126/science.1063736
http://www.ncbi.nlm.nih.gov/pubmed/11577229
https://doi.org/10.1002/hipo.20433
https://doi.org/10.1002/hipo.20433
http://www.ncbi.nlm.nih.gov/pubmed/18446830
https://doi.org/10.1371/journal.pone.0182657


3. LaConte SM, Peltier SJ, Hu XP. Real-time fMRI using brain-state classification. Human brain mapping.

2007; 28(10):1033–44. Epub 2006/11/30. https://doi.org/10.1002/hbm.20326 PMID: 17133383.

4. Reddy L, Tsuchiya N, Serre T. Reading the mind’s eye: decoding category information during mental

imagery. Neuroimage. 2010; 50(2):818–25. Epub 2009/12/17. https://doi.org/10.1016/j.neuroimage.

2009.11.084 PMID: 20004247;

5. Sitaram R, Lee S, Ruiz S, Rana M, Veit R, Birbaumer N. Real-time support vector classification and

feedback of multiple emotional brain states. Neuroimage. 2010. Epub 2010/08/10. https://doi.org/10.

1016/j.neuroimage.2010.08.007 PMID: 20692351.

6. Andersson P, Pluim JP, Viergever MA, Ramsey NF. Navigation of a telepresence robot via covert visuo-

spatial attention and real-time fMRI. Brain Topogr. 2013; 26(1):177–85. Epub 2012/09/12. https://doi.

org/10.1007/s10548-012-0252-z PMID: 22965825;

7. Chadwick MJ, Hassabis D, Weiskopf N, Maguire EA. Decoding individual episodic memory traces in

the human hippocampus. Curr Biol. 2010; 20(6):544–7. Epub 2010/03/17. https://doi.org/10.1016/j.cub.

2010.01.053 PMID: 20226665;

8. Chadwick MJ, Bonnici HM, Maguire EA. Decoding information in the human hippocampus: a user’s

guide. Neuropsychologia. 2012; 50(13):3107–21. https://doi.org/10.1016/j.neuropsychologia.2012.07.

007 PMID: 22820344;

9. Conway MA. Episodic memories. Neuropsychologia. 2009; 47(11):2305–13. https://doi.org/10.1016/j.

neuropsychologia.2009.02.003 PMID: 19524094

10. Schacter DL, Addis DR. The cognitive neuroscience of constructive memory: remembering the past

and imagining the future. Philosophical Transactions of the Royal Society B: Biological Sciences. 2007;

362(1481):773–86. https://doi.org/10.1098/rstb.2007.2087 PMID: 17395575

11. Tulving E, Thomson DM. Encoding specificity and retrieval processes in episodic memory. Psychologi-

cal review. 1973; 80(5):352.

12. Friston K, Chu C, Mourao-Miranda J, Hulme O, Rees G, Penny W, et al. Bayesian decoding of brain

images. Neuroimage. 2008; 39(1):181–205. https://doi.org/10.1016/j.neuroimage.2007.08.013 PMID:

17919928.

13. FitzGerald TH, Friston KJ, Dolan RJ. Action-specific value signals in reward-related regions of the

human brain. J Neurosci. 2012; 32(46):16417–23a. https://doi.org/10.1523/JNEUROSCI.3254-12.2012

PMID: 23152624;

14. Chadwick MJ, Bonnici HM, Maguire EA. CA3 size predicts the precision of memory recall. Proc Natl

Acad Sci U S A. 2014; 111(29):10720–5. https://doi.org/10.1073/pnas.1319641111 PMID: 25002463;

15. Morcom AM, Friston KJ. Decoding episodic memory in ageing: a Bayesian analysis of activity patterns

predicting memory. Neuroimage. 2012; 59(2):1772–82. https://doi.org/10.1016/j.neuroimage.2011.08.

071 PMID: 21907810;

16. Park CH, Chang WH, Lee M, Kwon GH, Kim L, Kim ST, et al. Which motor cortical region best predicts

imagined movement? Neuroimage. 2015; 113:101–10. https://doi.org/10.1016/j.neuroimage.2015.03.

033 PMID: 25800212.

17. Friston K, Henson R, Phillips C, Mattout J. Bayesian estimation of evoked and induced responses. Hum

Brain Mapp. 2006; 27(9):722–35. https://doi.org/10.1002/hbm.20214 PMID: 16453291.

18. Phillips C, Rugg MD, Friston KJ. Anatomically informed basis functions for EEG source localization:

combining functional and anatomical constraints. Neuroimage. 2002; 16(3 Pt 1):678–95. PMID:

12169252.

19. Dale AM. Optimal experimental design for event-related fMRI. Hum Brain Mapp. 1999; 8(2–3):109–14.

PMID: 10524601.

20. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, et al. Analysis of fMRI

time-series revisited. Neuroimage. 1995; 2(1):45–53. https://doi.org/10.1006/nimg.1995.1007 PMID:

9343589.

21. Mumford JA, Turner BO, Ashby FG, Poldrack RA. Deconvolving BOLD activation in event-related

designs for multivoxel pattern classification analyses. Neuroimage. 2012; 59(3):2636–43. https://doi.

org/10.1016/j.neuroimage.2011.08.076 PMID: 21924359;

22. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector

machines. Machine Learning. 2002; 46 389–422.

23. De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E. Combining multivariate

voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.

Neuroimage. 2008; 43(1):44–58. https://doi.org/10.1016/j.neuroimage.2008.06.037 PMID: 18672070.

24. Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and clas-

sifying distributed patterns of fMRI activity in human visual cortex. Neuroimage. 2003; 19(2 Pt 1):261–

70. PMID: 12814577.

MVB decoding for memory retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0182657 August 4, 2017 18 / 19

https://doi.org/10.1002/hbm.20326
http://www.ncbi.nlm.nih.gov/pubmed/17133383
https://doi.org/10.1016/j.neuroimage.2009.11.084
https://doi.org/10.1016/j.neuroimage.2009.11.084
http://www.ncbi.nlm.nih.gov/pubmed/20004247
https://doi.org/10.1016/j.neuroimage.2010.08.007
https://doi.org/10.1016/j.neuroimage.2010.08.007
http://www.ncbi.nlm.nih.gov/pubmed/20692351
https://doi.org/10.1007/s10548-012-0252-z
https://doi.org/10.1007/s10548-012-0252-z
http://www.ncbi.nlm.nih.gov/pubmed/22965825
https://doi.org/10.1016/j.cub.2010.01.053
https://doi.org/10.1016/j.cub.2010.01.053
http://www.ncbi.nlm.nih.gov/pubmed/20226665
https://doi.org/10.1016/j.neuropsychologia.2012.07.007
https://doi.org/10.1016/j.neuropsychologia.2012.07.007
http://www.ncbi.nlm.nih.gov/pubmed/22820344
https://doi.org/10.1016/j.neuropsychologia.2009.02.003
https://doi.org/10.1016/j.neuropsychologia.2009.02.003
http://www.ncbi.nlm.nih.gov/pubmed/19524094
https://doi.org/10.1098/rstb.2007.2087
http://www.ncbi.nlm.nih.gov/pubmed/17395575
https://doi.org/10.1016/j.neuroimage.2007.08.013
http://www.ncbi.nlm.nih.gov/pubmed/17919928
https://doi.org/10.1523/JNEUROSCI.3254-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23152624
https://doi.org/10.1073/pnas.1319641111
http://www.ncbi.nlm.nih.gov/pubmed/25002463
https://doi.org/10.1016/j.neuroimage.2011.08.071
https://doi.org/10.1016/j.neuroimage.2011.08.071
http://www.ncbi.nlm.nih.gov/pubmed/21907810
https://doi.org/10.1016/j.neuroimage.2015.03.033
https://doi.org/10.1016/j.neuroimage.2015.03.033
http://www.ncbi.nlm.nih.gov/pubmed/25800212
https://doi.org/10.1002/hbm.20214
http://www.ncbi.nlm.nih.gov/pubmed/16453291
http://www.ncbi.nlm.nih.gov/pubmed/12169252
http://www.ncbi.nlm.nih.gov/pubmed/10524601
https://doi.org/10.1006/nimg.1995.1007
http://www.ncbi.nlm.nih.gov/pubmed/9343589
https://doi.org/10.1016/j.neuroimage.2011.08.076
https://doi.org/10.1016/j.neuroimage.2011.08.076
http://www.ncbi.nlm.nih.gov/pubmed/21924359
https://doi.org/10.1016/j.neuroimage.2008.06.037
http://www.ncbi.nlm.nih.gov/pubmed/18672070
http://www.ncbi.nlm.nih.gov/pubmed/12814577
https://doi.org/10.1371/journal.pone.0182657


25. Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain. Nat Neurosci.

2005; 8(5):679–85. https://doi.org/10.1038/nn1444 PMID: 15852014;

26. Haynes JD, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE. Reading hidden intentions in the

human brain. Curr Biol. 2007; 17(4):323–8. https://doi.org/10.1016/j.cub.2006.11.072 PMID:

17291759.

27. Bonnici HM, Kumaran D, Chadwick MJ, Weiskopf N, Hassabis D, Maguire EA. Decoding representa-

tions of scenes in the medial temporal lobes. Hippocampus. 2012; 22(5):1143–53. https://doi.org/10.

1002/hipo.20960 PMID: 21656874;

28. Chen Q, Garcea FE, Mahon BZ. The Representation of Object-Directed Action and Function Knowl-

edge in the Human Brain. Cereb Cortex. 2016; 26(4):1609–18. https://doi.org/10.1093/cercor/bhu328

PMID: 25595179;

29. Janoos F, Machiraju R, Singh S, Morocz IA. Spatio-temporal models of mental processes from fMRI.

Neuroimage. 2011; 57(2):362–77. https://doi.org/10.1016/j.neuroimage.2011.03.047 PMID: 21440069.

30. Connolly AC, Guntupalli JS, Gors J, Hanke M, Halchenko YO, Wu YC, et al. The representation of bio-

logical classes in the human brain. J Neurosci. 2012; 32(8):2608–18. https://doi.org/10.1523/

JNEUROSCI.5547-11.2012 PMID: 22357845;

31. Kriegeskorte N, Mur M, Bandettini P. Representational similarity analysis—connecting the branches of

systems neuroscience. Front Syst Neurosci. 2008; 2:4. https://doi.org/10.3389/neuro.06.004.2008

PMID: 19104670;

32. Mumford JA, Davis T, Poldrack RA. The impact of study design on pattern estimation for single-trial mul-

tivariate pattern analysis. Neuroimage. 2014; 103:130–8. https://doi.org/10.1016/j.neuroimage.2014.

09.026 PMID: 25241907.

33. Mur M, Bandettini PA, Kriegeskorte N. Revealing representational content with pattern-information

fMRI—an introductory guide. Soc Cogn Affect Neurosci. 2009; 4(1):101–9. https://doi.org/10.1093/

scan/nsn044 PMID: 19151374;

34. Etzel JA, Gazzola V, Keysers C. An introduction to anatomical ROI-based fMRI classification analysis.

Brain Res. 2009; 1282:114–25. https://doi.org/10.1016/j.brainres.2009.05.090 PMID: 19505449.

35. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuro-

image. 2009; 45(1 Suppl):S199–209. https://doi.org/10.1016/j.neuroimage.2008.11.007 PMID:

19070668;

36. Etzel JA, Valchev N, Keysers C. The impact of certain methodological choices on multivariate analysis

of fMRI data with support vector machines. Neuroimage. 2011; 54(2):1159–67. https://doi.org/10.1016/

j.neuroimage.2010.08.050 PMID: 20817107.

37. Christ SE, Van Essen DC, Watson JM, Brubaker LE, McDermott KB. The contributions of prefrontal cor-

tex and executive control to deception: evidence from activation likelihood estimate meta-analyses.

Cereb Cortex. 2009; 19(7):1557–66. https://doi.org/10.1093/cercor/bhn189 PMID: 18980948;

38. Ganis G, Rosenfeld JP, Meixner J, Kievit RA, Schendan HE. Lying in the scanner: covert countermea-

sures disrupt deception detection by functional magnetic resonance imaging. Neuroimage. 2011; 55

(1):312–9. https://doi.org/10.1016/j.neuroimage.2010.11.025 PMID: 21111834.

39. Hakun JG, Ruparel K, Seelig D, Busch E, Loughead JW, Gur RC, et al. Towards clinical trials of lie

detection with fMRI. Soc Neurosci. 2009; 4(6):518–27. https://doi.org/10.1080/17470910802188370

PMID: 18633835.

40. Langleben DD, Schroeder L, Maldjian JA, Gur RC, McDonald S, Ragland JD, et al. Brain activity during

simulated deception: an event-related functional magnetic resonance study. Neuroimage. 2002; 15

(3):727–32. https://doi.org/10.1006/nimg.2001.1003 PMID: 11848716.

41. Jin B, Strasburger A, Laken SJ, Kozel FA, Johnson KA, George MS, et al. Feature selection for fMRI-

based deception detection. BMC Bioinformatics. 2009; 10 Suppl 9:S15. https://doi.org/10.1186/1471-

2105-10-S9-S15 PMID: 19761569;

MVB decoding for memory retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0182657 August 4, 2017 19 / 19

https://doi.org/10.1038/nn1444
http://www.ncbi.nlm.nih.gov/pubmed/15852014
https://doi.org/10.1016/j.cub.2006.11.072
http://www.ncbi.nlm.nih.gov/pubmed/17291759
https://doi.org/10.1002/hipo.20960
https://doi.org/10.1002/hipo.20960
http://www.ncbi.nlm.nih.gov/pubmed/21656874
https://doi.org/10.1093/cercor/bhu328
http://www.ncbi.nlm.nih.gov/pubmed/25595179
https://doi.org/10.1016/j.neuroimage.2011.03.047
http://www.ncbi.nlm.nih.gov/pubmed/21440069
https://doi.org/10.1523/JNEUROSCI.5547-11.2012
https://doi.org/10.1523/JNEUROSCI.5547-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22357845
https://doi.org/10.3389/neuro.06.004.2008
http://www.ncbi.nlm.nih.gov/pubmed/19104670
https://doi.org/10.1016/j.neuroimage.2014.09.026
https://doi.org/10.1016/j.neuroimage.2014.09.026
http://www.ncbi.nlm.nih.gov/pubmed/25241907
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1093/scan/nsn044
http://www.ncbi.nlm.nih.gov/pubmed/19151374
https://doi.org/10.1016/j.brainres.2009.05.090
http://www.ncbi.nlm.nih.gov/pubmed/19505449
https://doi.org/10.1016/j.neuroimage.2008.11.007
http://www.ncbi.nlm.nih.gov/pubmed/19070668
https://doi.org/10.1016/j.neuroimage.2010.08.050
https://doi.org/10.1016/j.neuroimage.2010.08.050
http://www.ncbi.nlm.nih.gov/pubmed/20817107
https://doi.org/10.1093/cercor/bhn189
http://www.ncbi.nlm.nih.gov/pubmed/18980948
https://doi.org/10.1016/j.neuroimage.2010.11.025
http://www.ncbi.nlm.nih.gov/pubmed/21111834
https://doi.org/10.1080/17470910802188370
http://www.ncbi.nlm.nih.gov/pubmed/18633835
https://doi.org/10.1006/nimg.2001.1003
http://www.ncbi.nlm.nih.gov/pubmed/11848716
https://doi.org/10.1186/1471-2105-10-S9-S15
https://doi.org/10.1186/1471-2105-10-S9-S15
http://www.ncbi.nlm.nih.gov/pubmed/19761569
https://doi.org/10.1371/journal.pone.0182657

