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Abstract

Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be
completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted
mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom
suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional
importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to
conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus
associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before,
we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with
respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153
human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-
associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual
sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement
with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues.
Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/,pagel/supplements/correlated-positions/.
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Introduction

Most of the missense mutations do not lead to an appreciable

phenotype when they occur in nature or are introduced

experimentally. There are, however, numerous counterexamples

where even a subtle change of the primary protein sequence results

in severe phenotypical effects – i.e. genetic disease. Understanding

the underlying mechanisms which determine the link between

genotype and phenotype is the key issue in developing strategies

for diagnosis and treatment of hereditary diseases.

Databases such as OMIM (Online Mendelian Inheritance in

Man) or HGMD (Human Gene Mutation Database) provide a

wealth of information [1,2] about phenotypes associated with

thousands of known human mutations. These databases assist

researchers in analyzing the molecular basis of human disease. With

the current quest for the ‘‘1000 Dollar Genome’’, there is no doubt

that entire patient genomes will be available in the near future

which will substantially accelerate the discovery of new mutations of

unknown significance. In such a situation the question ‘‘What does

this mutation mean for a patient’s health?’’ will become more and

more practical for the affected individuals and physicians.

Properties of ‘‘disease proteins’’
What rules determine the spectrum of allowed mutations, and

why do mutations cause disease in some genes while other genes

appear to be more tolerant to substitutions? Much effort has been

invested in answering such questions and promoting our

understanding of the underlying mechanisms which rule the

complex network of factors contributing to human disease. In

particular, we would like to understand what properties or features

are shared by disease-associated genes.

In addition to numerous careful experiments on individual

genes and proteins, with the advent of high-throughput technol-

ogies such as genomics, proteomics and, more recently, metabo-

lomics large bodies of experimental data have been analyzed

towards this end. It has been shown that genes and proteins, which

are known to be involved in a large variety of diseases and

syndromes, differ from genes without such association in many

aspects. Disease genes have a broader phylogenetic distribution,

tend to be longer on average, and more of them have homologs in

other mammals compared to the average human gene [3].

Disease-related proteins have been found to be better conserved

and their synonymous substitution rates are significantly higher

than expected [4,5]. Further contributions demonstrated that

disease proteins have less designable folds, tend to have isoelectric

points closer to neutrality, contain more alternating hydrophilic/

hydrophobic stretches compared to the average human protein

and have a higher tendency to aggregate [6]. ‘‘Disease genes’’ are

highly expressed in a small number of tissues, and their encoded

proteins are more likely to be secreted and mutated in genetic
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diseases with Mendelian inheritance [7]. Finally, genes associated

with inherited disease mutations are less likely to be essential and

display an intermediate level of connectivity on protein interaction

networks [8].

Identification of critical residues
Knowing what genes and proteins are involved in disease is only

one part of the challenge. Clearly, not every site of a protein is

equally vulnerable when hit by mutations. While some parts of the

molecule will remain functional even after substantial changes of

the primary sequence, other positions cannot be changed at all

without serious consequences. Evolutionary conserved and

functionally important residues, such as those in active centers of

enzymes, as well as residues important for preservation of the

protein’s overall stability, in particular those located in buried

positions, have been shown to be frequent targets of disease-

associated mutations [9,10], and multiple prediction techniques

based on both structural and sequence features of proteins have

been suggested to distinguish benign mutations from those

implicated in inherited disease. Notable tools to combine multiple

lines of evidence to produce more reliable prediction include SIFT

and PolyPhen [11,12] (see [13] for an excellent review).

Correlated mutations
The phenomenon of correlated mutational behavior between

columns of a multiple sequence alignment has been described for

many years for both DNA/RNA and protein sequences [14–16].

For proteins, the initially hypothesized notion of the underlying

biological event was, that an unfavorable amino acid change in a

structural contact site may go without negative consequences if its

direct binding partner is simultaneously mutated in such a way

that the original interaction is salvaged (compensatory mutation).

Accordingly, the analysis of such correlated mutations has been

traditionally employed for the identification of residue contact

pairs within or between different protein chains. The first

approach to detect co-evolving residues in a multiple sequence

alignment was proposed in 1994 [17]. Many other methods have

been reported since then and evaluated with respect to their

potential of predicting residue-residue contacts [18–24]. However,

despite significant progress in method development, comparative

studies have shown that prediction accuracies for structural

contacts hardly exceed 20% with any of these methods [25],

strongly limiting the application of the predicted contacts as

structural constraints in ab initio structure prediction.

While some authors have explained the low contact prediction

accuracies with the difficulty of differentiating correlation signal

from random noise [26,27], recent studies indicate that co-

evolution of amino acids in fact may originate not only from

structural contacts but from a much broader range of biological

reasons. Using Statistical Coupling Analysis Ranganathan et al.

(2005) detected correlation rules in the WW domain which

describe aspects of the fold architecture going beyond simple

protein contacts. They introduced the concept of a correlation

backbone in the fold which they claimed was nearly sufficient to

describe the architecture without additional information [28].

They impressively demonstrated the power of this idea by

synthesizing artificial WW domains solely based on the previously

derived correlation model and showing that a substantial

percentage of these designed polypeptides were able to fold into

functional WW domains in vitro [29].

In addition, further contributions have demonstrated that

correlated mutations may also occur due to reasons related to

protein function. Gloor et al. analyzed 12 mutations of the ATP

synthase e subunit and 7 mis-sense mutations of the homeodomain

and came to the conclusion that certain co-evolving residues are

more likely to be functional sites and thus possibly more likely to

be related to disease [18]. Within a study on the Hsp70-Hop-

Hsp90 system, regions previously known to be functionally

important could be identified based on residue co-evolution

[30]. Additionally, the authors pointed out that co-evolving amino

acids were often found to be in close proximity to functionally

important sites. Similar results were obtained in an analysis of

correlated mutations within the cytochrome c oxidase subunit I

where many co-evolving residues were found adjacent to

hypothesized proton pumping channels [31]. In a recent

publication Lee et al. provided further evidence for the hypothesis

that correlated mutation may be related to functional importance

in an analysis of 44 selected protein families [32].

All together, these results indicate that co-evolving residues may

be both structurally or functionally important positions within

protein folds and therefore could be likely targets for disease-

associated point mutations. Here, we present the first comprehen-

sive analysis of human disease mutations with respect to co-

evolving residues using all known point mutations and proteins

currently available in the Human Gene Mutation Database

(HGMD). Our data confirm that correlated mutations go well

beyond contact prediction and are a hallmark of amino acid

positions leading to disease when affected by mutation.

Results

For our analysis, we used all human proteins known to be affected

by at least one disease causing point mutation according to HGMD

annotation and for which at least 30 orthologous proteins of

sufficient sequence diversity were available for building a multiple

sequence alignment. 1153 proteins fulfilled all requirements and

were analyzed for correlated mutations using the OMES algorithm.

In addition, we repeated all analyses on a more rigorous dataset

using a cutoff of § 125 proteins per ortholog cluster which left us

with 855 human disease proteins. Using these two data sets, we

identified 62 365 and 46 022 residues as correlated with other

positions, respectively. A total of 14211 and 10508 positions were

found to be disease-related in these two sets.

Author Summary

Point mutations (i.e., changes of a single sequence element)
can have a severe impact on protein function. Many
diseases are caused by such minute defects. On the other
hand, the majority of such mutations does not lead to
noticeable effects. Although previous research has revealed
important aspects that influence or predict the chance of a
mutation to cause disease, much remains to be learned
before we fully understand this complex problem. In our
work, we use the observation that sometimes certain
positions in a protein mutate in an apparently correlated
fashion and analyze this correlation with respect to
mutation vulnerability. Our results show that positions
exhibiting evolutionary correlation are significantly more
likely to be vulnerable to mutation than average positions.
On one hand, our data further support the concept of
correlated positions to not only be associated with protein
contacts but also functional sites and/or disease positions
(as introduced by others). On the other hand, this could be
useful to further improve the understanding and prediction
of the consequences of mutations. Our work is the first to
attempt a large-scale quantitation of this relationship.

Correlated Disease Mutations

PLoS Computational Biology | www.ploscompbiol.org 2 September 2010 | Volume 6 | Issue 9 | e1000923



Co-evolving positions are enriched in disease mutations
As stated above, our work is motivated by the observation that

co-mutation of residues over the course of evolution may not to be

restricted to protein contacts but rather be the result of other types

of functional association among residues. Accordingly, our first

goal was to test the hypothesis that point mutations affecting

correlated residues are more likely to result in disease than

expected by chance (i.e. compared to random positions).

Using all residues represented in the datasets described above,

we produced contingency tables of correlatedness vs. known

disease-mutations. Based on these tables, we computed the

background rates of disease mutations to be 0.019% for random

positions and 0.032% for correlated positions (0.0195 and 0.0325

for the clusters § 125). In other words, correlated residues were

found to be &1:66 times more likely to be known disease positions

than expected by chance translating to a log odds value (LOD,

log2

P(DiseaseDCorrelated)

P(Disease)
) of 0.73.

For the clusters §125, the relative increase was found to be

1.66 (LOD~0:74). Fisher’s exact test for count data confirmed

that the observed difference is highly significant in both cases

(pv2:2:10{16; see Table 1 for summary). As the stringent data did

not yield a substantial gain over the less strict set, we are reporting

the results of the latter (§ 30) data in the subsequent text. All

results for the stringent set are reported in the Text S1.

Figure 1 shows the empirical background distribution of LOD

values generated by 1000-fold permutation of correlation scores in

comparison to the observed LOD. In addition, we show the

bootstrap distribution of the observed LOD generated by 1000fold

resampling of individual positions from all multiple sequence

alignments (same as 8.1 in Text S1). Clearly, the observed value is

far outside the background distribution.

In order to cross-check our findings, we also computed the LOD

for a set of positions that are highly unlikely to be associated with

disease because of evolutionary accepted mutations (see Materials

and Methods). In this data we find an LOD of 21.26 indicating

that these positions are clearly underrepresented in the set of

correlated positions.

Impact on individual proteins
After having shown that correlated positions are in general

significantly more likely to be hit by disease-causing point

mutations we sought to investigate the implications of this finding

for individual proteins. We repeated the above analysis for all 1153

proteins separately. As both the number of known disease-

mutations and the degree of correlation varies among proteins,

one would expect that for some proteins, correlation is strongly

associated with disease-susceptibility while in others no such signal

can be detected. In fact, analysis of individual proteins also yields

an arithmetic annoyance: proteins with a very low number of

known disease mutations have a very large chance that none of

them is located in a correlated position simply because of the small

sample size, resulting in an LOD~{?. These cases were

excluded from the following analysis as no valid statistical analyses

could be carried out. In total, an LOD score could be calculated

for 524 proteins of the data set and 629 proteins obtained no score.

The analysis of the proteins for which our approach failed shows

that 50% (315) of these proteins have only one known disease

mutation in HGMD and for only 3.8% (24) more than 9 disease-

related substitutions were available.

The LOD distribution for individual proteins is depicted in

Figure 2 (Alignment threshold §30; see Text S1 for threshold

§125). Only a small fraction of proteins (10% in Figure 2a) in our

data set had LOD values ƒ0 and a clear majority of proteins had

at least slightly positive LODs. In some cases, we observed LOD

scores w4:0 which represents an increase of 1500% over

expectation. Taken together, these numbers indicate that, except

for cases with very few known disease mutations, the global result

applies to the majority of individual proteins.

What about conservation?
Detection of correlated residue pairs is not entirely independent

of the degree of conservation of the respective positions.

Depending on the algorithm used, substantial crosstalk between

conservation and correlation can be observed [25]. Although the

Table 1. Influence of the alignment threshold on disease enrichment in correlated positions.

Alignment cutoff T D C D ^ C LOD p-value

§30 741436 14211 62365 1988 0.73 v2:2:10{16

§125 538283 10508 46022 1498 0.735 v2:2:10{16

P-values were computed using Fisher’s exact test. As both selection methods achieve positive LOD score and highly significant p-values this result indicates that
disease-causing mutations are overrepresented in correlated positions. T : number of all residues; D: number of disease mutations; C: number of correlated positions;
D ^ C: number of correlated residues affected by disease-associated mutations.
doi:10.1371/journal.pcbi.1000923.t001

Figure 1. Disease mutations occur significantly more often in
correlated positions than expected. Black: Empirical background
distribution obtained by 1000 permutations (random expectation).
Grey: Bootstrap distribution of observed LOD. Dotted vertical line
indicates the observed LOD obtained by an alignment cutoff of §30.
doi:10.1371/journal.pcbi.1000923.g001

Correlated Disease Mutations
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OMES method is reputed to be among the more robust

approaches with respect to interactions with conservation, we

investigated the degree to which sequence conservation affects our

results. This is especially important as evolutionary conservation of

a sequence region is generally taken as an indication of functional

importance and thus would represent a bias in favor of the

hypothesis under test.

We calculated two different measures of conservation for each

position in the multiple sequence alignments. The first method

(cident) computes fractional identity to the human (reference)

residues in each column of the MSA. The second procedure

(cblosum) computes a conservation score based on the BLOSUM62

amino acid substitution-matrix [33] for each column.

To evaluate the interaction between correlation and conservation

we applied stepwise filtering on conservation. Starting from the full

dataset, we decremented the conservation threshold ĉc in small steps

thus removing more and more of the top conserved columns from

the MSA. The background frequency P(Disease) as well as the

observed frequency P(DiseaseDCorrelated) of all positions was re-

computed for all of these filtered datasets and the corresponding

LOD values were computed. Figure 3(A,B) shows LOD values

plotted against the respective conservation cutoff ĉc. E.g. ĉcblosum~0:4
indicates that for the calculation of the global LOD score only

residues with cblosumƒ0:4 were taken into account.

For comparison, we also computed the LOD score of conservation

with respect to disease mutations. Our initial intuition was that

conservation would probably be a much more potent indicator of

functional importance than correlation and thus yield substantially

higher LOD values for being affected by disease mutations. We

performed this analysis at different conservation cutoffs to get an

impression of the degree of conservation required to detect

functional importance.

As expected, we found well conserved positions to be clearly

enriched in disease mutations, and we observed a correlation

between the degree of conservation and the LOD score

(Figure 3C,D). Depending on the conservation measure and

cutoff, well conserved positions were &1:8{2:5 times as likely to

be affected by known disease mutations as random positions

(LOD&0:8{1:3). As expected, conservation clearly outperforms

correlation. Given the obvious link between conservation and

functional importance, the numbers for correlated positions are

surprisingly high. Furthermore, the LOD values for correlation

remain remarkably stable over a fairly wide range of conservation

thresholds indicating that the correlation signal is not merely an

artifact caused by relatively well conserved positions which happen

to also correlate. Taken together, these results suggest that

evolutionary conservation is a useful measure for the assessment

of disease-susceptibility and thus functional significance of amino

acid positions in a protein.

Non-contact correlations?
Other groups have previously demonstrated that correlated

positions without physical contact do occur in protein structures

[28,34] and, in a recent study, Noivirt-Brik et al. have

demonstrated the emergence of long-range interactions in lattice

models of proteins [35].

In the dataset analyzed in our own work, we found that only

2714 out of 16555 (16.4%) of correlated pairs had a distance of less

than 5.5Å which would imply physical contact. If the distance

threshold is relaxed to a generous 8.0Å, still only 17.4% are in

proximity. Thus, even applying a very permissive threshold, the

majority of correlations is observed between residues which are not

in direct contact – an observation compatible with the hypothesis

of functional correlations.

Of course, many positions correlate with more than one other

residue and accordingly, some of these correlations coincide with

contacts while others do not. In our data, 29.6% of all correlated

positions had at least one contact correlation. For the positions

which were found to be both correlated and relevant for disease

31% had at least one contact ƒ5:5Å.

Figure 2. Disease mutations are overrepresented in correlated positions. Distribution of log odds (LOD) scores for individual proteins. All
proteins for which no score could be obtained were excluded. A: All proteins; B: proteins with §10 disease mutations. The bars at -Inf represent cases
where no position was both correlated and associated with disease, resulting in an LOD of {?, as discussed in the main text.
doi:10.1371/journal.pcbi.1000923.g002

Correlated Disease Mutations
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Finally, we wanted to determine if non-contact correlations are

enriched in disease mutations. Out of 4960 correlated residues

without a single contact, 252 (5.0%) were also disease positions.

This corresponds to 1.3 fold increase over the expectation (LOD

= 0.39). Due to the small sample size the latter is not statistically

significant. Nevertheless, the trend is encouraging and points in

the direction of the hypothesis of functionally relevant non-contact

correlations. Table 2 summarizes the results for correlation,

conservation and residue contacts.

Comparison with active sites
The most plausible explanation for a connection between

correlated mutations and disease mutations is that correlated

mutations indicate functional relevance of the respective residues.

Figure 3. Interdependence between correlation and sequence conservation. LOD distribution for different conservation thresholds: (A, B)
LOD for correlated residues at different levels of conservation. (A) BLOSUM conservation score, (B) fractional identity. Each dot represents the LOD
score achieved using a specific conservation cutoff. A cutoff of 0.4 indicates that for the calculation of the global LOD score only the residues which
have a conservation score ƒ0:4 were taken into account. (C, D) LOD scores for sequence conservation irrespective of residue correlation. Here, a
cutoff of 0.4 indicates that the global LOD represents all positions with a conservation score §0:4. The LOD remains largely stable over wide ranges
of sequence conservation (A,B). Residue conservation yields LODs similar to correlation for intermediate levels of conservation and performs better
for very high conservation.
doi:10.1371/journal.pcbi.1000923.g003

Correlated Disease Mutations
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So on one hand, many of the disease positions are probably

functionally active themselves or correlate with functionally

important positions in the protein. That would imply that we

should find significant enrichment of active sites in correlated

position, too.

We used the SwissProt feature annotation to test this hypothesis

and found that 3.7% of functional sites are annotated with at least

one disease associated point-mutation in HGMD. That means that

functional sites are roughly twice as likely to host disease mutations

than expected. We carried out an analysis of enrichment in

correlated positions with the functional site data and found it even

stronger than for the disease mutation data (LOD = 1.04,

pv2:2:10{16). When active sites and HGMD mutations are

combined into a single set the resulting enrichment lies between

the results for disease and functional sites (LOD = 0.88,

pv2:2:10{16). So both types of information show the same trend

to lie in correlated positions.

Next, we asked the question if a position would be more likely to

be involved in disease if it was correlated with another disease site

or a known functional residue. We found that residues which are

correlated with a disease position or a functional site are 5.2 and

2.9 times more likely to be disease positions themselves than

randomly chosen residues, respectively. These numbers indicate

that not only is correlated mutation itself an indicator of disease-

relevant sites but apparently functional/disease positions seem to

be preferentially correlated with each other. As for the disease

positions analyzed above, we found that only a modest fraction

(18%; 5.5 Å threshold) of functional positions which show

significant correlation are involved in physical contact and thus

the majority are non-contact correlations.

Structural preferences
So far, correlation was the only variable taken into account in

our analysis, but other structural features may also contribute to

the potential of a correlated residue to be associated with disease.

In order to test if basic structural features of a position affect our

results, we investigated the accessibility of a residue in this context.

This analysis was carried out in the subset of proteins with known

structure which is much smaller than the full data set. The global

LOD for disease in correlated positions in this smaller subset is

0.39. Interestingly, correlated residues that were exposed showed

an LOD of 0.73 while partially and fully buried correlated residues

had LOD of only 0.42 and 0.1, respectively.

Another obvious structural condition is the local secondary

structure. Our analysis revealed that correlated positions are most

likely to be associated with disease when they are embedded in an

a-helix (LOD = 0.47) followed by turns (LOD = 0.37) and much

weaker in in b-sheets (LOD = 0.09). This ranking is in part

connected to the different accessibility found in these secondary

structures: helices and turns are known to exhibit a much larger

fraction of exposed residues than beta sheets and our sample is in

accordance with this. Furthermore, in our data, the probability of

a position being associated with disease is significantly negatively

correlated with accessibility and the same is true for the probability

of showing co-evolution with another residue. In a logistic

regression model of the disease probability vs. accessibility and

secondary structure, the secondary structure just barely achieved

significance (p~0:0485) while accessibility was highly significant

(pv2:2:10{16). For the probability of a residue to co-evolve with

another one, secondary structure was not a significant predictor

(p~0:1446) while accessibility was highly significant again

(pv2:2:10{16).

As we have seen above, the enrichment of correlated disease

residues is more pronounced in exposed sites. This observation

appears plausible because much of the functional features of a

protein are located on its surface: regulatory modifications,

interactions with other proteins and binding sites for substrates

need to be accessible. As we also find co-evolving residues to favor

accessible locations, the above numbers come as no surprise.

Contributing to prediction
Phenotypic consequences of mutations are determined by many

different factors like functional role of the protein, specific amino

acids involved, structural properties etc. Accordingly, no single

feature can be expected to be a strong predictor on its own and

correlation is no exception. Tools like SIFT [36] or PolyPhen [12]

combine different signals into an integrated prediction of

phenotypic effects of mutations. Currently, correlated mutation

is not among the features analyzed by these programs. Based on

our results presented above, we would expect that adding the

correlation signal to these tools would further improve their

predictions. A full assessment of this expectation would require

access to the source code of these tools, which we did not have. On

the other hand, we can analyze the overlap between predictions by

integrated tools and the correlation data in order to estimate if the

correlation data is fully included in these predictions or not. We

Table 2. Summary of performance.

subset T D C D ^ C LOD p-value

Conservation (ĉcblosum§0:0) 741436 14211 459030 10273 0.22 v2:2:10{16

Conservation (ĉcblosum§0:5) 741436 14211 144591 4892 0.82 v2:2:10{16

Conservation (ĉcblosum§0:8) 741436 14211 53443 2402 1.23 v2:2:10{16

Contact 70589 2747 59079 2522 0.13 v2:2:10{16

Correlation 741436 14211 62365 1988 0.73 v2:2:10{16

Correlation (ĉcblosumƒ0:0) 287029 3961 16271 388 0.78 v2:2:10{16

Correlation (ĉcblosumƒ0:5) 599322 9328 49254 1463 0.93 v2:2:10{16

Correlation (ĉcblosumƒ0:8) 688790 11799 61802 1955 0.88 v2:2:10{16

Correlation, non-contact 70589 2747 4960 252 0.38 0:0018

P-values were computed using Fisher’s exact test. T : number of all residues; D: number of disease mutations; C: number of correlated positions; D ^ C: number of
correlated residues affected by disease-associated mutations.
doi:10.1371/journal.pcbi.1000923.t002

Correlated Disease Mutations
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compared predictions by SIFT and PolyPhen to the correlation

signal in a set of 813 proteins featuring 8838 known disease

mutations and 5730 substitutions unlikely to cause disease (see

Materials and Methods). While the majority of the correlated

positions in the disease mutation set were predicted to be

damaging by either or both of the prediction programs, roughly

20% of the correlated positions were not. These numbers suggest

that the correlation data is at least partially complementary to the

results produced by both tools and thus has the potential to

improve predictions (Figure 4). Furthermore, we carried out a

multiple logistic regression, modeling the probability of disease

association by the predictions by SIFT, PolyPhen and correlation

and found all three terms to make highly significant contributions

to the model (pv10{16).

Case studies
In the previous sections we analyzed the dependence between co-

evolving positions and known disease mutations. We were able to

demonstrate that correlated mutations are associated with disease

significantly more frequently than expected and found similar results

for sites known to be functionally active. In the following case studies

we present two examples of proteins with long-distance correlations

and discuss the functional aspects of the residues involved.

Proline dipeptidase
The human protein PEPD (UniProt: PEPD_HUMAN) is a proline

dipeptidase which plays an important role in the recycling of

proline during the final stages of degradation of collagen and

dietary proteins. The enzyme hydrolyzes dipeptides with a prolyl

or hydroxyprolyl residue in the C-terminal position. For catalytic

activity, binding of 2 manganese ions per subunit is required as a

co-factor [37,38]. Swissprot annotation marks residues D276,

D287, H370, E412 and E452 as responsible for manganese

binding [39,40].

Mutations of the PEPD protein have been identified as the

cause of autosomal recessive prolidase deficiency (PD). E.g.

Ledoux et al. have characterized several disease-causing point

mutations in the PEPD protein [41]. Their data show the different

extent of enzyme inhibition by these mutations. For instance, the

R184Q mutations resulted in a residual activity of 7.4% compared

to the wild type enzyme. The G278D and G448R mutations

caused complete abrogation of peptidase activity. Other sources

have found residues D276, S202 and E412 to cause the same

disorder when hit by point mutations [42–44].

The phenotypic consequences of mutations involving positions

276 and 412 are easily explained by the fact that these are directly

involved in metal binding. Positions 278 and 448 are in close

proximity to these functional sites so it does not come as a surprise

that they are critical.

R184 and S202 on the other hand, are situated far away

from the metal binding sites in the primary sequence. While

S202 gets close to the metal binding region in the three

dimensional structure, R184 is located quite distant from this

area. So why do point mutations at these sites cause disease? Of

course, one possibility is that the enzyme function is destroyed

by mechanisms totally unrelated to metal binding, but

constructing a link to the important functional sites is another.

We find that position 184 shows a strong co-evolution

connection to positions 453 and 277 which are both in direct

proximity of the metal binding residues (Figure 5a). Position

202 also shows a correlation with positions 277 and 184. We

thus suggest that both R184Q and mutations of S202 do in fact

inhibit manganese binding mediated by a non-contact interac-

tion between these residues.

In summary, all known PD causing point mutations are either in

close proximity to the critical residues or a correlated mutation

link to such residues can be found. Figure 5b shows the spacial

relations of the metal binding residues and some of the correlations

found in this region.

Upon close inspection of the co-evolution connections depicted

in Figure 5a, it is easy to see that the correlation links are not

distributed evenly across the protein. Some residues or regions are

connected to others by multiple arcs. Also, many positions are not

only connected to each other but also share common neighbors

hinting at a network of correlated positions. This observation

seems to hold for the entire group of metal binding sites and

disease positions discussed above: all of these positions seem to be

part of a small correlation network.

Figure 4. Venn diagrams of SIFT, PolyPhen and correlated mutations in (A) disease and (B) non-disease positions. For SIFT and
PolyPhen, maybe and possibly damaging were treated as non-damaging.
doi:10.1371/journal.pcbi.1000923.g004
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Adenylate kinase isoenzyme 1
Our second example is AK1, the human adenylate kinase

isoenzyme 1. AK1 catalyzes the reversible transfer of the terminal

phosphate group between ATP and AMP that is essential for cell

maintenance and growth.

Point mutations of AK1 cause hemolytic anemia due to

adenylate kinase deficiency (OMIM: 612631). AK1 catalyzes the

reaction of ATP and AMP to two ADPs that is done by two

nucleotide bindings regions. According to SwissProt annotation,

the ATP binding site is located at residue 15–23 and the AMP

binding site comprises residues 39 and 94–101.

Several different positions of the protein have been found to result

in an altered phenotype upon mutation. Residue G40 is in direct

neighbors of the nucleotide binding T39 while Y164 is somewhat

further away. Some other positions (G64 and R128) are located in the

neighborhood of these active sites in the 3D structure (Figure 6).

Figure 5. Correlation patterns in the human proline peptidase PEPD. (A) circular representation of linear protein sequence. Arcs indicate
residue correlations. (B) Structure view indicating selected correlations as dashed lines. Metal binding residues are shown with side chains (PDB:
2iw2). (A,B) Disease associated positions are marked red, functional sites in blue.
doi:10.1371/journal.pcbi.1000923.g005

Figure 6. Correlation patterns in the adenylate kinase isoenzyme 1. (A) circular representation of linear protein sequence. Arcs indicate
residue correlations. (B) Structure view indicating selected correlations as dashed lines (PDB: 2C95). (A,B) Disease associated positions are marked red,
functional sites in blue.
doi:10.1371/journal.pcbi.1000923.g006
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We find that residues implicated in disease phenotypes of AK1

are located at or near correlated positions which link to or close to

the nucleotide bindings sites. As for the PEPD example, there

appears to be a network of correlated positions. Residue G64 is

directly linked to residue G40 that is a disease position itself and is

immediately adjacent to one of the binding site T39. In addition,

residue Y164 is directly linked to the disease residue G40. We

found correlated links between both nucleotide binding regions

and a direct link of G64 and G40 with residue G22 that is located

in the ATP binding site. Obviously, disease relevant mutations can

be ‘‘explained’’ by co-mutation links to binding sites or they are

not involved in correlations themselves but are located in their

close neighborhood (e.g. R128).

Both case studies illustrate that correlation networks may

connect residues located elsewhere on the protein structure to a

given disease associated mutation site. Disease affected positions

and their immediate neighborhood tend to be connected in the

network with other functionally important residues or regions

such as metal binding sites or binding sites. In some other cases,

disease-affected residues are located next to correlated residues

or in well-connected regions of the network. These linkages

could provide hints on the effects of disease-associated mutations

as the corresponding networks could be used to transport the

effects of point-mutations to functionally important regions.

Accordingly, correlation networks provide a novel basis for

selecting promising target residues for mutation studies or

estimating the potential effects of yet uncharacterized naturally

occurring mutations.

Multiple correlation
Above we mentioned small networks of correlated positions.

From a graph perspective, positions with a higher degree (number

of edges) should be more important than those with a low degree.

In order to test if this also applies to our correlation network with

respect to disease we analyzed the correlation graphs and found a

clear association between the degree of a position and its

probability to be associated with disease (Figure 7). Positions that

are correlated with increasing numbers of other positions are

increasingly more likely to be associated with disease (r~0:66,

p~7:05:10{6).

Discussion

In the past, analysis of residue co-evolution in proteins has been

applied to various problems mainly centered around the idea of

compensatory amino acid substitutions on protein contact

surfaces. Correlations not readily explained by contacts have been

discussed in the field and were simply labeled ‘‘noise’’ by many

groups [27,45,46]. New ideas in this field have been introduced by

many researchers and concepts such as a correlation backbone as an

element of protein structure or mapping functional sites to

correlation hotspots have been explored and illustrated by various

examples. First discussions of disease relevance have only recently

entered the literature and were restricted to selected proteins or

protein families [18,32]. To our knowledge, the data presented

above represents the first attempt at a comprehensive analysis of

evolutionary residue co-mutation in the light of disease associated

point mutations. Our data indicate that residues highly correlated

with others are indeed more likely to be associated with disease

than expected. Surprisingly, as little as 30 orthologous sequences

sufficed to detect a significant difference and considering only

orthologous groups with at least 125 proteins did not yield a

substantial difference.

Of course, a single parameter such as correlated evolution

cannot be expected to yield a high positive predictive value when

used in isolation but our findings clearly show that it is one

property to look for when judging the functional significance and/

or potential to cause a disease phenotype upon mutation. A fair

assessment of the value of such a measure is probably the direct

comparison to the most popular approach of using sequence

conservation as an indicator of functional importance. As our

Figure 7. Multiple correlations. (A) The degree (number of correlation partners) of a position in the correlation network is positively correlated
with the log odds of causing disease. As very large degrees are rare, substantial noise occurs at degrees above &20. For lower values the association
is clearly visible. Overall the association is substantial and significant (r~0:66, p~7:05:10{6). (B) Degree distribution of multiple correlations.
doi:10.1371/journal.pcbi.1000923.g007
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analysis indicates, correlation seems to be associated with disease

less than conservation but appears to be on the same order of

magnitude.

This has clear practical implications. Some diseases are caused

by large numbers of different point mutations in seemingly

random locations in the protein. Analysis of co-evolution could

serve as an interesting tool to explain some of these cases. Given

the rapidly decreasing cost of sequencing, the hunt for SNPs and

the trend towards personalized medicine, more and more data on

variations of unknown physiological consequences will be

gathered. Analysis of correlated mutations could prove to be a

useful complement to data on conservation, structure and other

protein features in the attempt to understand functional relevance

of mutations.

We found that the correlated mutation detection was largely

independent of conservation signal over a wide range and that the

majority of correlations did not coincide with contacts in the subset

of proteins for which protein structure data was available.

Accordingly, we believe that the data indicate a genuine signal

of co-evolution among functionally linked positions which are

vulnerable to mutations. These findings are in line with the work

on structural determination of protein domains based on the co-

mutation signal [28] and provide good evidence for the concept of

long-distance associations within proteins.

Another interesting observation which we have not yet analyzed

systematically, is the role of ‘‘near-miss correlations’’, i.e.

correlations between residues in the direct neighborhood of

functionally essential sites and/or known disease-associated

positions. This concept is similar to our observation that

sometimes point mutations causing disease are located next to

critical residues without actually destroying them. In some cases

one may argue that hitting the critical residue itself would be too

drastic a defect to be viable, in others a simple mechanistic point of

view arguing that local changes are likely to influence their direct

neighborhood may suffice as an explanation.

Many conceptually different algorithms have been developed to

detect residue co-mutation. Fodor et al. have shown that these

algorithms have a preferred level of conservation to extract

significantly correlated pairs [25]. In our work, we used the OMES

algorithm, as it was found to be among the best performers and

most robust methods for contact prediction. But that does not

necessarily imply that OMES is the single best choice for the

analysis of non-contact correlation or disease mutations under

each and every condition. We have preliminary data which shows

that other methods produce comparable LOD scores for the

global analysis, but differ in their performance depending on the

degree of conservation. In future work, we are planning to study

this in more detail and take advantage of differential preferences.

Correlated behavior of contact residues is a plausible and well

accepted concept but what mechanisms produce long-range

correlations? Lapedes et al. have suggested subsequent pairs of

contact residues which extend the co-variation along a chain of

contact-correlations [47]. This model is in good agreement with

the concept of networks of correlated positions like the ones seen in

our case studies and other preliminary data.

Another possible explanation for long-range correlations is the

impact on protein folds. It is conceivable that amino acid substitutions

may change the orientation of neighboring secondary structure

elements by a few degrees. Such a change could easily impair protein

function. It is not too difficult to imagine another change on the other

side of such our helix to compensate this structural change and thus

keep the rest of the fold largely unaffected.

Russ et al. introduced the concept of correlated sites as an

architectural backbone of protein domains [29]. Many of the

correlations used in their model related to positions which are

clearly not in contact with each other and thus forming a correlation

backbone. This work suggest that co-evolving residues within a

protein contain more information than the mere potential to be in

physical contact.

Methods like OMES that solely operate on multiple sequence

alignments in analyzing correlations have previously been

criticized for being ‘‘tree agnostic’’ – i.e. ignoring the underlying

phylogenetic tree in their assessment. Others have argued that no

substantial gain is achieved by tree-aware methods [48]. In order

to test if using the phylogenetic information substantially affects

our results, we repeated all major analyses with the algorithm of

Noivirt et al. [49]. Although this method yielded a slightly lower

LOD than OMES (0.63 vs. 0.73), all of our conclusions could be

confirmed in this re-analysis.

In summary, we believe that researchers should not only look at

conservation in their judgment of functional significance of residues

in the protein sequence. Correlation patterns between residues

clearly provide additional evidence which should not be ignored.

Materials and Methods

Mutation data
Disease mutation data was obtained from the HGMD database

[2], a comprehensive collection of mutations underlying human

inherited disease. Access to the full HGMD release 7.3 was licensed

from Biobase, Germany (http://www.biobase-international.com).

Out of a total of 73 411 mutation entries 41628 referred to

point mutations, while the rest represented other types of

mutation. From this initial set of 2253 human proteins, we

eliminated all entries describing mutations leading to stop codons

and thus truncation of the full length protein. The final data set

comprised 32 923 disease-related amino acid substitutions affect-

ing 27 522 unique positions in 2067 different proteins.

Orthologous protein sets
Groups of orthologous proteins were downloaded from the

STRING database (release 7.0) [50] where these were generated

for their COG-interaction mode. Because some of these

computationally derived orthologous groups contain a very broad

range of sequence homology which in some cases may go beyond

orthologs, we removed all sequences which failed to cover at least

80% of the human reference sequence in the multiple alignments

according to STRING.

Often, such ortholog sets contain many sequences from very

closely related species resulting in an excessive apparent sequence

conservation and thus undue weight of almost identical sequences

which does not reflect the evolutionary situation but the bias in

protein selection. To overcome this bias, we iteratively removed

near-identical sequences from the ortholog sets. We calculated the

sequence identity of all pairs in global alignments. If two sequences

were over 90% identical, one of them was picked at random.

Very small ortholog sets cannot reasonably be expected to allow

valid conclusions about evolutionary correlation, because the

resulting multiple alignments simply do not contain enough

sequences. In the literature, a wide range of minimum ortholog

clusters sizes have been applied. While some used as little as 15

proteins [21,51,52], other required more than 125 different

orthologs [18,53,54]. In our study, we initially used all clusters

with at least 30 orthologous proteins, which is a very common

cutoff [53,55]. In addition, we also performed our analysis on a

more stringent data set by using a threshold of §125. The former

threshold yields 1153 human proteins with their orthologs, while

the more strict cutoff still leaves us with 855 such clusters.

Correlated Disease Mutations

PLoS Computational Biology | www.ploscompbiol.org 10 September 2010 | Volume 6 | Issue 9 | e1000923



Functional sites
We used the feature annotation from SWISSPROT [39,40] to

identify functionally relevant positions in each of the disease

associated proteins with a sufficient number of orthologs. We

included the following feature tags in our analysis: CA_BIND

(calcium-binding), DNA_BIND (DNA binding), NP_BIND (nucleo-

tide phosphate-binding), ACT_SITE (involved in enzyme activity),

METAL (metal binding), BINDING (binding of unspecified chemical

group), MOD_RES (posttranslational modification) and LIPID (lipid

binding). In total, we obtained 12021 functional residues in 745

proteins.

Multiple sequence alignments (MSA)
Alignments of orthologous proteins were carried out using

MUSCLE 3.6 [56] with default parameters. To reduce compu-

tational requirements we limited each ortholog set to a maximum

of 300 sequences, after filtering, by selecting a random sample of

299 sequences plus the human reference sequence, which always

needs to be present for analysis.

Correlated mutation analysis
Correlated mutations were analyzed using the OMES (Ob-

served Minus Expected Squared) algorithm. The OMES method

is based on the x2 goodness-of-fit test and compares the observed

co-occurrence of amino acid x at position i and amino acid y at

position j to the expected co-occurrence at positions i and j

[20,25,57]. In this work we use the OMES variant defined by

Fodor et al. [25]. We computed OMES correlation scores for all

combinations of positions in each protein based on the multiple

sequence alignments described above. Following the previously

described approach we selected the top L=k co-evolving residue

pairs where L is the length of the respective protein and k is a

constant which is often set to 5 [55,58]. To assess the influence

of the constant k we evaluated our findings over a range of

k[½0:01,50�. Based on this analysis, the commonly used value of

k~5 appears to be a good choice for our application: For values

of k from 0 to 5 the observed LOD shows a steep increase.

Somewhere around k~5 or 10 the curve adopts a much more

moderate slope (Figure 8). A choice of k~5 takes advantage of the

initial LOD improvement without including excessive numbers of

positions in each protein.

For further analysis, a sequence position was called correlated if it

had at least one significant correlation with another position

according to the above criteria.

Sequence conservation
Two different measures of sequence conservation were

computed for each position of a human protein. The BLOSUM

conservation-score cblosum for each human residue was calculated

by summing over the BLOSUM-scores for each residue pair

between the human amino acid and all ortholog residues in the

column of the MSA and normalizing to the maximum score for

the given residue:

cblosum~

Pn
i~1 s(X0,j , Xi,j)

s(X0,j , X0,j):(n{g)

where Xi,j is the jth residue of sequence i in the MSA; n is the total

number of sequences; g is the number of gaps in column j; X0

refers to the human reference sequence and s(x,y) is the score for

amino acids x and y according to the BLOSUM62 scoring matrix

[33]. As BLOSUM scores can be negative, cblosum[½{1; 1�

The second approach simply computes the fraction of residues

identical to the reference sequence X0 for column j of the MSA:

cident~

Pn
i~1 (X0,j:Xi,j)

n{g

Structural contacts
Protein structure analysis was performed for all proteins of the

filtered set for which at least a partial crystal structure was

available from the PDB database [59]. 238 proteins fulfilled this

criterion. The spatial distance between correlated residue pairs

was calculated taking into account all non-hydrogen side chain

atoms of both amino acids. Two residues were considered to be in

contact with each other, if the smallest distance between any pair

of their non-hydrogen atoms was ƒ5:5 Å. This represents a

commonly applied threshold – other groups have used distance

cutoff in the range 5.0Å–8.0Å using the closest non-hydrogen or

Cb atoms, respectively [20,53,55]. In order to exclude local

contacts in secondary structure elements, such as in a-helices, we

only considered residue pairs outside a window of 10 positions up-

and downstream of a given position.

Some studies on correlated mutations have computed distances

solely based on Cb atoms (Glycine: Ca) and a 8.0Å cutoff [25]. We

provide additional data using this definition in the Text S1.

Residue accessibility
The accessible surface area (ASA) was computed with DSSP

[60] and converted to a relative solvent accessibility (RAS) by

dividing by the maximum possible ASA of the respective amino

acid. The data was discretized into three accessibility states: buried

(RSAƒ7%); intermediate (RSAƒ37%) and exposed (RSAw37%).

Identification of non-disease mutations
Amino acid substitutions with a low chance of causing harm

were identified with a strategy used by [61]. The rationale of this

Figure 8. Influence of correlation cutoff L=k. Commonly, L=5 (i.e.
k~5) is used. At first a substantial increase of LOD can be observed
with increasing values of k. Once k reaches values of &5{10 the steep
increase is replaced by a quite moderate slope.
doi:10.1371/journal.pcbi.1000923.g008
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approach is that amino acid substitutions tolerated during

evolution are very unlikely to cause disease when observed in

humans, at least for closely related species. We selected all human

proteins from our set for which we were able to identify

mammalian orthologs (from the ortholog clusters provided by

the STRING database [50]) with at least 95% identity to the

human sequence. Orthologs were only considered if they covered

at least 80% of the human sequence in a pairwise alignment. 813

proteins satisfied both criteria. Amino acid substitutions found in

the orthologs were considered non-damaging.

Significance testing and bootstrapping
Statistical significance of enrichment of disease mutations in

correlated positions was assessed by two different means. First we

used Fisher’s exact test for count data comparing the proportions

of disease-annotated residues in correlated vs. non-correlated

positions. In addition, we performed a 1000-fold permutation test

in which we shuffled the disease/non-disease tags of the entire data

set in order to obtain the empirical density function of the log odds

(Figure 1). In order to assess the robustness of the observed LOD

value we performed a 1000-fold bootstrapping of columns of the

multiple sequence alignments. I.e. in each bootstrap we sampled,

with replacement, from the columns of each of the multiple

sequence alignments in the data set and then re-computed the

LOD value for the entire re-sampled data set.

Computation and visualization
All analysis programs for this work were written in Python,

except for the program for correlated mutation analysis which was

implemented in Java. Final data analysis and statistics was

performed with the R statistical language [62]. Visualizations of

correlations in the linear sequence were created with Circos [63].

Protein structure images were made with PyMOL (http://pymol.

sourceforge.net/).

Supporting Information

Text S1 Supplementary analysis.

Found at: doi:10.1371/journal.pcbi.1000923.s001 (0.27 MB PDF)
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