
1Scientific REPORTS |  (2018) 8:8117  | DOI:10.1038/s41598-018-26409-1

www.nature.com/scientificreports

Adaptive Group-combined P-values 
Test for Two-sample Location 
Problem with Applications to 
Microarray Data
Shenghu Zhang1,2, Jiayan Zhu3,4 & Zhengbang Li4

The purpose of this article is to propose a test for two-sample location problem in high-dimensional 
data. In general highdimensional case, the data dimension can be much larger than the sample size 
and the underlying distribution may be far from normal. Existing tests requiring explicit relationship 
between the data dimension and sample size or designed for multivariate normal distributions may 
lose power significantly and even yield type I error rates strayed from nominal levels. To overcome 
this issue, we propose an adaptive group p-values combination test which is robust against both high 
dimensionality and normality. Simulation studies show that the proposed test controls type I error rates 
correctly and outperforms some existing tests in most situations. An Ageing Human Brain Microarray 
data are used to further exemplify the method.

In recent decades, technological advances have made it possible to collect simultaneously massive amounts of 
high-throughput data. For example, in biomedical studies, lots of magnetic response images (MRI) and func-
tional MRI data are gleaned for each subject1; various microarray expression patterns of thousands of genes are 
measured2. In addition, examples of these kinds are plentiful in computer science, engineering, climatology, geol-
ogy, and finance. This type of data, often called high-dimensional data, are characterized with a large number of 
variables m and a relatively small number of samples n, usually m is considerably large than n ( m n). So devel-
oping approaches for high-dimensional data is of great practical importance. In this context, a problem of con-
cern is to test for the equality of location parameters of two samples simultaneously. Assume that 

=X X X i{ , , , }( 1, 2)i i in1 2 i
 are two independent random samples of sizes n1 and n2, from m-variate distributions 

F1(X − μ1) and μ−F X( )2 2  with m-variate location parameters μ1 and μ2, respectively. We consider the following 
high-dimensional null hypothesis μ μ=H :0 1 2.

A traditional approach for this hypothesis is the Hotelling’s T2 test given by = − −τ
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where = ∑ =X X n/j
n

j1 1 1 11  and = ∑ =X X n/j
n

j2 1 2 22  are the sample means, Sn is the sample covariance matrix, and n1, 
n2 are the sizes of two samples. The Hotelling’s T2 test requires that the data dimension m is fixed and less than 

+ −n n 21 2 . It possesses desirable properties for low-dimensional data when m is fixed. However, the situation is 
changed for high-dimensional data. Bai and Saranadasa3 studied the performance of the Hotelling’s T2 test for 
high-dimensional data and found that its powers drop significantly as m/n increases. A reason for this phenome-
non is that Hotelling’s T2 test contains the inverse of sample covariance matrix which may not converge to the 
population covariance matrix when m is close to n or even is undefined when m > n.

To address this issue, under the assumption of equal covariance matrix, Bai and Saranadasa3 proposed a new 
test by removing −Sn

1 from the Hotelling’s T2 test. They also derived the asymptotic normality of the test statistic 
when m and n are of the same order. However, this requirement is too restrictive for high-dimensional data, in 
which m is often far larger than n. Motivated by this, Chen and Qin4 proposed to remove the squared term 
∑ =τ

= X X i( 1, 2)j
n

ij ij1
i  from || − ||X X1 2

2 (Bai and Saranadasa’s test) which poses demands on the dimensionality 
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but makes no contribution in testing, where ||⋅|| is the squared Euclidean distance. Note that these methods are 
scalar-invariant since the magnitudes of variables’ variances which may vary greatly are not taken into account. 
Neglecting such heterogeneity information could lose power dramatically since the variables with larger variabil-
ities which dominates the results may not be statistically significant. Hence under the assumption of multivariate 
normality, Srivastava et al.5 developed a scalar-transformation-invariant test by replacing Sn in the Hotelling’s T2 
test with its diagnoal matrix. However, the aforementioned tests are essentially parametric in spirit since their 
performance would be degraded dramatically when the assumption of normality is not met, especially for 
heavy-tailed distributions. To overcome this limitation, Feng et al.6 proposed a scalar-invariant test based on 
multivariate-sign-based procedures which is robust against non-normality.

Although many existing methods are available to test for the equality of location parameters of two samples, 
most of them perform well under certain conditions on the degree of m/n. For example, Bai and Saranadasa3 
reqiures → ∈p n c/ (0, 1); Chen and Qin4 requires Σ = Σotr( ) (tr ( ))4 2 2 , where Σ is the covariance matrix; 
Srivastava et al.5 needs = δn O m( ) for 1/2 < δ < 1. Nevertheless, in a range of high-dimensional applications, it is 
hard to determine the degree of m/n. Sometimes, the data dimension m can be unimaginable large relative to the 
sample size n. For example, in the microarray data, tens of thousands of genes are observed on tens of hundreds 
of samples2,7.

For two-sample location problem, an alternative solution is to use univariate test which constructs marginal 
test for each variable first and then employs some kind of p-values combination method to accelerative accumu-
late the marginal signals. Common p-values combination methods include Fisher’s combined method8, truncated 
product method9, truncated tail strength method10, and adaptive rank truncated product methods11. Hu et al.12 
pointed that the performance of these combination procedures depend heavily on the magnitudes of p-values to 
be combined. When the magnitudes of p-values varies, they may suffer from a substantial loss of power. To tackle 
this issue, they proposed a group combined p-values method (denoted by GCP) for large-scale genetic associa-
tion studies. In GCP, p-values are divided into three groups first and constructed into a test statistic within each 
group. The final test is obtained by combing these intermediated test statistics. To use GCP, one needs to define 
two thresholds for p-values beforehand. However, when the number of marginal tests is large, the performance of 
GCP is very sensible to the selection of thresholds. Hu et al.12 used two self-defined thresholds which may result 
in power loss when most of the investigated p-values are not included in their pre-defined groups.

In this article, we aim to propose an adaptive group p-values combination test(AGCP) by optimizing the 
significant evidence of GCP obtained on each pair of a set of candidate thresholds applied to two sample location 
problem for arbitrary dimensional data since it is only based on marginal test statistics and poses no demands on 
the dimensionality. Extensive simulations show that the proposed test perform more powerful than some existing 
methods for two-sample location problem in high-dimensional, while maintaining correct type I error rates. The 
superiority of the proposed method is further exemplified with the Ageing Human Brain miacroarray data. In the 
analysis of this data, the proposed method succeeds in detecting the significant difference while other methods 
failed to do so.

Suppose that there are two independently and identically distributed random samples as follows: 
μ∼ −X X X F X, , , ( )n11 12 1 1 11

, μ∼ −X X X F X, , , ( )n21 22 2 2 22
, where ~Fi is a distribution function in m  

located at m-variate center μ μ μ μ= τ
( , , , )i i i im1 2  and = τ

X X X X( , , , )ij ij ij ijm1 2 , = j n1, 2, , i, i = 1, 2. Let 
n = n1+n2. The hypothesis of interest is

μ μ μ μ= ≠ .H H: versus : (1)0 1 2 1 1 2

Results
Simulation Results. In this section, we investigate the performance of the proposed test via simulation 
studies in terms of type I error rate and power for high-dimensional data in comparison with Chen and Qin’s 
test(abbreviated as CQ)4, Srivastava et al.’s test (SKK)5, and Feng et al.’s test (SS)6. For a more general illustration, 
the AGCP test used here is assembled with the two-sample wilcoxon test for each marginal hypothesis. Three 
simulation models including multivariate normal distribution, multivariate t-distribution, and moving average 
model are considered to generate two-sample data. The specific scenarios are as follows: the first one is for multi-
variate normal distribution (MVN). μ∼ ΣX N( , )ij i i , i = 1, 2, = j n1, 2, , i; the second one is for multivariate 
t-distribution tm,4(MVT). Xij are sampled from tm,4 with 4 degrees of freedom, the mean vector μi, and covariance 
matrix Σi, i = 1, 2, = j n1, 2, , i; the third one is for moving average model (MA). The k-th entry of Xij are 
sampled from the following moving average structure: ρ ρ ρ μ= + + + ++ + −X Z Z Zijk ijk ijk m ijk m ik1 2 1 1  for 

= = i j n1, 2, 1, 2, , i and = k m1, 2 , , and Zijk are i.i.d random variables. For the distribution of Zijk, we let 
the first m/2 components of =Z{ }ijk k

m
1 be from centralized Gamma (4, 1) so that it has zero mean, and the other m/2 

components from the standard normal distribution N(0, 1). Detailed settings of the other parameters will be 
introduced later.

Without loss of generality, we fix μ2 = 0 and Σ = ×Im m2  throughout the simulations, where ×Im m is an m × m 
identity matrix. Moreover, we assumed that n1 = n2 = n, taking values from {10, 25, 50}. For each sample size, the 
dimension was set to be 100 or 200. This leads to six combinations of (n, m): (n, m) = (10, 100), (10, 200), (25, 
100), (25, 200), (50, 100), and (50, 200). For the covariance matrix σΣ = ×( )u v m m1 , , = u v m, 1, 2 , , we consid-
ered three dependence structures: (1) uniform moderate covariances with equal variance: σ = 1u u, , σ = .0 5u v,  
when u ≠ v (denoted by DS1); (2) a gradient of moderate to low covariances with equal variance: σ = . | − |0 5u v

u v
,  

(denoted by DS2); (3) a gradient of moderate to low covariances with different variances: σ = 1u u, , when 
∈ u m{1, , /2}, σ = 3u u,  when ∈ + u m m{ /2 1, , }, and σ = . | − |0 5u v

u v
,  when u ≠ v, where = u v m, 1, 2, ,  

(denoted by DS3).
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To assess the performance of the tests on controlling type I error rates, we set μ1 = μ2. Clearly the null hypoth-
esis (1) is true under this setting. In addition, under the alternative hypothesis, we let μ μ μ μ= τ

( , , , )m1 11 12 1  
possess L non-zero entries, where L > 0. For a meaningful power comparison, different levels of significance were 
considered by varying L. We set = γ⌊ ⌋L m  and choose γ from {0.1, 0.2, 0.3, 0.4}, where ⌊ ⌋x  denote the largest inte-
ger less than or equal to x. Similar to Chen and Qin4, we use two patterns of allocations for the nonzero entries μ1l, 

= l L1, 2, , . One is the equal allocation where all nonzero entries μ1l are equal; the other is linear allocation 
where all the nonzero μ1l are linearly increasing. To make the power comparable among all configurations, we set 
η μ μ= || − || Σ + Σ/ tr( ) tr( )1 2

2
1
2

2
2  and the specific value of μ1 was obtained from this relation. η was chosen to 

be 0.2 for two combinations with (n, m) = (10, 100), (10, 200), 0.1 for (n, m) = (25, 100), (50, 200), and η = 0.05 
for (n, m) = (50, 100), (50, 200). All results are calculated based on 1,000 simulations and the nominal level α is 
set to be 0.05. To save space, here we only present the power results for (n, m) = (10, 100) and (n, m) = (25, 200); 
results for the other configurations of (n, m) are similar and presented in the Supplementary Materials.

All simulation results are calculated based on 1000 monte carlo replications and B = 10000 permutations are 
used to compute the inner marginal p-values.

Multivariate normal distribution. Table 1 reports the empirical type I error rates of CQ, SKK, SS, and 
AGCP when the two-sample data are generated from m-variate normal distribution with three patterns of 
covariance matrix including DS1, DS2 and DS3. From this table, it can be seen that SS and AGCP maintain 
correct type I error rates with the values being close to the nominal level. When the sample size is small 
(n = 10), SKK yields inflated type I error rates. For example, when n = 10 and m = 10, the type I error rates of 
SKK under DS1, DS2 and DS3 are 0.084, 0.097 and 0.119, respectively. For CQ, it can control the type I error 
rates correctly in most cases, while appears to be a little larger than 0.05 when the sample size is small and the 
covariance matrix belongs to DS1.

The empirical powers of tests for the two-sample data sampled from multivariate normal data with (n, 
m) = (10, 100) and (n, m) = (25, 200) are presented in Fig. 1. Since SKK has inflated type error rates when the 
sample size is small, we excluded it from the power comparison when n = 10. Figure 1 shows that the powers of 
the proposed AGCP test are always larger than those of the other tests. Sometimes, its powers can exceed two 
times of those of the CQ, SKK and SS test. For example, when (n, m) = (10, 100) and γ = 0.1, the powers of CQ, 
SKK, SS, and AGCP are 0.354, 0.313, 0.270, and 0.909, respectively. And the performance of all tests are similar 
under the equal allocation and linear allocation. For the covariance matrix, three patterns structures including 
DS1, DS2 and DS3 were considered. Under the structures of DS1 and DS3, the superiority of the proposed test 
is very significant over the other tests in terms of powers. Under DS2, CQ has similar powers to AGCP when the 
percentage γ of non-zero entries of μ1 is large. Power results for (n, m) = (10, 200), (25, 100), (50, 100), and (50, 
200) are similar and presented in the Supplementary Materials.

Multivariate t-distribution. The empirical type I error rates of the compared tests for the two-sample data 
from m-variate t-distribution are presented in Table 2. Among all settings, AGCP always can maintain the type 
I error rates correctly. Likewise, the type I error rates of CQ have some slight size distortion (a little larger than 
0.05) when the sample size is 10 and the covariance structure is DS1. In other cases, they are close to the nominal 
significance level. For the multivariate t-distribution data, SKK has totally incorrect type I error rates. It occurs 
since SKK is exclusively designed for multivariate normal distribution. The performance of SS on type I error rate 
depend heavily on the covariance structure. Specifically, its type I error rates are a little larger than 0.05 under 
DS1 and appear to very low under DS2 and DS3, especially when the sample size is small (n = 0.3). This result is 
consistent with those in Feng et al.6.

Figure 2 shows the empirical powers of CQ, SKK, SS, and AGCP for two-sample data generated from multi-
variate t-distribution with the covariance structures of DS1, DS2, and DS3. It can be clearly observed from this 
figure that AGCP is the most powerful test among all compared test under all considered cases. As the sample 
size increases, the superiority of AGCP over the other tests becomes large. For example, under DS1 with equal 
allocation and γ = 0.3, the powers of CQ, SKK, SS, and AGCP for (n, m) = (10, 100) are 0.210 0.103, 0.202, and 

n

m = 100 m = 200

CQ SKK SS AGCP CQ SKK SS AGCP

10

DS1 0.087 0.084 0.058 0.058 0.068 0.062 0.051 0.040

DS2 0.043 0.097 0.009 0.047 0.045 0.118 0.003 0.048

DS3 0.042 0.119 0.004 0.039 0.047 0.160 0.001 0.049

25

DS1 0.059 0.043 0.054 0.044 0.059 0.044 0.069 0.058

DS2 0.042 0.044 0.032 0.037 0.058 0.057 0.041 0.048

DS3 0.039 0.049 0.023 0.050 0.062 0.063 0.032 0.042

50

DS1 0.041 0.027 0.055 0.038 0.060 0.032 0.067 0.041

DS2 0.040 0.038 0.043 0.052 0.032 0.024 0.025 0.047

DS3 0.053 0.050 0.051 0.044 0.033 0.032 0.034 0.054

Table 1. Type I error rates of CQ, SKK, SS, and AGCP under the significance level of 0.05 when the two-sample 
data are generated from multivariate normal distribution. DS1-DS3 correspond to three patterns of dependence 
structures for Σ1, respectively. n is the sample size and m is the data dimension.
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0.398, respectively, while their powers for (n, m) = (25, 200) are 0.216 (CQ), 0.076 (SKK), 0.458 (SS), and 0.964 
(AGCP). Moreover, the results of tests under equal allocation and linear allocation are similar. The power results 
for (n, m)=(10, 200), (25, 100), (50, 100) and (50, 200) are available in the Supplementary Materials.

Figure 1. Empirical powers of CQ, SKK, SS, and AGCP for two-sample data generated from multivariate 
normal distribution with (n, m) = (10, 100) (Row 1 and 2) and (n, m) = (25, 200) (Row 3 and 4). For each 
combination of (n, m), two allocations (denoted by Equal and Linear allocation) are specified for the nonzeros 
of μ1. DS1-DS3 correspond to three patterns of dependence structures for Σ1, respectively.

n

m = 100 m = 200

CQ SKK SS AGCP CQ SKK SS AGCP

10

DS1 0.087 0.039 0.054 0.054 0.079 0.032 0.062 0.055

DS2 0.045 0.003 0.003 0.057 0.052 0.000 0.002 0.036

DS3 0.052 0.008 0.003 0.050 0.052 0.000 0.000 0.055

25

DS1 0.066 0.028 0.062 0.055 0.063 0.022 0.063 0.040

DS2 0.047 0.004 0.021 0.046 0.055 0.000 0.025 0.054

DS3 0.060 0.001 0.026 0.048 0.050 0.002 0.030 0.053

50

DS1 0.047 0.017 0.068 0.057 0.058 0.019 0.069 0.055

DS2 0.032 0.004 0.033 0.056 0.056 0.004 0.042 0.050

DS3 0.056 0.002 0.036 0.048 0.047 0.001 0.042 0.049

Table 2. Type I error rates of CQ, SKK, SS, and AGCP under the significance level of 0.05 when the two-sample 
data are generated from multivariate t-distribution. DS1-DS3 correspond to three patterns of dependence 
structures for Σ1, respectively. n is the sample size and m is the data dimension.
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Moving average model. In addition, we examined the performance of tests for the data from moving aver-
age models. We choose a representative distribution for Zijk, that is, letting the first m/2 components 

Z Z Z, , ,ij ij ij1 2 m
2

 sampled from Gamma (4, 1) − 4 and the other m/2 components from N (0, 1), =i 1, 2, 
= = j n k m1, 2, , , 1, 2 ,i . Note that both distributions have zero means. The correlations among Xij are 

determined by the coefficients ρ ρ ρ ρ= τ
( , , , )m1 2 . Two configurations of dependence structure for 

= = X i j n, 1, 2, 1, 2, ,ij i , are considered. They are “full dependence” case with all the coefficients 
ρ = l m, 1, 2 ,l , are nonzero and “partial dependence” case with ρ = 0l  if l > 3 which means that Xijk1

 and Xijk2
 

are dependent only if | − | <k k 31 2 . Similar to Chen and Qin4, we generate independently the non-zero ρl from 
the uniform distribution U (2, 3) and kept them fixed throughout the simulation. With the values of ρl, together 
with the relation η μ μ= || − || Σ + Σ/ tr( ) tr( )1 2

2
1
2

2
2 , the specific setting for μ1 can be subsequently obtained.

Table 3 summarizes the type I error rates of CQ, SKK, SS, and AGCP for the data from moving average 
models. It shows that CQ and AGCP maintain the type I error rates reasonably well, while SKK and SS seem to 
be somewhat conservative with the type I error rates much smaller than the nominal significance level. Similar 
to the results for MVN and MVT, the type I error rates of SKK when n = 10 is a little bit inflated. The powers of 
tests are presented in Fig. 3. From this figure, we can observe that the proposed test always performs the best 
among all tests when the coefficients are with the “partial dependence” structure for both (n, m) = (10, 100) and 
(n, m) = (25, 200). And such superiority becomes more significant as n increases. Under the “full dependence” 
structure, CQ, SKK, and AGCP perform similarly when n = 10, but AGCP outperforms the other two when the 
sample size becomes large.

The type I error rates seems to be slightly inflated when the sample size is 10. This occurs because under such 
situation, the sample size is too small relative to the dimension of data which maybe need more permutation 
replications to approximate p-values of marginal tests in AGCP.

Figure 2. Empirical powers of CQ, SKK, SS, and AGCP for two-sample data generated from multivariate 
t-distribution with (n, m) = (10, 100) (Row 1 and 2) and (n, m) = (25, 200) (Row 3 and 4). For each combination 
of (n, m), two allocations (denoted by Equal and Linear allocation) are specified for the nonzeros of μ1. 
DS1-DS3 correspond to three patterns of dependence structures for Σ1, respectively.
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Applications to Ageing Human Brain Microarray data. To further exemplify the superiority of 
the proposed test, we apply it to the Ageing Human Brain Microarray (AHBM) data, downloaded from GEO 
with accession number GSE1572 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1572). Ageing of 
human brain, accompanied by slower processing speeds and decreasing ability to convert experiences to episodic 

n

m = 100 m = 200

CQ SKK SS AGCP CQ SKK SS AGCP

10
FD 0.051 0.069 0.010 0.051 0.041 0.092 0.005 0.054

PD 0.061 0.026 0.038 0.043 0.059 0.012 0.029 0.043

25
FD 0.043 0.036 0.027 0.037 0.044 0.041 0.032 0.050

PD 0.041 0.007 0.038 0.036 0.059 0.003 0.043 0.045

50
FD 0.048 0.039 0.051 0.053 0.046 0.038 0.049 0.052

PD 0.067 0.012 0.064 0.047 0.058 0.007 0.041 0.045

Table 3. Type I error rates of CQ, SKK, SS, and AGCP under the significance level of 0.05 when the two-sample 
data are generated from moving average model (Replicate 200 times). Two configurations including “full 
dependence” and “partial dependence” (denoted by FD and PD) are used to generate the coefficients ρl, 

= l m1, 2, , . n is the sample size and m is the data dimension.

Figure 3. Empirical powers of CQ, SKK, SS, and AGCP for two-sample data generated from moving average 
model (n, m) = (10, 100) (Row 1 and 2) and (n, m) = (25, 200) (Row 3 and 4). For each combination of (n, m), 
two allocations (denoted by Equal and Linear allocation) are specified for the nonzeros of μ1 Two configurations 
including “full dependence“and “partial dependence” (denoted by FD and PD).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1572
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memory, is known as a cause of cognitive decline and potentially risk factors of age-related neurodegenerative 
diseases, such as Alzheimer’s disease13–15. The AHBM data were used by Lu et al.16 to detect age-dependent gene 
regulation in human brain. It contains microarray expression patterns of genes from the frontal cortex of 30 
neuropathologically normal individuals ranging in age from 26 to 106 years. Lu et al.16 showed that the gene 
expression patterns are relatively stable among the group of individuals ≤42 years old. In addition, they per-
formed statistical group comparison of expression levels from individuals ≤42 and ≤42 years old, about 4% of all 
genes were detected to undergo significant changes. Most of these genes were found to be associated with some 
functions, such as synaptic function, stem cell function, vesicular/protein transport, stress response, and others. 
Among the detected genes, we choose those belonged to some aging-associated pathways to form a gene set in 
the later analysis.

Five pathways including hedgehog signaling, mitogen-activated protein kinases/extracellular signal-regulated 
kinases (MAPK/ERK), phosphatidy linositol 3-kinase (PI3K), protein kinase C (PKC), and janus kinases/sig-
nal transducers and activator of transcription (JAK/STAT) which are reported to be aging-associated, were 
chosen. Specifically, hedgehog signaling is a major regulator of stem cell function whose reduced functionality 
is responsible for ageing17; the core components or regulators of MAPK/ERK pathway were identified as the 
aging-dependent targets18; the PI3K pathway was found to have relevance to cognitive processes in addition to 
pathological brain aging and neuro degeneration since it is implicated in aging and lifespan regulation, and the 
proliferation of adult neuronal progenitor cells19; the PKC pathway and its adaptor protein RACK1 have been 
shown to be interdependent in pathological brain aging20; JAK/STAT were found to be active in the aging and 
mature brain and play important role in the control of neuronal proliferation, survival and differentiation21. The 
pathway data was downloaded from InnateDB http://www.innatedb.ca/redirect.do?go=searchPws.

A total of 237 genes (listed in the Supplementary Materials) were included in the gene set. Since the individ-
uals ≤42 years old in this data share similar gene expression patterns, all individuals are divided into two sample 
groups consisting of 10 individuals ≤42 years old and 20 individuals ≥42 years old in the analysis, respectively. 
Our aim is to detect simultaneously the difference of expression patterns of the gene set between two samples. To 
provide some insights into each gene’s expression pattern, univariate comparison between two groups were first 
conducted using the wilcoxon rank-sum test and the p-values ranges from 0.00012 to 1. The detailed marginal 
p-values are presented in the Supplementary Materials. Then we apply the tests of Chen and Qin4, Srivastava et 
al.5, Feng et al.6, and the proposed test to conduct the overall comparison of expression patterns of the gene set 
between two groups. The p-values are 0.221 from Chen and Qin’s test4, 0.089 from Srivastava et al.’s test5, 0.051 
from Feng et al.’s test, and 0.017 from the proposed new test, indicating that only the proposed test succeeded in 
detecting the difference of expression patterns between two groups.

Discussion
Through simulation studies, we show that the proposed test outperforms some competing multivariate tests with 
respect to the type I error rate and power in most scenarios. This is expected since the compared tests including 
CQ, SKK, and SS which are all Hotelling’s T2-type tests, neglect the correlations among variables to bypass the 
non-convergence of the sample covariance matrix (Bai and Saranadasa, 1996), while our method takes the cor-
relation of multiple variables into account and calculate the statistical significance level with the permutation 
method.

In this article, we developed an adaptive group-combined p-values procedures for two-sample location prob-
lem in high-dimensional data. The proposed test extends the p-value combining techniques by dividing p-values 
into several groups and combing them at the group-level. Instead of fixed thresholds, this adaptive procedure 
use the optimal one among all possible threholds which is able to improve the power of test significantly. The 
proposed test provides an efficient and flexible way to accumulate differece evidences across variables and has 
no restriction on the relationship between the data dimension and sample size. Through simulation studies, we 
showed that the proposed test outperformed some competing multivariate tests in most scenarios. Applications 
to Ageing Human Brain Microarray data further demonstrate its satisfactory performance.

In the proposed test, all p-values are divided into three groups and two groups with smaller p-values are used. 
However, the number of groups is sort of self-defined. Intuitively, such procedure can be generalized to J groups, 
J ≥ 3. Although Hu et al.12 explained J = 3 is a good choice through simulation studies and the idea of the degrees 
of freedom, more theoretical results are needed to support this conclusion. Except the two-sample location prob-
lem, our proposed test have a variety of additional applications, such as large-scale genetic association studies. 
With the advance of high-throughput genotyping technology, researchers are able to get access to a large number 
of genetic variants. However, the signal of association between an individual genetic variant and the trait could be 
too weak to be detected by single-variant analysis22,23. At this time, a benefiting and complementary strategy for 
genetic association studies is to simultaneously testing the association between the trait and multiple genetic var-
iants within a gene set or a pathway. A specific high-dimensional test problem thus arises. Our proposed method 
can be applied by conducting marginal association test for each genetic variant first and then use the proposed 
test to combine obtained p-values. Our method can also be extended to deal with nonparametric population 
comparisons in genetic association studies, where much work has been done24–26.

For our proposed methods, we recommend using the thresholds ξ = . . . . . .{0 0001, 0 001, 0 01, 0 05, 0 1, 0 2, 1}. 
This is mainly due to the following reasons. First, these thresholds are widely used in the context of p-values com-
bination methods (Fisher8; Zaykin et al.9; Jiang et al.11; Yu et al.11). Besides, since the p-values greater than 0.2 
generally do not contribute to the significance of test but may increase the variance substantially, the value of 0.2 
is commonly used as the upper bound of threshold for the truncated p-value combination methods (Zaykin et 
al.9). Finally, we also evaluate the performance of the proposed test under some other sets of thresholds contain-
ing ξ through simulations and the results turn out to be similar with those in the “simulation” section; we omit the 
details here for simplicity.

http://www.innatedb.ca/redirect.do?go=searchPws
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Intuitively, such procedure can be generalized to J ≥ 3 groups. As Hu et al.12 pointed out the AGCP with J = 3 
possesses the potential to outperform that that with J > 3 due to the idea of pseudo degrees of freedom (DFs) 
for test statistics. That is, since the test with the form of −2 ln(X) is known to follow from the Chi-squared dis-
tribution, the pseudo DFs of the AGCP with J = 3 and J = 4 are 4 and 6, respectively. As the number of groups 
increases, the DFs might increase which yields less powerful tests.

It should be pointed out that our test has its drawback. In principal, the proposed test is supposed to be applied 
to any dimensional data since it is based on marginal p-values. However due to the difficulty of deriving the exact 
distribution, permutation procedure is adopted to calculate the statistical significance of the proposed AGCP 
which may suffer intensive computation or even be infeasible when the data dimension is very large.

Methods
In particular, the null hypothesis (1) is a global null hypothesis including m correlated marginal hypothesises in 
terms of the location parameter of each variable, that is, μ μ= = H k m: , 1, 2, ,k k0 1 2 . For each variable, we can 
use a certain test statistic, such as two sample t-test and Wilcoxon test, to test for the equality of location parameters 
in two samples and denote the obtained p-values by 

p p p, , , m1 2 . Let ξ ξ ξ ξ ξ= < < = s S{ , , , ; 0 1, 1, 2, , }S s1 2  
be a set of S thresholds. Without loss of generality, we assume that ξ ξ ξ≤ ≤ ≤ S1 2 . For each pair of thresholds ξs1

 
and ξs2

, the group-combined p-values test statistic is given by

∑

∑

ξ ξ ξ
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where Fs1
 and Fs2

 are the cumulative distribution functions of ξ− ∑ <= p I p2 ln[ ] ( )k
m

k k s1 1
 and − ∑ ×= p I2 ln[ ]k

m
k1  

 ξ ξ< <p( )s k s1 2
 for ∈ s s S, {1, 2, , }1 2 , respectively. With this, the proposed AGCP test is presented as

ξ ξ= .
∈ 

AGCP max GCP( , )
(3)s s S s s, {1,2, , }1 2 1 2

It is worth pointing out that the selection of marginal tests is flexible due to that the proposed test is built on mar-
ginal p-values. Hence, we can choose an appropriate test solely for each single variable and these tests are not 
necessary to be the same. This, to some extent, improves the applicability of the proposed test. Moreover, AGCP 
imposes no restriction on the relationship between the data dimension and sample size since only marginal tests 
are conducted. In principal, it is able to handle any dimensional case. AGCP is an adaptive procedure which is 
expected to perform better with more thresholds. However, too many thresholds are not useful in the testing since 
they will lead to a lot of multiple comparisons. To limit the effect of multiple comparisons, we recommend using 
ξ = . . . . . .{0 0001,0 001,0 01,0 05,0 1,0 2,1} in the following sections which results in 21 pairs of thresholds. Note that 
if two thresholds (i.e., S = 2) are used, the AGCP test becomes the standard GCP test.

To calculate statistical significance of AGCP, we use a permutation procedure with taking the correlations 
among variables into account. Generally in our case, a two-layer permutation procedure is needed: the inner layer 
is used to calculate F F,s s1 2

 and the outer layer is for the adjustment accounted for multiple tests over different pairs 
of thresholds. However, such two-layer permutation procedure is computationally intensive, especially when the 
number of thresholds is large. As an alternative, we proposed the following one-layer permutation algorithm to 
compute the p-value of AGCP:

Algorithm. 

 Step 1.  Conduct marginal tests for each data dimension and denote the obtained p-values by 
p p p, , , m1

(0)
2
(0) (0)

 Step 2.  Set a large number B, for example, B = 10000. For b from 1 to B, permutate the original observations 
 X X X X X X{ , , , , , , , }n n11 12 1 21 22 21 2

 and denote the permutated samples as 
 

⁎ ⁎ ⁎ ⁎ ⁎ ⁎X X X X X X{ , , , , , , , }n n11 12 1 21 22 21 2
, calculate marginal p-values for the permutated samples 

=
⁎X{ }j j

n
1 1

1 , =
⁎X{ }j j

n
2 1

2  and denote them by 
p p p, , ,b b

m
b

1
( )

2
( ) ( ).

 Step 3.  Specify a set of thresholds ξ ξ ξ ξ ξ= < < = s S{ , , , ; 0 1, 1, 2, , }S s1 2 . Based on 
p p p, , ,b b

m
b

1
( )

2
( ) ( ), = b B1, 2, ,  in Step 2, for each pair of thresholds ξs1

 and ξs2
, obtain the empirical 

cumulative distribution function corresponding to Fs1
 and Fs2

 and denoted them by F̂s1
 and F̂s2

, 
∈ s s S, {1, 2, , }1 2 ;

 Step 4.  For b from 0 to B, calculate the corresponding AGCP test statistics using F̂s1
, F̂s2

 and 
p p p, , ,b b

m
b

1
( )

2
( ) ( ) 

and denote them by AGCPb;
 Step 5. The p-value of AGCP is given by

− =
≥ = b B

B
p value #{AGCP AGCP : 1, 2, , } , (4)

b 0

where the symbol is an operator used to count the number of elements in a set.
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In principal, a large value of B is preferred since it can yield accurate results of p-value. However, increasing 
value of B would result in extensive computational cost. To balance such tradeoff, we use B = 10000 in this article.

The source of program R code used to perform the simulations is available in the supplementary material.
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