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Abstract: X-ray backlighters allow the capture of sharp images of fast dynamic processes due to
extremely short exposure times. Moiré imaging enables simultaneously measuring the absorption
and differential phase-contrast (DPC) of these processes. Acquiring images with one single shot
limits the X-ray photon flux, which can result in noisy images. Increasing the photon statistics by
repeating the experiment to gain the same image is not possible if the investigated processes are
dynamic and chaotic. Furthermore, to reconstruct the DPC and transmission image, an additional
measurement captured in absence of the object is required. For these reference measurements,
shot-to-shot fluctuations in X-ray spectra and a source position complicate the averaging of several
reference images for noise reduction. Here, two approaches of processing multiple reference images
in combination with one single object image are evaluated regarding the image quality. We found
that with only five reference images, the contrast-to-noise ratio can be improved by approximately
13% in the DPC image. This promises improvements for short-exposure single-shot acquisitions of
rapid processes, such as laser-produced plasma shock-waves in high-energy density experiments at
backlighter X-ray sources such as the PHELIX high-power laser facility.

Keywords: grating-based phase-contrast; single-shot X-ray phase-contrast imaging; X-ray back-
lighter; X-ray generators and sources; image processing; image quality improvement

1. Introduction

Phase-contrast imaging allows extending conventional attenuation imaging with infor-
mation about the refractive properties of an object. There is a wide variety of X-ray phase-
contrast imaging techniques available. These include crystal interferometers [1,2], edge-
illumination [3,4], propagation-based imaging [5–10] and grating-based techniques [11–14].
Grating-based techniques were initially developed in the research field of medical imag-
ing [14,15] and non-destructive testing [16–18]. To date, these techniques have also been
used in the field of laboratory astrophysics with the long-term aim of imaging processes
on extremely short time scales. Such a process is, e.g., a laser-driven plasma shock wave
in a high-energy density experiment. Using a laser-driven X-ray backlighter source for
probing these objects enables one to acquire sharp images of these ultra-fast processes. If
for such an object the X-ray absorption is low, imaging could benefit from the single-shot
phase-contrast technique, since it is able to enhance contrast by probing the phase-shifting
properties of a plasma [19,20]. Experiments striving the goal of imaging laser-driven
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plasma shock waves with phase-contrast were performed on high-power laser facilities
such as Omega EP [21] and CELIA [22] with a Talbot–Lau setup consisting of three gratings.
At the PHELIX facility, the propagation-based phase-contrast imaging of laser-induced
shock waves [23,24] was conducted. As grating-based phase-contrast imaging offers ad-
vantages compared to propagation-based techniques under certain conditions [25], such as,
e.g., higher sensitivity to changes in the phase, test measurements at the PHELIX facility
using gratings were performed and presented in [26]. There, static samples, imaged at high
magnification using grating-based phase-contrast imaging, were evaluated.

Grating-based phase-contrast imaging requires a reference image, i.e., an image with-
out object, taken with the same imaging system under similar conditions to those under
which the object was measured. This is difficult to realize in the harsh environment of a
backlighter experiment, where the X-ray spectrum and the source position changes from
shot to shot. Stutman et al. [27] proposed the use of synthetic reference images. As a
proof of principle measurement at a laboratory X-ray tube with a three-grating setup, they
combined a single-shot object image with reference images acquired using phase-stepping.
In 2020, Bouffetier et al. [22] managed to average a large amount of images taken with
a three-grating Talbot–Lau setup at a high-repetition-rate backlighter K-α source and re-
construct low-noise images from that. If the X-ray source has sufficient spatial coherence,
the source grating can be omitted [14,28], allowing us to use a two-grating setup. This
increases the photon flux. The imaging setup is sensitive to the spectrum and the exact
position of the X-ray source. The lack of reproducibility between the reference images
makes it difficult to process them into one reconstruction.

The objective of this work is to compare two methods for improving image quality by
using multiple reference images acquired with different X-ray spectra and source positions.
The standard method combines multiple references into one average reference image
before the reconstruction [22]. The other method combines the different images after
reconstruction. The results show that, while the second approach provides slightly better
contrast-to-noise ratios in the DPC image, both methods improve the image quality.

2. Materials and Methods
2.1. Grating-Based Phase-Contrast Imaging

The imaging system consists of an X-ray backlighter, driven by a shorted-pulsed laser
with a pulse duration of 700 fs, two gratings mounted on a rigid setup, an object placed in
front of the first grating and an imaging plate detector. A more detailed explanation of the
experimental setup is given in Section 2.2.

Grating-based phase-contrast imaging is based on the analysis of self images of a
periodic structure, in this case a line grating. The self image of the grating occurs at
certain distances, called fractional Talbot distances, downstream from the grating [29,30].
A phase shift, induced by an object placed in the beam path, causes a shift in the self image.
However, the pattern is usually smaller than the spatial resolution of the detector. To still
be able to resolve the pattern, a second grating G2 is placed at a distance where the period
of the pattern approximately matches the period of the G2 grating due to magnification.
By overlaying two periodic structures with small deviations in the period or relative angle
between the periodic structures, a Moiré pattern occurs [31]. The period of the Moiré
pattern can be adjusted in a way that it is large enough to be resolvable with the detector.
This pattern carries the same phase information as the Talbot pattern itself, yet with a lower
resolution [32]. The contrast of these fringes is referred to as visibility V.

In Fourier space, the Moiré pattern can be separated from the object structures [33].
The separated information can be processed to three image modalities [32,34,35], the
transmission image, the differential phase image and the darkfield image. To reconstruct
these images, a reference image is required, i.e., an additional measurement with only the
gratings in the beam path and no other object. Figure 1b,c shows an exemplary object and
reference image, acquired at an X-ray backlighter source. The test object, see Figure 1a,
consists of long double wedges arranged in a star-like fashion.
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Figure 1. (a) 3D rendering of the used sample. The shading within one branch indicates an increasing,
decreasing thickness, respectively. The frame and the semicircle on the upper frame have a constant
thickness. Its overall dimension is 42.5 × 42.5 mm and was made of a polyacrylic mixture using
stereolithography. The red frame marks the area which is presented in this work. The images
(b,c) show a section of the object image and reference image number one. The Moiré stripes are tilted
slightly clockwise from the horizontal axis. The scale indicates the size in the detector plane.

The three images are reconstructed from the object image Iobj(xi) and the refer-
ence image Iref(xi) , xi being the position of pixel i, by evaluating the Moiré signature
I(xi) = Ai(1 + Vi sin(2π/λm · xi + φi)), with amplitude Ai, visibility Vi, phase φi and Moiré
wavelength λm. The transmission image T, the differential phase image DPC and the
darkfield image D are then defined as

T =
Ai, obj

Ai, ref
,

DPC = φi, obj − φi, ref ,

D =
Vi, obj

Vi, ref
.

The fast Fourier transform of object and reference images show three prominent peaks
in frequency space. A central zeroth order peak, located around the zero and two first-order
harmonic peaks, symmetrically located around the zeroth order at the spatial frequency
of the Moiré pattern. The method of selecting the data in the respective peak area for the
image reconstruction is conducted as introduced in [35]. For the transmission image T,
the Moiré stripes are removed by deleting the first-order harmonic peaks, resulting in
standard radiography. The differential phase-contrast image DPC stems from the phase
shifting properties of the object [13,36] and is calculated using the first-order harmonics
peaks. The dark-field image D indicates, among other things, the small angle scattering
of the sample [17,37] and is calculated by processing the zeroth and first-order harmonics
peaks. Since the investigated object is made of a homogeneous material which shows no
dark-field signal, this modality will not be discussed any further.

Figure 2 shows a reconstructed DPC (a) and transmission image (b). The correspond-
ing object and reference images are presented in Figure 1b,c. As one single double wedge
of the object consists of a rising and a falling side, the differential phase-contrast image has
a uniform negative signal on one side, and a uniform positive signal on the other side. The
marked regions of interest (ROI) will later be used for the image quality evaluation. In the
transmission image, the signal of the double wedge is symmetric between the two sides
of the double wedge. However, since the wedges become smaller and flatter towards the
center of the star-like shape, the absorption contrast decreases, as can be seen in Figure 2b.
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Figure 2. Reconstructed DPC (a) and transmission image (b) using the reference image one. Although
the Moiré stripes are completely removable, the image is still noisy due to the low photon flux. The
colored boxes mark the regions of interest (ROI) which are used for the evaluation process of
the image.

2.2. Experimental Setup

For the measurements, a tungsten wire of 5µm diameter was used as a backlighter
source. The laser system used to drive the backlighter was the Petawatt High-Energy
Laser for Heavy Ion Experiments (PHELIX) [38] at the GSI Helmholtzzentrum für Schwe-
rionenforschung GmbH. This laser system delivers a 700 fs pulse with energies between
approximately 25 J and 30 J. The backlighter delivers a very short X-ray flash with sufficient
intensity for imaging. The spectrum of this backlighter setup at PHELIX was analyzed
by Borm [39]. The dominating X-ray energy at PHELIX was determined in [40] using
propagation-based phase-contrast imaging. In [26], a grating-based phase-contrast imaging
setup, optimized for the dominating energy range, was introduced, evaluated, and the
dominating energy verified. Accordingly, we expect an effective energy of 11 keV with
a fluctuation of approximately 1 keV. In addition to the spectrum, the source position is
fluctuating as well. The magnitude of this lateral fluctuation is given in [26] with 20µm.

For the X-ray detection, Fuji BAS type SR imaging plates with a spatial resolution
of 109µm [41] were mounted in a box, shielded from visible light with a 8µm-thick foil
fabricated from high-purity aluminum. For the digitization process, a scanner with a
50µm pixel pitch was used, which is far below the spatial resolution of the imaging plates.
The gray-scale values of the scanned imaging plates were converted to photostimulated
luminescence (PSL) units, as proposed in [42].

A schematic of the Moiré imaging setup is shown in Figure 3. A similar setup was also
used in [26], to image a 25µm-thick polyimide foil with a magnification of approximately 47.
The used gratings were manufactured by the Institute of Micro Structure Technology (IMT)
at the Karlsruhe Institute of Technology (KIT) using the deep X-ray LIGA process [43,44].
The G1 grating with a period of 10µm was manufactured as a phase grating with 25µm
high SU-8 lamellae onto a 500µm-thick polyimide wafer. The G2 grating with a period of
6µm was manufactured as an absorption grating with gold lamellae of a height of 150µm
onto a 500µm-thick graphite wafer. The discontinuous structure of the Moiré stripes, as
can be seen in Figure 1, is caused by imperfections of the G2 grating and/or by 2µm-wide
resist bridges which are necessary to stabilize the thick gold lamellae.

The setup was designed for an X-ray energy of approximately 11 keV, which roughly
corresponds to the dominating X-ray energy [40]. The G1 grating for this energy is approx-
imately π-shifting, resulting in a Talbot pattern with twice the frequency of the grating.
The distances were calculated so that the G1 Talbot pattern, magnified in the G2 plane, has
approximately the same period in the G2 grating. This assures that the required Moiré
period can be adjusted [31]. Furthermore, the distances between the two gratings match
the Talbot distance of the G1 grating, calculated for the expected 11 keV. The alignment
process of the portable interferometer with respect to the backligher source was performed
using the fast-alignment method described in [28].
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Figure 3. 3D rendering of the imaging setup (not to scale). The 5µm-thick tungsten backlighter wire,
that serves as a broadband X-ray source, is driven by a 700 fs infrared laser pulse from the PHELIX
high-power laser system. Both gratings are mounted on the portable (yet rigid) setup at distances of
726 mm and 868 mm from the source. The object is placed at approximately 20 mm in front of G1.
The detector is mounted 75 mm behind the G2 grating. The setup is designed to yield a Moiré fringe
period of 350µm in the detector plane, with a visibility of the Moiré pattern of up to 16%.

The presented dataset consists of six images—one image with a sample and five
without. Hence, five different reference images are available for one object measurement.
For each measurement, the tungsten backlighter wire was replaced. Due to the cool-down
time of the laser system, the ventilation and later on the evacuation of the target chamber,
where the backlighter wire and the imaging setup were placed, a shot rate of five to six
shots per day was feasible. The laser spot shape and its position were kept as constant as
possible but was not perfectly reproducible. This results in varying image quality. Some
measurements suffer from blurring, such that they cannot be used for image reconstruction.
The mean intensity of the used images varies by a factor of up to 3.7 in the free field. As
the photon flux is naturally restricted at these X-ray sources, the images exhibit noise. The
mean visibility of the Moiré pattern in the object and reference images ranges between 6%
and 16% with a standard deviation of 3%. As higher visibility correlates with a lower noise
level in the DPC image [45], the reconstructed images will differ regarding their noise. In
total, this shows that the backlighter source poses challenges for the experimental design
and image analysis.

For the image reconstruction, all reference images were matched onto the object image
via three markers around the G2 grating. These markers are required and hence fabricated
during the grating manufacturing process. They have a size of a few hundred micrometers
and are cross or tip-like. These markers are matched with subpixel accuracy using a
cross-correlation algorithm. Subsequently, each reference image is translated, rotated, and
scaled until it matches the object image. To reduce salt-and-pepper noise, a move-mean
algorithm with a 2× 2 binning was applied. Similar to [17], a row-by-row offset correction
was applied by fitting a first-order polynomial, onto the free field to obtain a constant
background in the reconstructed DPC images. As the photon flux varies slowly across
the field of view, the offset correction for the transmission image is performed by fitting a
two-dimensional second-order polynomial onto the free field. This way, the gradient in the
background of the measurement data, which is clearly visible in Figure 1c, was completely
corrected in the reconstructed transmission image, as can be seen in Figure 2b. Both image
modalities have a noisy appearance due to the limited flux of X-ray photons from the
backlighter source.
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2.3. Image Evaluation

In laboratory measurements with conventional X-ray tubes, multiple images can be
acquired within a few seconds. By averaging over all acquired images, the photon statistic
can be increased. This method requires a rigid setup where none of the components move
during the measurement process. Hence, in the experiments performed at X-ray backlighter
facilities, where the X-ray spectra, Moiré visibility and position of the source point may
change from shot to shot, this is not readily possible. Thus, two different approaches of
averaging data, acquired at the PHELIX facility, are investigated herein. One approach
follows the just described method of averaging the acquired reference images before the
reconstruction is performed. This method will subsequently be referred to as average-then-
reconstruct (ATR). As an alternative approach, the reconstruction is performed for each
single reference image and then the resulting images are averaged. This will be referred
to as reconstruct-then-average (RTA). With five reference images available, there are 31
different possibilities to combine the reference images or reconstructed images.

Since the reference images differ in their mean intensity and Moiré visibility, the
weighted arithmetic mean of the reference images or reconstructed images was used,
respectively. The weighed arithmetic mean is given by

ȳ = ∑
i

wT,DPC
i

∑j wT,DPC
j

· yi ,

with yi being the i-th reference image normalized with respect to the intensity (ATR
method) or the i-th reconstructed image (RTA method), wT,DPC

i and wT,DPC
j an image

modality dependent weight factor and ȳ the averaged reference or reconstruction. The
indices i and j are chosen according to the regarded reference image combination. The
weight factor wT,DPC

i and wT,DPC
j are chosen for both image modalities differently, as the

noise in the different image modalities depends on different parameters. The noise in the
transmission image T depends on the photon flux. Hence, the weighting factor wT

i was
calculated using Poisson statistics to:

wT
i = µwafer

i, free field
,

with µwafer
i, free field, the mean intensity value of a chosen ROI outside the Moiré fringe pattern

of the i-th reference image. The noise in the DPC image additionally relies on the visibility
of the Moiré pattern [45]. Accordingly, the weighting factor wDPC

i is defined as

wDPC
i = µwafer

i, free field
· µi, V ,

with µi, V the mean visibility of the i-th reference image within the area of image recon-
struction.

To evaluate the impact of the RTA and ATR methods on the final images three image
parameters are evaluated for every reconstructed image: the image noise, the contrast and
the contrast-to-noise ratio (CNR). The noise is quantified by the standard deviation (STD)
of the intensity in a free field ROI σfree field. Subsequently, the noise is referred to as STD.
The contrast is defined as

contrast = |µsignal − µfree field| ,

with µsignal and µfree field being the mean value of a signal ROI and a free field ROI, respec-
tively. The CNR is defined as

CNR =
|µsignal − µfree field|

σfree field
.
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The ROIs used to calculate the values are shown in Figure 2. To be able to assess the
CNR in more detail, the contrast and the standard deviation are separately evaluated for
the selected free field.

3. Results

The standard deviation, contrast and contrast-to-noise ratio were initially investigated
for the positive DPC signal. As the used object also provides a negative DPC signal, the
findings were verified by calculating the CNR of the corresponding ROI. The transmission
image is analyzed in a similar way. The ROIs for this evaluation process are marked in
Figure 2.

The values of the positive signal and the free field in the differential phase-contrast
image are shown in Figure 4. The Figure is divided into four vertically arranged subplots
with 31 columns each. In the lowest subplot, the combinations of the five reference
recordings are specified. Here, the y axis marks the different reference images, and the 31
combinations are given along the x axis. The upper plots present the CNR, contrast and
STD values. The black markers show the calculated values, if only one reference image
is used for reconstruction. The red and blue markers show the RTA and ATR method,
respectively.
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Figure 4. CNR, contrast and STD for the ROI of the positive DPC signal, marked in Figure 2a. The
STD and contrast values are given in the radian. The plot in the last row indicates which reference
images were used for deriving the values in the respective column. The red and blue markers show
the results for reconstruct-then-average (RTA) and average-then-reconstruct (ATR), respectively. The
black markers indicate the values for which only one reference image is used. The black dashed line
indicates the mean contrast of the first five combinations. For the combinations 6, 9 and 12, the ATR
method results in images with high standard deviation and low CNR, which are not within the range
of the axis. Furthermore, the contrast is for the combinations 6 and 9 not within the range of the axis.
The values in the colored columns were used for a detailed investigation.

It can be seen that the STD with an amplitude of approximately 0.27 rad is of the
same order of magnitude as the contrast. Hence, the CNR ranges in a low regime of
approximately 0.8. Nevertheless, it can be noted, that for both averaging methods the STD
decreases and the CNR increases by using more reference images. The retrieved contrast
converges for both methods to the black dashed line, which indicate the mean value of the
first five combinations. For some combinations, where the fifth reference image is used
(combination 6, 7, 9 and 12), the ATR method results in images with a significantly high
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standard deviation and low CNR compared to the RTA images. Generally, the CNR values
derived with the RTA method are for nearly all combinations higher than the ATR method.
Excluding the just mentioned combinations 6, 7, 9 and 12, the CNR is for the RTA method
on average approximately 7% higher compared to the ATR method.

For a detailed evaluation of the improvement of the STD and CNR values, three
reference images were selected (marked in blue and magenta). The single reference images
were chosen in such a way that, if they were used on their own for the reconstruction,
the STD, contrast and CNR values would be nearly the same. First, the average of the
blue-marked combinations four and five is compared with combination 15. If these two
references are combined, the STD decreased for both reconstruction methods by approx-
imately (10 ± 2)%. As the derived contrast stays nearly the same, the CNR improves
by approximately (12 ± 2)%. By additionally considering the magenta-marked reference
image four, the STD decreases by (16 ± 1)% and the CNR increases by (19 ± 3)% compared
to the mean STD and CNR of combination two, four and five.

The observed tendency can be validated with the negative DPC signal, marked in
black in Figure 2. The CNR investigated here is in the same range as the CNR for the
positive signal (see Figure 5) and increases by using more reference images. Similarly, the
RTA method leads most combinations to higher CNR values. Similarly to the positive
DPC signal, the combinations where the reference image five is included, the CNR is with
the ATR method but significantly lower compared to RTA method. Excluding the same
combinations 6, 7, 9 and 12, the CNR is for the RTA method on average approximately 7%
higher compared to the ATR method.
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Figure 5. CNR for the ROI with the negative DPC signal, marked in Figure 2a. The STD and contrast
values are given in radian. The plot in the last row indicates which reference images were used
for deriving the values in the respective column. The black markers indicate the values if only one
reference image is used. The red and blue markers show the results for the RTA and ATR method,
respectively. For combinations 9 and 12, the ATR method results in images with high standard
deviation and low contrast and CNR, which are not within the range of the axis. The values in the
colored columns are used for a detailed investigation.

By comparing the mean CNR of combinations four and five with combination 15, the
value increases by (9 ± 5)%. By including the magenta-marked fourth reference image in
the calculations, the CNR increases for the ATR method by approximately (11 ± 4)% and
for the RTA method by approximately (17 ± 5)%.

For the reconstructed transmission images, the values can be seen in Figure 6. The
presentation of the data is similar to the that of the positive DPC signal in Figure 4. The
STD, contrast and CNR show also in this image modality the same overall behavior. The
standard deviation decreases while the contrast evens out to the mean contrast of the first
five combinations. The ATR method results for most combinations in identical or slightly
higher contrast values. As the STD values are nearly identical for both methods, the slightly
higher contrast leads to higher CNR values for the ATR method.
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Figure 6. CNR, contrast and STD for the ROI of the transmission image, marked in Figure 2b. The
STD and contrast values are given in values of relative transmission in percent. The plot in the last
row indicates which reference images were used for deriving the values in the respective column. The
red and blue markers show the results for the RTA and ATR, respectively. The black markers indicate
the values if only one reference image is used. The black dashed line indicates the mean contrast of
the first five combinations. The values in the colored columns are used for a detailed investigation.

By taking a closer look at the same combinations investigated in the DPC image (refer-
ence one, two and four), it can be seen that the STD and contrast varies on a larger scale
compared to the values retrieved in the DPC image for these images. The combined refer-
ence one and two (combination 15) has an approximately (9 ± 5)% lower STD compared
to the mean STD of reference images one and two. The CNR increases by approximately
(9 ± 1)%. Adding the magenta-marked reference image four, which has a higher initial
CNR value due to the high contrast, the STD declines by (11 ± 4)% and the CNR improves
by approximately (12 ± 5)%.

4. Discussion and Conclusions

The evaluation of the dataset shows that averaging reference images can significantly
increase the contrast-to-noise ratio (CNR) in the reconstructed images taken at an X-ray
backlighter source. For the DPC image, the reconstruct-then-average (RTA) method results
in a higher CNR compared to the average-then-reconstruct (ATR) method. Excluding the
outliers, which would make the discrepancy even greater, the difference in the CNR is
on average approximately 7%. One possible explanation for this circumstance could be
that averaging reference images with locally shifted Moiré pattern results in a pattern
which is smeared out. Hence, the visibility of the Moiré pattern decreases [46] which
causes increased noise in the DPC image [45]. Furthermore, the retrieved differential
phase might suffer inaccuracies due to the altered shape of the reference pattern. For the
CNR in the transmission image, both methods achieve nearly equal improvements. Here,
the ATR method leads on average to an approximately 2% higher CNR compared to the
RTA method.

For a visual comparison of the derived image quality improvement, two DPC and two
transmission images are presented in Figure 7. The images displayed on the left side are
reconstructed using reference image five. On the right side, the shown images are chosen
with regard to the lowest STD and highest SNR. The quality improvement of the DPC
image can clearly be seen. Due to the lower STD, the double wedges are easier to recognize.
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The difference between the two transmission images can hardly be seen. There is only a
vague improvement of the noise in the free field.
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Figure 7. Two retrieved DPC images (DPC 1 and DPC 31, RTA) and transmission images (T 1 and
T 31, ATR) for a visual comparison of the improved image quality. For the DPC image comparison,
an image retrieved using reference image 5 is shown on the left (DPC 1) and on the right an image
retrieved using all reference images and the RTA method (DPC 31, RTA). It can be seen with the
naked eye that the noise is reduced and hence, the double wedges are easier to recognize. For the
comparison of the transmission image, the image retrieved with reference image 5 (T 1) is again
compared with the image retrieved using the ATR method and reference image combination 31
(T 31, ATR). Here, hardly any improvements are visible. The lower STD of the right image can vaguely
be seen in the free field.

In both image modalities, the contrast seems to converge for more used reference im-
ages to the average contrast derived from the reconstructed images, which were generated
using one reference image for the image retrieval.

Hence, if the contrast converges to a certain value and the standard deviation decreases
with more the reference images used, the CNR might increase even further if more reference
images were available. Nevertheless, this method is meant for imaging fast dynamic
processes with Moiré imaging. The circumstance under which only one object image is
available will limit the CNR at a certain point.

In conclusion, both presented methods of processing the reference images increase
the transmission and the DPC image quality. For the investigated data, where the photon
flux is naturally restricted by the laser-driven X-ray backlighter source, the DPC images
retrieved with the RTA method showed higher image quality. The investigated methods of
improving the CNR help extract information from reconstructed images, acquired under
the harsh conditions of backlighter experiments, with a higher significance. One possible
application of the presented method for evaluating the reference images could be an
algorithm which iterates over every available reference image combination and uses the
RTA and ATR method to find the combination with the highest SNR or lowest noise.
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