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Abstract

A Common Rejection Module (CRM) consisting of 11 genes expressed in allograft biopsies

was previously reported to serve as a biomarker for acute rejection (AR), correlate with the

extent of graft injury, and predict future allograft damage. We investigated the use of this

gene panel on the urine cell pellet of kidney transplant patients. Urinary cell sediments col-

lected from patients with biopsy-confirmed acute rejection, borderline AR (bAR), BK virus

nephropathy (BKVN), and stable kidney grafts with normal protocol biopsies (STA) were

analyzed for expression of these 11 genes using quantitative polymerase chain reaction

(qPCR). We assessed these 11 CRM genes for their abundance, autocorrelation, and indi-

vidual expression levels. Expression of 10/11 genes were elevated in AR when compared to

STA. Psmb9 and Cxcl10could classify AR versus STA as accurately as the 11-gene model

(sensitivity = 93.6%, specificity = 97.6%). A uCRM score, based on the geometric mean of

the expression levels, could distinguish AR from STA with high accuracy (AUC = 0.9886)

and correlated specifically with histologic measures of tubulitis and interstitial inflammation

rather than tubular atrophy, glomerulosclerosis, intimal proliferation, tubular vacuolization or

acute glomerulitis. This urine gene expression-based score may enable the non-invasive

and quantitative monitoring of AR.

Introduction

Kidney transplantation (KTx) is the preferred modality for treatment of end-stage renal dis-

ease (ESRD) by any cause [1]. While this therapeutic approach has become a routine prac-

tice worldwide, significantly improving patient quality of life and survival [2], long-term

kidney allograft outcomes have not improved as expected despite a better understanding of

the immune biology of allograft rejection and the advent of novel and more potent immu-

nosuppressive agents [3]. The major cause for persistent and poor graft survival is due to the

PLOS ONE | https://doi.org/10.1371/journal.pone.0220052 July 31, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sigdel TK, Yang JYC, Bestard O,

Schroeder A, Hsieh S-C, Liberto JM, et al. (2019) A

urinary Common Rejection Module (uCRM) score

for non-invasive kidney transplant monitoring.

PLoS ONE 14(7): e0220052. https://doi.org/

10.1371/journal.pone.0220052

Editor: Stanislaw Stepkowski, University of Toledo,

UNITED STATES

Received: April 26, 2019

Accepted: June 28, 2019

Published: July 31, 2019

Copyright: © 2019 Sigdel et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: MMS and TKS have research support

from the NIH (NIAID and NIDDK). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: J.Y.C.Y. and M.M.S.

http://orcid.org/0000-0003-2410-7817
http://orcid.org/0000-0002-6476-6027
http://orcid.org/0000-0003-1212-3959
https://doi.org/10.1371/journal.pone.0220052
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220052&domain=pdf&date_stamp=2019-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220052&domain=pdf&date_stamp=2019-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220052&domain=pdf&date_stamp=2019-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220052&domain=pdf&date_stamp=2019-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220052&domain=pdf&date_stamp=2019-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220052&domain=pdf&date_stamp=2019-07-31
https://doi.org/10.1371/journal.pone.0220052
https://doi.org/10.1371/journal.pone.0220052
http://creativecommons.org/licenses/by/4.0/


inability to non-invasively quantify the burden of graft immune injury and predict acute

rejection prior to substantive functional decline and histological injury. Indeed, while it

is well known that KTx patients are continuously exposed to immune and nonimmune

related injuries [4, 5], periodic KTx monitoring is dependent on insensitive surrogate mark-

ers of allograft dysfunction such as serum creatinine [6, 7] and sporadic KTx monitoring

is based on protocol allograft biopsies to detect sub-clinical histological graft injury in the

absence of perturbation of the serum creatinine [8]. Though assessment of graft dysfunction

based only on the serum creatinine has sensitivity for non-specific, established, allograft

damage, it has low specificity for diagnosis of acute rejection (AR), as a rise in the serum

creatinine can be due to other reasons not directly related to allograft rejection, such as

immunosuppressive (IS) drug-related nephrotoxicity, acute tubular necrosis, infection, and

interstitial fibrosis and tubular atrophy (IFTA). Furthermore, while the use of surveillance

biopsies has been postulated as the gold standard tool for diagnosing allograft lesions, this

approach is costly, invasive, with procedure morbidity (risk of bleeding; procedure requir-

ing sedation, particularly for pediatric KTx patients) [9], fraught with inter-operator read

variabilities, and often poorly representative of focal histological injury. Therefore, the use

of non-invasive biological markers that can accurately predict and quantify the burden of

immune injury in the allograft would be a significant advance for precision KTx monitoring

[10–12].

Interrogation of proteomic, RNA, and microRNA biomarkers in the urine of KTx patients

has been demonstrated by our groups and others [13–17] to be an optimal biological fluid for

serial monitoring of the kidney allograft because it is an ultrafiltrate of the kidney and mirrors

the biological processes and inflammatory burden found in the kidney graft [18]. Despite a

number of studies that have previously evaluated urine biomarkers as a non-invasive diagnos-

tic approach for the analysis of AR in kidney transplantation, the exclusive focus on single bio-

markers such as particular chemokines and receptors such as CXCR3, CXCL9, or CXCL10

[19–24] make it difficult to capture the molecular complexity and heterogeneity of AR across

different KTx patients. Capturing this heterogeneity is essential to quantify the burden of

injury in a manner usable for prospective monitoring of AR and recovery of graft injury after

therapeutic intervention [25, 26].

In this study, we apply the knowledge gained from harnessing a Common Rejection Mod-

ule (CRM) of 11 genes [27], originally developed using exhaustive meta-analysis of publicly

available transplant tissue microarray datasets of biopsy samples from four different types of

solid organs. The CRM genes in tissue (tCRM) were all over-expressed among AR patients,

irrespective of the type of organ, differences in immunosuppression protocols, or differences

in the platforms interrogating gene expression. A quantitative threshold determined by

computational analysis of a combined gene-score (the tCRM score) accurately predicted the

presence of AR by cross-validation of tissue gene expression signatures in 8 independent

cohorts (n = 236 samples) of human kidney allograft biopsies [27]. The tCRM score was fur-

ther validated by qPCR in a separate study on KTx biopsy samples as diagnostic of both AR

and chronic allograft injury (CAI) with different gene-set thresholds [28]. Furthermore, this

set of CRM genes was validated in an independent set of biopsied tissue from lung transplant

patients with chronic lung allograft dysfunction (CLAD) [29].

In this study, we assess the CRM gene set for use on urine samples from KTx patients,

paired with allograft biopsies with known histology, for the non-invasive diagnosis of AR and

other immune mediated injuries. Further, we develop a urine CRM (uCRM) score that accu-

rately discriminates between STA and AR patients. We evaluate the clinical potential of this

score in detection of bAR by correlating this score with histology scores of tubulitis and inter-

stitial inflammation.
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Materials and methods

Urine samples and the study cohort

Biobanked urine samples (n = 1760) from KTx recipients enrolled at Stanford University in

between 2000 and 2011 and UCSF Medical Center enrolled in between 2014 and 2016 were

included in the study. The study was approved by the Institutional Review Board and Ethics

Committee of the University of California San Francisco, CA. All patients provided written

informed consent to participate in the research, in full adherence to the Declaration of Hel-

sinki. The clinical and research activities being reported are consistent with the Principles of

the Declaration of Istanbul as outlined in the Declaration of Istanbul on Organ Trafficking

and Transplant Tourism. For urine samples utilized in establishing the uCRM threshold

for AR, 178 urine samples were identified with paired kidney allograft biopsies with clearly

defined pathologies of either Banff graded AR [30, 31] or no injury/ stable (STA) grafts (Fig

1). In addition, we also evaluated the signature for the uCRM assay in BK viral nephropathy,

which is an important confounder for diagnosis of AR and often presents with significant

inflammation on the allograft biopsy. Overall, 28 samples were discarded because of QC

issues related to low content and poor-quality RNA, resulting in a final count of 150 urine

samples from 150 individuals for cross-sectional analysis of immune mediated KTx injury.

Each urine sample was matched with a biopsy at the time of urine collection which was eval-

uated by a central staff pathologist at Stanford University (Richard Sibley) or at UCSF (Zol-

tan Laszik).

Patient characteristics

150 unique urine samples were assessed for the uCRM assay in 150 unique kidney transplant

patients. Baseline clinical and demographic variables by AR, bAR, BKVN, or STA phenotype

are shown in Table 1. There were no significant differences between the groups in the demo-

graphic variables, except in recipient age (p = 0.025) and in donor-source (p = 0.0008).

These samples were used in cross-sectional analyses for modeling of gene expression data

and subsequent development and validation of the uCRM threshold for biopsy-proven AR.

Samples were collected from both pediatric (n = 94) and adult (n = 56) patients to enable a

model independent of recipient age or baseline immunosuppression. Based on the matched

biopsy diagnosis, urine samples were categorized in the following categories: AR (n = 64; 45

biopsies met criteria for Banff confirmed AR with >i2, t2 and infiltration by > 4 mononu-

clear cells / tubular cross-section, whereas 19 met criteria for borderline AR with i1/ i2 and

t0/t1 and infiltration by 1–4 mononuclear cells / tubular cross-section), STA (n = 43), BK

virus nephritis (n = 43). Patients received a calcineurin-inhibitor iIS regimen based on

tacrolimus and mycophenolate mofetil, with or without steroids, and induction therapy

either with Thymoglobulin or anti-IL-2 receptor monoclonal antibody (daclizumab or basi-

liximab) [32]. Urine samples were obtained at a mean of 731 days post-transplant (range

169–1335 days).

Definition of injury phenotypes

All kidney biopsies were blindly and centrally analyzed at each institution by staff pathologists

(RS and ZL) and were graded by the Banff classification [31, 33] for acute rejection. Intragraft

C4d stains were performed [34] to assess for acute humoral rejection (AHR) [35]. Transplant

injury was defined as>20% increase in serum creatinine from its previous steady-state base-

line value and an associated biopsy that was either classified as AR or BKVN. AR was defined

at minimum, as per Banff schema, a tubulitis score�1 accompanied with an interstitial

Urinary score for kidney transplant monitoring
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inflammation score�1 with both C4d and DSA negative. Both T cell mediated AR (TCMR)

and antibody mediated rejection (ABMR) cases were included, though all observed ABMR

cases had a mixed phenotype of TCMR and ABMR, as the observance of pure ABMR is rarely

observed in low risk, unsensitized cohorts. Borderline changes (bAR) were observed in some

cases of TCMR, characterized by infiltration of mononuclear cells (<25% of the parenchyma)

or foci of mild tubulitis (1–4 mononuclear cells/tubular cross-section), and for purposes of

molecular correlation analysis, these have been shown as bAR, as the burden of histological

inflammation was overall lower for these biopsy samples. BKVN was defined as positivity of

polyomavirus PCR in peripheral blood (<1000–28,800,000), together with a positive SV40

stain in the concomitant renal allograft biopsy. Normal (STA) allografts were defined by an

absence of significant injury pathology on the 6-month protocol biopsy, as defined by Banff

schema, stable graft function, no proteinuria and no DSA.

Fig 1. Sample selection and study schematic of the study. 1,760 urine samples were collected between 2000 and 2016,

of which 643 had matching biopsy data. 178 of these 643 had well-defined phenotypes of AR, bAR, BKVN, or STA.

After RNA extraction, cDNA synthesis, and qPCR quantification, 28 samples did not pass QA/QC, leaving 150

samples for statistical analysis and modeling.

https://doi.org/10.1371/journal.pone.0220052.g001
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Urine collection, processing, total RNA extraction, cDNA synthesis, and

qPCR

Urine (50 mL; sterile container) was collected from kidney transplant patients before biopsy

procedure and prior to any treatment intensification for AR. RNA was extracted from urinary

cell sediment following our previously reported protocol [36]. In brief, urine cells were

obtained by centrifuging the 50-mL urine specimen at 2000 x g for 20 minutes. RNA was

extracted from the urine cell pellets using the RNeasy Plus Micro Kit (Qiagen, Valencia, CA).

RNA quality was assessed with the NanoDrop ND-2000 spectrophotometer (ThermoFisher

Scientific, Waltham, MA) with 260/280 ratio. cDNA synthesis was performed using 50 ng of

extracted RNA using SuperScript VILO™ Master Mix (Invitrogen, Carlsbad, CA). qPCR was

performed on cDNA synthesized from 50 ng of total RNA, then 1.56 ng of cDNA was pro-

cessed through specific target amplification and sample dilution with the pooled Taqman

assays for the 11 uCRM genes in multiplex, with Taqman PreAmp Master mix (ABI) to 5 μl

final volume, for 18 cycles in a thermal cycler, then diluted with DNA Suspension Buffer

(TEKnova, CA). Microfluidic qPCR was performed on the 96.96 dynamic array (Fluidigm,

South San Francisco, CA) using 2.25 μl of the diluted sample from specific target amplification,

Table 1. Demographic characteristics of the study subjects.

Phenotype

Characteristic Stable

(N = 43)

Acute Rejection

(N = 45)

Borderline Acute Rejection (bAR)

(N = 19)

BK Viral Nephropathy

(N = 43)

P-value

Recipient Age—yr 0.025

Mean ± StdDev 21.9 ± 15.7 22.0 ± 16.5 19.2±13.3 34.3±24.4

Range 3–58 1–64 3–62 1–79

Donor Age—yr 0.341

Mean ± StdDev 30.0 ± 9.3 33.0 ± 12.0 25.1±13.2 34.8 ± 9.20

Range 15–47 4–49 4–47 9–61

Recipient sex—male no. (%) 23 (53) 29 (64) 13 (68) 34 (76) 0.095

Donor sex—male no. (%) 30 (69) 30 (55) 11 (60) 29 (68) 0.836

Race or ethnic groups—no. (%) 0.335

White 10 (23) 10 (22) 8 (42) 16 (36)

Hispanic 23 (54) 21 (47) 9 (47) 13 (30)

Black 3 (7) 4 (9) 2 (10) 5 (12)

Asian or Pacific Islander 1 (2) 2 (4) 0 (0) 4 (9)

Other 6 (14) 8 (18) 0 (0) 5 (12)

Indication for renal transplantation—no. (%) 0.415

Glomerulonephritis 6 (14) 12 (27) 3 (16) 2 (5)

FSGS 0 (0.0) 0 (0) 1 (5) 1 (2)

Obstructive Uropathy 4 (9) 2 (4) 0 (0) 3 (7)

Cystinosis 3 (7) 4 (9) 3 (16) 9 (21)

Polycystic Kidney Disease 1 (2) 2 (4) 0 (0) 2 (5)

Reflux Nephropathy 4 (9) 4 (9) 3 (16) 4 (9)

Dysplasia 2 (5) 1 (2) 1 (5) 0 (0.0)

Other 23 (53) 20 (44) 8 (42) 22 (51)

Donor Source—no. (%) 0.0008

Living Related 16 (37) 16 (35) 8 (40) 11 (25)

Living Unrelated 21 (48) 22 (48) 10 (53) 11 (25)

Deceased Unrelated 6 (15) 7(17) 1 (7) 21(50)

https://doi.org/10.1371/journal.pone.0220052.t001
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along with Taqman Assays (ABI) for each gene transcript (S1 Table), Taqman Universal mas-

ter mix (Applied Biosystems, Foster City, CA) and Loading Reagent (Fluidigm), by priming

and loading the chip via the HX IFC Controller and performing qPCR in the BioMark

(Fluidgm) system. The relative amount of RNA expression was calculated using a comparative

cycle threshold (CT) method. Expression values were normalized to 18S using ribosomal RNA

endogenous reference and universal RNA (Agilent Inc., Santa Clara, CA).

Statistics

All qPCR assays were run in duplicates. All the data are presented as mean ± SEM. For com-

parisons of the CRM genes per phenotype, a mixed-effects model with the Geisser-Greenhouse

correction was used, with multiple comparisons corrections performed using the two-stage

linear-step procedure of Benjamini, Krieger, and Yekutieli. Pearson correlation and hierarchi-

cal clustering were performed in Morpheus (Broad Institute). For machine learning prediction

models, the data was split into a training set (80%) and testing set (20%). A decision tree classi-

fication model, validated on the testing set, was used to determine the most accurate uCRM

score cut-off. Variable Selection Using Random Forests (VSURF) was used to classify AR vs

STA as well as to evaluate and rank individual gene importance. The Random Forest variable

importance output is defined as the mean percentage decrease in accuracy of the model if the

variable (gene) were excluded (randomly permuted) from the model. Unsupervised clustering

to visualize phenotype separation was done using the t-distributed stochastic neighbor embed-

ding algorithm (t-SNE) in Mathematica 11.3 (Wolfram Research, Champaign, IL). Network

analysis of the CRM genes was performed using GeneMANIA [37]. Statistics on demographic

variables were performed using Chi-square analyses for discrete and the Kruskal-Wallis test

for continuous variables in JMP 14.2 (SAS Institute, Cary, NC). Unless otherwise stated, all

other analyses were performed and visualized with Prism 8.0.1 (GraphPad, Carlsbad, CA).

Study approval

The study was approved by the ethics committees of both Stanford University Medical School

and UCSF Medical Center. All adult patients and parents/guardians of non-adult patients pro-

vided written informed consent to participate in the research, in full adherence to the Declara-

tion of Helsinki. The clinical and research activities being reported are consistent with the

Principles of the Declaration of Istanbul as outlined in the Declaration of Istanbul on Organ

Trafficking and Transplant Tourism.

Results

Baseline clinical and demographic variables for all 150 KTx recipients with AR, bAR, BKVN,

and STA phenotypes are shown in Table 1.

Relative abundance, and correlation of CRM gene expression in the urine

cell sediment

Relative abundance. To determine relative abundance of the CRM gene transcripts in the

urine sediments, the cycle threshold (Ct) values were used as a metric of abundance. The lower

the Ct value, the higher its abundance among the CRM genes. Among the 11 CRM genes,

BASP1 was the most abundant transcript in the urinary cell sediment. BASP1 was followed

by TAP1, PSMB9, and ISG20 as the 4 topmost abundant transcripts. LCK and CD6 were

among the least abundant transcripts in the urine sediments in the CRM gene-set. Since the Ct

values ranged from the lowest Ct value of 14 to the highest Ct value of 20, there was a 64-fold
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difference between the BASP1 and CD6 gene transcripts, with CD6 being the least abundant

transcript.

Correlation of gene expression among CRM gene genes. Next, we evaluated correlation

of gene expression among 11 CRM genes. The correlation ranged from very weak (r = -0.17

for CXCL9 and NKG7 and r = -0.10 CXCL10 and RUNX3) to very strong (r = 0.77 for

INPP5D and TAP1 and the same value for CD6 and LCK). Although CXCL9 and CXCL10 are

in the same class of chemokines, the gene expression correlation between them was only mod-

erate (r = 0.46). The graphical presentation of correlation matrix is presented in Fig 2A. A

heatmap generated using supervised clustering demonstrates considerable increase in gene

expression values of the CRM genes in AR, bAR, and BKVN compared to STA phenotype

(Fig 2B).

uCRM gene expression in urinary sediments with biopsy confirmed AR and

BKVN

Gene expression of CRM genes in AR and bAR. Next, we evaluated gene expression

of each of 11 CRM genes for their relative expression in AR, bAR, BKVN, and STA. A sum-

mary of results of the analysis is presented in Table 2 and Fig 2C. 10 out of the 11 genes were

significantly increased in AR urine sediments when compared to urine sediments from STA.

However, only five CRM genes (Cd6, Cxcl10, Cxcl9, Nkg7, and Psmb9) were significantly

upregulated in bAR samples compared to STA and their expression in the bAR group was rela-

tively lower than in Banff graded AR group, highlighting that the uCRM genes can reflect the

inflammatory burden within the allograft Fig 2C.

Fig 2. Relative abundance and correlation of abundance of CRM genes in the urine and expression of CRM genes across different clinical phenotypes of kidney

transplantation. A. Pearson correlation matrix demonstrating correlation among 11 CRM genes in their expression in urinary cell sediments. The size of the square

serves as a visual indicator of the strength of the correlation. B. Heatmap with supervised clustering by phenotype demonstrating relative expression of CRM genes in

AR, bAR, BKVN, and STA. C. Violin plots depicting the distribution of the CRM genes in AR, bAR, BKVN, and STA urine cell pellet. � indicates that AR vs STA was

significant after multiple comparisons. # indicates that bAR vs STA was significant after multiple comparisons. Additional statistics are available in Table 2.

https://doi.org/10.1371/journal.pone.0220052.g002
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Gene expression of CRM genes in BKVN. Expression of CD6, CXCL10, CXCL9, LCK,

NKG7, and PSMB9 were differentially regulated in urine samples with patients with BKVN

when compared to the samples from STA patients. Out of the six genes with statistically differ-

ent gene expression values between BKVN and STA samples, expression of only NKG7 was

substantially lower in BKVN urine.

Determination of a urine CRM (uCRM) gene expression score to identify

kidney transplant rejection

Because expression of the CRM gene-set was not homogenous across the transplant phenotypes

and there was substantial physiological cross-talk between the different genes (S1 Fig), we used

nonlinear supervised methods to further differentiate and classify phenotypes. Unsupervised

clustering via t-SNE was performed to determine relationships between the uCRM genes and

phenotypes. Fig 3A shows the t-SNE plot, indicating that the 11 CRM genes could almost

entirely segregate AR from STA samples. The VSURF model, dependent on Random Forests

importance scores, determined that PSMB9 and CXCL10 were the two most important genes

Table 2. Gene expression levels of CRM genes across different phenotypes.

Basp1 Cd6 Cxcl10 Cxcl9 Inpp5d Isg20 Lck Nkg7 Psmb9 Runx3 Tap1

AR mean 7.61 5.78 109.97 11.01 4.87 18.16 10.74 352.94 7.67 6.37 13.95

AR STDEV 11.01 7.22 137.88 15.45 4.65 17.74 15.41 712.72 7.52 11.95 14.99

STA mean 2.52 0.84 5.05 1.54 1.48 5.19 2.24 25.95 1.13 2.03 3.31

STA STDEV 3.46 1.40 11.84 2.46 1.73 5.81 5.20 43.89 1.02 2.76 4.38

AR vs STA q value 0.0120 <0.0001 <0.0001 <0.0001 0.0004 0.0004 <0.0001 0.0160 <0.0001 0.1126 <0.0001

bAR mean 3.08 1.55 39.52 4.52 2.26 10.27 2.45 82.63 2.06 3.42 7.15

bAR STDEV 2.61 1.05 55.42 7.54 2.93 14.69 2.75 121.31 1.26 5.78 10.69

bAR vs STA q value 0.1872 0.0477 0.0011 0.0167 0.2361 0.1087 0.6258 0.0413 0.0034 0.4405 0.1034

BKVN mean 1.76 5.75 39.29 52.07 1.73 5.98 9.23 7.69 2.69 5.14 5.15

BKVN STDEV 3.59 9.52 48.36 73.99 4.76 6.69 16.82 16.39 2.35 10.59 7.66

AR vs BKVN q value 0.0067 0.1198 0.0005 0.0008 0.0063 0.0004 0.1977 0.0117 <0.0001 0.5289 0.0002

BKVN vs STA q value 0.1795 0.0021 <0.0001 <0.0001 0.4197 0.3301 0.0352 0.0270 0.0001 0.2205 0.1862

https://doi.org/10.1371/journal.pone.0220052.t002

Fig 3. Performance evaluation of uCRM genes in phenotype discrimination. A. Unsupervised clustering of AR and STA gene expression data using T-distributed

Stochastic Neighbor Embedding (t-SNE) with a perplexity value of 78. B. Use of Variable Selection Using Random Forests (VSURF) to identify genes that have high

importance in AR detection. C. Distribution of transplant outcomes in terms of AR, bAR, and STA on the two VSURF-selected genes Cxcl10 and Psmb9.

https://doi.org/10.1371/journal.pone.0220052.g003
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in classifying AR from STA. Fig 3B further depicts the significance of these 2 genes. The impor-

tance plot of gene weights denotes that either of the 2 genes, if excluded from the model, corre-

sponds to an approximate 20% decrease in accuracy of the model. These two genes could

classify AR versus STA with almost as high an accuracy as the 11 gene model, with a sensitivity

of 93.6% and specificity of 97.6%. Gene expression thresholds for these two genes were deter-

mined by a decision tree classifier and the log-scale values of these two genes are depicted in Fig

3C. A threshold of 28 for CXCL10 and 3 for PSMB9 correctly classifies 86/88 AR & STA cases

for an overall accuracy of 97.7%. Notably, bAR samples fell between the AR and STA pheno-

types, suggesting the gradation of these two genes in the degree of allograft inflammation.

To explore the classification performance of the uCRM score on AR, borderline AR, and

STA cases, a decision tree classifier was produced (Fig 4A). The decision tree determined opti-

mal uCRM score thresholds for each phenotype. A score greater than 4 correctly classified 44/

49 AR cases; a score less than 1.8 correctly classified 33/35 STA cases. 14/23 borderline cases

were between these two thresholds. The distribution of uCRM scores by phenotype is depicted

in Fig 4B. The mean uCRM scores (SEM) for AR, bAR, and STA were 8.195 (0.631), 3.265

(0.4120), and 1.404 (0.162) respectively, and all comparisons were significant after multiple

comparisons correction. The uCRM score could distinguish between AR and STA with high

accuracy—at a threshold of 3.63, the sensitivity and specificity were 95.35% and 97.78% respec-

tively (Fig 4C). When distinguishing between AR and the combination of bAR and STA, the

uCRM score retained a high accuracy—at the same threshold, the sensitivity and specificity

were 87.10% and 97.78% respectively (S2A Fig).

When including the BKVN samples, all phenotypes were significantly different from one

another after multiple comparisons correction except bAR and BKVN (S2B Fig). When distin-

guishing between AR and the combination of bAR, STA, and BKVN, the uCRM score still

retained a high, but lower accuracy. Using the same 3.63 threshold, the sensitivity and specific-

ity were 76.92% and 97.78% respectively (S2C Fig).

The uCRM score correlates with AR specific biopsy histological lesions

Notably, the trend of increasing uCRM score from STA to bAR to AR suggested that the

uCRM score could detect gradations of inflammation that were clinically relevant. As such, we

Fig 4. uCRM score classification performance and threshold development by decision tree. A. A decision tree based on uCRM score classification performance and

threshold that could correctly classify AR, bAR, and STA with 96.6% accuracy (85/88). B. Scatter dot plot of the uCRM score for AR, bAR, and STA phenotypes.

Significance was determined by nonparametric Kruskal-Wallis test with Dunn’s multiple comparisons correction. C. ROC curve of the uCRM score in discriminating

between AR and STA phenotypes (AUC = 0.9886, P< 0.0001). � < 0.05. ��� P< 0.001. ���� P< 0.0001.

https://doi.org/10.1371/journal.pone.0220052.g004
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evaluated whether the uCRM score was associated with the extent of histological AR lesions

observed in matched biopsies from the same patient, collected simultaneously. As seen in Fig

5A and 5B, the uCRM scores correlated with the extent of the tubulitis (t) and the interstitial

inflammation (ii) biopsy scores in AR (R = 0.5479, P < 0.0001 and R = 0.4420, P < 0.0001 for

the uCRM score regarding t and ii, respectively). There was no correlation between the uCRM

score and measures of tubular atrophy (ta), glomerulosclerosis (gs), mesangial matrix (mm),

intimal proliferation (cv), medial arteriolar hyaline (ah), tubular vacuolization (tv), arteritis

(v), or acute glomerulitis (g) (S3 Fig).

Discussion

There is an urgent need in transplant medicine for developing reliable and non-invasive moni-

toring tools that may help transplant clinicians predict the risk of allograft injury, preferentially

before allograft damage has already been established. While a number of transcriptional bio-

markers have been associated to AR, most of the studies have basically focused on a unique or

single transcriptional factor and do not reflect the entire molecular complexity of the biological

process of allograft rejection [11, 38]. Moreover, while the current gold standard for diagnos-

ing the presence of immune-mediated allograft injury is the allograft biopsy, it is well known

that the procedure possesses key limitations in terms of the frequent erratic sampling represen-

tation, its high cost, and the impracticality for repetitive screening due to the invasive nature of

the technique.

Fig 5. The uCRM score correlates with the extent of AR lesions. The uCRM scores were correlated with the extent of the acute allograft lesions. A. Correlation

between the tubular (t) scores and the uCRM scores (R = 0.5479, P< 0.0001) and B. Correlation between the interstitial inflammation (ii) scores and the uCRM scores

(R = 0.4420, P< 0.0001). Dotted lines depict the 95% confidence interval of the regression line.

https://doi.org/10.1371/journal.pone.0220052.g005

Urinary score for kidney transplant monitoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0220052 July 31, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0220052.g005
https://doi.org/10.1371/journal.pone.0220052


Several reports have shown the value of studying different biomarkers predicting AR in

urine samples of kidney transplant recipients [20–22]. Increased urinary levels of immune

effector molecules and transcripts such as granzyme B, CXCL10, CXCL9, IFN-γ, and CXCR3,

have been shown to be highly associated to AR and in some cases, even predict the advent of

AR in advance [19, 24, 39–43]. Taking advantage of recently reported data by our group [27,

29, 44] showing a common rejection module of gene expression in allograft biopsies during

AR, irrespective of the type of tissue organ, the main goal of this study was to investigate

whether the assessment of the CRM in the urine of kidney transplant patients could be useful

as an ideal non-invasive biomarker predicting the advent of AR.

While many of the individual CRM genes and gene products have been assessed individu-

ally, this is the first report of the collective, noninvasive use of the CRM genes in the prediction

of AR in KTx. For example, urinary CXCL9 mRNA and protein and CXCL10 mRNA had

previously been evaluated in multicenter studies for the diagnosis of AR [13, 45, 46]. PSMB9

transcripts in renal biopsies had also been previously associated with graft quality and the pre-

diction of acute rejection [47].

We have analyzed gene expression data on urine sediments from KTx patients for the rela-

tive abundance of CRM transcripts and their correlation of expression among CRM genes (Fig

2A). In line with our previously reported study analyzing the CRM score in tissue kidney and

lung allograft samples, the CRM genes had increased expression in AR and other transplant

injuries such as bAR and BKVN (Fig 2B and 2C). In this report, we also observed a strong cor-

relation between the newly developed uCRM score and histological inflammatory scores (t

and ii scores of kidney biopsies). Since most of these CRM genes are expressed almost exclu-

sively in infiltrating immune cells, the increased expression of CRM genes in urine sediments

suggests that there is an increased release of infiltrating immune cells in the urine of kidney

transplant recipients undergoing graft injury.

Next, we utilized a combined score calculated from individual gene expression values of

individual CRM genes, the uCRM score, as a metric to classify kidney transplant patients into

either patient with acute rejection or no-injury and determined a threshold for AR. The results

from this study demonstrate the power of uCRM assay in not only identifying patients with

AR, but also quantifying the degree of injury taking place in the allograft, as the score increases

from low values in STA patients, to intermediate values in bAR patients, and to high values

in AR patients, as reflected in the tubulitis and interstitial inflammation histology scores. We

believe that the uCRM score has potential utility in transplant monitoring and may serve as an

adjunct to or referring test for biopsies. A patient with a low uCRM score may be able to avoid

unnecessary protocol biopsies while a patient with a high uCRM score may require serial mon-

itoring or a for-cause biopsy to assess graft status.

We acknowledge several limitations of this study that includes (i) limited sample size of the

study, (ii) absence of other transplant injury phenotypes such as chronic allograft injury or

drug toxicity, and (iii) lack of assessment of uCRM score in a longitudinal sample in a larger

cohort size. These promising findings suggest that additional, prospective studies are needed

to validate and fully assess the potential utility of the uCRM score in the clinical setting. In

summary, we present a non-invasive, urine-based biomarker developed from a Common

Rejection Module composed of 11 genes that can identify transplant injury and rejection in

kidney transplant patients.

Supporting information

S1 Fig. Interaction network analysis of CRM genes. A network view of the CRM genes.

Cross-hatched bubbles are the CRM genes while solid bubbles indicate partners identified
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through network analysis. Connections are color-coded based on the type of interaction. Red,

physical interaction; purple, co-expression; orange, predicted; blue, co-localization; turquoise,

pathway; green, genetic interactions; yellow, shared protein domains.

(PDF)

S2 Fig. uCRM score classification performance inclusive of BKVN phenotype. A. ROC

curve of the uCRM score in discriminating between AR and the combination of bAR and STA

phenotypes (AUC = 0.9677, P < 0.0001). B. Scatter dot plot of the uCRM score for AR, bAR,

STA, and BKVN phenotypes. Significance was determined by nonparametric Kruskal-Wallis

test with Dunn’s multiple comparisons correction. C. ROC curve of the uCRM score in dis-

criminating between AR and the combination of bAR and STA phenotypes (AUC = 0.9111,

P< 0.0001). � < 0.05. �� < 0.01. ��� P< 0.001. ���� P< 0.0001.

(PDF)

S3 Fig. Lack of association of uCRM score with additional histological parameters. The

correlation between the uCRM score and various histological parameters was determined.

Other than the tubulitis (t) and interstitial inflammation (ii) scores that were significantly

correlated (Fig 5A and 5B), none of tubular atrophy (ta), glomerulosclerosis (gs), mesangial

matrix (mm), intimal proliferation (cv), medial arteriolar hyaline (ah), tubular vacuolization

(tv), arteritis (v), ora cute glomerulitis (g) scores were significantly correlated.

(PDF)

S1 Table. Primer information for primers used for uCRM assay.

(PDF)

S1 Dataset. Deidentified RQ values for the CRM genes and the uCRM Score.

(XLSX)
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