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Abstract. Modem fluorescence microscopic techniques 
were used to image the bile canalicular, system in the 
intact rat liver, in vivo. By combining the use of sodi- 
um fluorescein secretion into bile, with digitally en- 
hanced fluorescence microscopy and time-lapse video, 
it was possible to capture and record the canalicular 
motility events that accompany the secretion of bile in 
life. Active bile canalicular contractions were found 
predominantly in zone 1 (periportal) hepatocytes of 
the liver. The contractile movements were repetitive, 
forceful, and appeared unidirectional moving bile in a 

direction towards the portal bile ducts. Contractions 
were not seen in the network of canaliculi on the sur- 
face of the liver. Cytochalasin B administration resulted 
in reduced canalicular motility, progressive dilation of 
zone 1 canaliculi, and impairment of bile flow. Cana- 
licular dilations invariably involved the branch points 
of the canalicular network. The findings add substan- 
tively to previous in vitro studies using couplets, and 
suggest that canalicular contractions contribute physio- 
logically to bile flow in the liver. 

TIN, myosin and associated proteins involved in con- 
tractile movements have been found in smooth muscle 
and nonmuscle cells (1, 16, 18, 24, 42, 43, 56, 61, 

65). The majority of motility studies have been in vitro be- 
cause this allows careful analysis of movements and of factors 
that influence them (23, 26, 27, 43, 46, 59, 64, 68). It has 
been difficult to study the fine details of cell motility in vivo 
because oftechnicallimitations in resolution, but the marriage 
of computer-based, digital image processing with conven- 
tional microscopy achieves significant improvements in reso- 
lution, contrast, and visibility of fine detail. Most reports 
using these techniques used single cells or flattened cells or 
their processes (2, 3, 4, 26, 27, 38). Here we report on the 
use of fluorescence imaging to demonstrate bile canalicular 
contractions in the substance of the liver, in the living state. 

Bile canaliculi are small channels formed by modifications 
of the plasma membranes of adjacent hepatocytes. Under 
normal conditions they are not visualized by conventional 
light microscopy. It is into these fine canals that bile is 
secreted by the liver cells. It has been generally considered 
that these are rigid channels that lack motility and that func- 
tion as mere conduits conveying bile to the portal bile ducts. 
However, the bile canaliculi are surrounded by a rich invest- 
ment of actin filaments (20, 21, 28, 29, 33, 34, 39, 40, 50, 
53). Using isolated hepatocyte couplets and time lapse mi- 
croscopy, it has been shown that bile canaliculi repeatedly 
open and close and that this motion is accompanied by the 
expelling of a bolus of bile (52, 55). We have interpreted this 
motility as active bile canalicular contractions (47, 52, 54, 
55, 66), but others consider the motile events as noncontrac- 

tile collapses of canaliculi resulting from secretory pressure 
with rupture of canaliculi (9, 11, 30, 35). In this report, we 
have taken advantage of the biliary secretion of sodium 
fluorescein by hepatocytes to visualize the bile canalicular 
system and have examined canalicular motility in the living 
state in order to shed light on these issues. These experi- 
ments which visualize the canalicular apparatus using so- 
dium fluorescein, represent one of the few successful appli- 
cations of modern fluorescence techniques to whole tissues. 

Materials and Methods 

Normal Rat Liver 
Female Wistar strain rats weighing 140-160 g and fed laboratory rat diet 
and tap water ad libitum were used. The rats were anesthetized by in- 
traperitoneal injection of sodium pentobarbital (50 mg/kg rat body weight). 
A lower midline abdominal incision allowed access to the ileocecal region 
and a large and straight mesenteric vein was cannnlated with a polyethylene 
tube (PE10). After closing the abdomen, an incision was made in the upper 
abdominal midiine and along the right costal margin. The edge portion of 
the middle liver lobe was gently placed on the glass portion of a microscope 
stage specially designed for the rat (51). A physiological state was main- 
talned by wrapping the middle liver lobe in a plastic film, using a 38"C tem- 
perature controlled room. A solution of 0.3 ml of 1% sodium fluorescein 
(Uranin; Fisher Scientific Co. (Pittsburgh, PA) in physiological saline was 
rapidly administered via the mesenteric venous catheter. 

Cytochalasin Infusion 
In addition to the above preparation, the common bile duct was cannulated 
with polyethylene tubing (PE50) to measure bile flow. This catheter was in- 
serted into the proximal one-third of the common bile duct to avoid contain- 
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ination with pancreatic juice (53). Cytochaiasin B (CB) 1 solution was pre- 
pared from a stock solution consisting of 10 mg/ml of CB dissolved in 
DMSO, and then added to 3 mM PBS (pH 7.4) containing 10% BSA (Sigma 
Chemical Co., St. Louis, MO) (49, 53). The liver was infused with CB via 
the mesenteric venous catheter (PE10) at the rate of 3.3 #g/min/100 g body 
weight for 2 h, after which this infusion was stopped. Livers in control ani- 
mals were infused with the same DMSO solution but without CB. 

Brief Technical Comment on the uses of Sodium 
Fluorescein and CB in these Experiments 
(a) Sodium fluorescein, which is commonly used for studying physiologic 
functions of tissues, is excreted into bile canaiiculi (7, 36) and into urine 
(19) following systemic administration. Hanzon reported that sodium fiuo- 
rescein is concentrated •500 times in bile, and the biliary excretion of this 
dye is characterized as an active transport process (36). In vitro studies re- 
vealed that this dye is taken up by hepatocytes and excreted imo bile across 
the bile canaiicular membrane (5, 31). In this work, fluorescein was used 
as a probe to visualize the canalicular system, but since it is secreted into 
bile, it was also used to measure bile flow. 

(b) The effects of the cytochalasins have been extensively studied, in- 
cluding their alteration of the structure and function of actin filaments and 
their striking effects on motility (63, 69). The mechanism by which they act 
on actin filaments is neither simple nor fully understood (12-15, 17, 25, 32, 
37, 44, 45, 51, 60). One suggestion is that if they release the filaments from 
capping proteins, the filaments may contract into foci (17), which may ex- 
plain the granular appearance seen by EM. In liver cells, CB also induces 
loss of membrane-associated Mg2+-ATPase, and ruthenium red surface 
coat of bile canaliculi (49). It is unlikely that the CB effects described in 
this report are attributable to inhibition of hexose transport across the mem- 
brane (48) since impaired bile flow has also been found with cytochaiasin 
D (personal observations) which has no effect on hexose transport (57). 

Digitally-enhanced Fluorescent Imaging 
The liver edge was observed through an inverted microscope (Diaphnt 
TMD-EF; Nikon Inc., Garden City, NY) using digitally enhanced fluores- 
cence imaging (3, 4, 26). Two microscope modes were used. One mode 
consisted of epifluorescence with 20 and 40x fluorescence objectives and 
a 100x glycerin objective, a B1 filter cassette (exciting filter 420--485 nm, 
dichroic mirror DM510 run, absorption filter 520-560 urn), ultraviolet cut- 
ting, and neutral density filters, and a high pressure mercury lamp. The 
same field of the liver edge was also observed in a second mode by means 
of transillumination with the same objectives. The combination of CB infu- 
sion and major surgery results in a high mortality in rats. Reliable results 
of the liver changes could however, be obtained in stabilized animals 2 h 
after CB infusion. The observations in the CB group were made 2 h after 
its administration. 

An extremely low level of illumination was used to minimize damage 
from photooxidation of the fluorophore and from any residual, unfiltered 
UV light. The weak fluorescent images were captured with a silicon in- 
tensified target (SIT) camera (C1000-12; Harnamatsu Corp., Bridgewater, 
MA) which had been modified to allow user control of the gain and bias 
characteristics of the camera tube. Signal output was in the form of a 512 
× 512 pixel image (256 gray scale) which was routed to a video frame 
processor (C1440; Hamamatsu) to improve the signal-to-noise ratio by 
means of video frame averaging, giving a running average of 50 frames at 
a generation rate of 30 frames per second. The video signal was transferred 
to a time-lapse video cassette recorder (Panasonlc NVS050). 

Image Analysis Quantitation 
Measurement of canalicular activity was based upon changes in the intensity 
of fluorescence in the segments of bile canaliculi seen in the captured video 
sequences. Using an image analyzer (Pcrceptics, Knoxville, TN) based on 
a computer (Macintosh HCX; Apple Computer, Cupertino, CA), a rectan- 
gle was drawn around each segment of the bile canalicular apparatus, and 
the integrated optical density (IOD) of each of these areas was obtained. 
To control for variations in illumination and other internal factors affecting 
the intensity of the image as a whole (e.g., light leaks into the darkened 
room where the experiment was performed), the IOD of the entire field of 
rat liver was also obtained for use as a correction factor. 

1. Abbreviations used in this paper: CB, cytochalasin B; IOD, integrated 
optical density; SIT, silicon intensified target. 

Measurement of Bile Flow 

Bile was collected every 30 rain before injection of sodium fluorescein and 
every 15 rain for up to 60 rain after the injection in the CB-infused and con- 
trol groups. Bile flow was determined by weighing the collected bile in a 
preweighed tube. The time between the injection and the appearance of so- 
dium fluorescein in bile was estimated to examine the effect of CB on the 
excretion of sodium fluorescein into bile. The concentration of sodium 
fluorescein in bile was measured using a fluorescence spectrophotometer 
(Pcrkin Elmer LS-5; Oak Brook Instrument Division, IL) whose excitation 
and emission were set to 494 and 517 nm, respectively. The pH of the bile 
in each of the samples collected was determined using a pH meter with flat- 
surface electrode (Fisher Scientific), in both control and CB-treated 
animals. 

Procedure for EM 
The rat livers of CB-infused and the control groups were fixed after the 2 h 
infusion of CB or albumin solution containing DMSO. The liver was per- 
fused via the portal vein cannula with 1.2% glutaraidehyde buffered with 
0.05 M sodium cacudylate solution (pH 7.4) containing 50 mM lysine (11) 
at 40 cm H20 of pcrfusion pressure. For scanning EM, the well pcrfused 
areas were cut into small blocks ('M x 1 x 5 mm 3) and postfixed with 2% 
osmium tetroxide irr0.1 M cacodylate buffer for 3 h at 4"C, followed by de- 
hydration in a graded series of ethanol solutions. The tissue blocks were 
then fractured using a pair of forceps and prepared with a critical point dryer 
(E3100 Jumbo Series II; Polaron Equipment, Watford, England). After gold 
coating using a cold sputter etch unit (DESK-I; Denton Vacuum, Cherry 
Hill, N J), the fractured surfaces of liver tissues were examined in a scanning 
electron microscope (JSM-335, JEOL, Tokyo, Japan) with 20 kV accelera- 
tion voltage. FOr transmission EM, the tissues were fixed by the perfusion 
technique as described above, and cut into small blocks (1 x 1 mm3), fol- 
lowed by postfixation with 1% osmium tetroxide for 2 h at 4"C. Some tissue 
blocks were stained with 1% uranyl acetate in aqueous solution for 1 h at 
room temperature before dehydration (49, 50) in a graded series of ethanol 
and embedding in Epon-Araldite. Ultrathin sections were cut with a dia- 
mond knife on an Ultramicrotome (LKB2088 Ultratome V; LKB Produkter 
AB, Stockholm, Sweden) and stained in saturated aqueous uranyl acetate 
solution and Sato's lead solution (58). The specimens were examined in a 
transmission electron microscope (model EM400; Philips Electronic In- 
struments, Inc., Mahwah, NJ) with 60 kV acceleration voltage. 

Results  

Normal Rat Liver 
The dynamic intraparenchymal blood flow beneath the sur- 
face of the rat liver was observed. The blood flowed radially 
from the terminal portal venules into the sinusoids surround- 
ing the portal tracts. The sinusoidal blood flow was uniform 
and rapid, draining into the terminal hepatic venules. Ap- 
proximately 2-3 s after the injection of sodium fluorescein, 
fluorescence microscopy revealed a yellow fluorescence 
filling the sinusoids adjacent to the terminal portal venules 
(Fig. 1 a). The fluorescein was distributed evenly to the sinu- 
soids from the terminal portal venules and immediately dis- 
appeared into the terminal hepatic venules (Fig. 1 b). 20- 
30 s later, the liver parenchyma began to fluoresce (Fig. 1 
c); this persisted for ,'~30 min. The subsequent decrease in 
hepatocyte fluorescence coincided with the appearance of 
the fluorescein in the bile canaliculi. 

Although the images obtained directly from the camera 
were uninterpretable, with real time image processing the 
fluorescence of bile canaliculi was clearly recognizable and 
for up to 120 min (Figs. 2, a-f). A polygonal, two-dimen- 
sional meshwork of bile canalicular fluorescence was seen 
when the focus of the microscope was adjusted to visualize 
the superficial cell lamina on the surface of the liver (Fig. 
2 d). By focusing deeper, bile canaliculi forming a three- 
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l~gure 1. Fluorescent cinephotomicrographs of a portion of the liver in vivo, showing the in vivo liver microcireulation after the injection 
of sodium fluorescein. In a, a brilliant yeUow fluorescence appears in the part of the sinusoids adjacent to the terminal portal venules 
(PP'). The tluorescence seen in b is evenly distributed to the sinusoids in a radial fashion from the terminal portal venules (PP'), converging 
to the terminal hepatic venules (HI/). In c, the fluorescence is no longer found in the sinusoids but the liver cell cords have bright fluores- 
cence a short time later. Bar, 100/~m. 

Figure 2. Comparison of results using digitally enhanced fluorescence imaging, a shows the imaging before capture by the SIT camera. 
Note that all that can be seen is ~snow7 b is the same image captured by the SIT camera and displayed on a monitor. The image is un- 
processed. Bile canaliculi, albeit fuzzy, can now be recognized, c shows the same image using real-time image processing. Note the sharper 
definition of the bile canaliculus network (chicken-wire mesh appearance). (d-f) Fluorescent cinephotomicrographs ,'°60 min after the 
injection of sodium fluorescein. The fluorescence of the bile canaliculi is clearly recognized in the rat liver in vivo. (S) sinusoid. In d, 
a polygonal meshwork of the bile canalicular fluorescence is seen if the focus of the microscope is adjusted to visualize the superficial 
cell lamina on the surface of the liver. By focusing slightly deeper, the fluorescence pattern of bile canalieuli is changed in e. By focusing 
more deeply, the linear fluorescence pattern of bile canaliculi in the substance of the liver cell cords is well visualized in f These two 
kinds of fluorescence pattern of bile canaliculi is found to be connected to each other by changing the focus of the microscope. Bar, 10 ~m. 
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Figure 3. Fluorescent cinephotomicrographs show the sequence of bile canalicular contractions in vivo. The region illustrated is a portion 
of the canalicular network deep in the substance of the liver. A time-lapse series is shown with the real-time values in the upper left comer 
of each micmgraph. The horizontal lines are rastral lines. The bile canalicular region imaged (white line with a hook) is outlined by sodium 
fluorescein which has been secreted into the canalicular lumen. The background staining of the cells remains virtually unchanged through- 
out, hence, there is no change in focus. The time for the completion of the contraction sequence in a-c  is 17:14:19-17:13:41, i.e., 38 s. 
d - f  show another contraction sequence of the same group of bile canaiiculi as shown in a-c. In these micrographs, the pattern of the bile 
canalicular contractions is similar to that of a-c,  but the contraction time is 16 s. In the canalicular region (a-c), four segments of approxi- 
mately equal length can be identified: (0, lower end; (ii), lower mid; (iii), upper mid; (iv), upper end, including hook; each corresponds 
to the length of one face of an bepatocyte. The "hook" is a branch point, here the canaliculus dips into the liver and is lost from view. 
The large arrow points in the direction of bile flow (which is opposite to that of the sinusoidal micro-circulation, and towards the bile 
duct). Details of the contraction sequence is as follows: In a, note that i, ii, iii and iv segments are all patent and filled with fluorescein- 
labeled bile. In b, segments iii and iv have contracted (iii contracts first followed by iv, not shown) with extrusion of bile in the direction 
of the arrow and out of the field of vision. These segments are no longer visible because the fluoresceinated bile is no longer present. 
Segment i has also contracted; its fluorescence is lost. Segment ii shows increased fluorescence and is dilated; it has received bile from 
segment i. In c, note the return of fluorescence to segments ii, iii and iv (an appearance closely similar to that seen in a), this is ascribed 
to refilling of segments iii and iv from segment ii. Segment i is still contracted, d - f  shows an almost identical contraction sequence. Bile 
flow is again in the direction of the arrow shown in a. g- i  are close-up prints of d-f. ($), sinusoid. Bars; 10/~m. 
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Figure 4. Fluorescent cinematomi- 
crographs of the bile canalicular 
meshwork in vivo. (a) Control liver. 
A polygonal meshwork of the bile 
canalicular fluorescence (arrowhead) 
is uniformly recognized on the sur- 
face of the liver. (b) CB-infused liver. 
The bile canalicular fluorescence is 
irregularly and extensively dilated. 
Note the saccular dilatation of bile 
canaliculi (arrowheads). Bar, 10 #m. 

dimensional network within the substance of the liver lobule 
were well visualized. They displayed a linear fluorescence 
pattern along the liver cell cords (Fig. 2, e and f ) .  Short 
branches of linear bile canaliculi connected with a polygonal 
meshwork of bile canaliculi. Observing the same field by the 
transiUumination method confirmed that this fluorescence 
corresponded to bile canaliculi. 

The canalicular network remained patent for a variable 
length of time showing only nearly continuous fine fluctua- 

tions in caliber, but there were periods during which seg- 
ments would become blacked out as they expelled a bolus of 
canalicular bile into a contiguous region of the network; 
these motions were interpreted as periodic contractions. Af- 
ter a variable time period, the canalicular fluorescence reap- 
peared only to disappear again when the expulsive events 
would be repeated. These dynamic movements of bile 
canaliculi were recorded on time-lapse video. Bursts of 
canalicular activity were occasionally seen as depicted in 

Figure 5. Fluorescent cinematomicrographs show the sequence of bile canalicular motility in vivo in CB-infused rats. Note that tubular 
distension of bile canaliculi shows impairment of canalicular motility. The real time in the upper left comer in each micrograph. The dilated 
region of bile canaliculi indicated by the arrowhead 1 is not changed for more than 30 rain. In e, this region begins to dilate and dilates 
more and more infwith strong intensity of canalicular fluorescence. The region pointed by the arrowhead 2, shows extremely slow contrac- 
tion in b and c and dilates again in e and f. The segment indicated by the arrowhead 3 continues to contract in a, b, and c, and dilates 
in d. The time represented by this sequence is 2,160 s (36 min). Bar, 10 #m. 
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Fig. 3. Bile canalicular contractions appeared to be forceful, 
expelling the fiuorescein from one segment of the bile 
canalicular system to another. Variability in the completion 
of contractions in the same canalicular secretory unit is seen 
during a 38-s period in Fig. 3, a - c  (17:13:41 -* 17:14:19) and 
over 16 s in Fig. 3, d-f(17:18:15 -* 17:18:31). The sequences 
always appeared unidirectional. The details of the contrac- 
tion sequence is given in detail in Fig. 3. Not all segments 
demonstrated such motile behavior, suggesting that some 
regions are conductive or perhaps are resting rather than ac- 

Figure 6. Effect of CB on bile flow. During 
the period of in vivo observation after injec- 
tion of sodium fluorescein (time 0-60 min), 
bile flow with CB is significantly decreased. 
Note gradual return towards normal values 
suggesting reversibility of the CB effect. 

tively contractile. Movement of bile canaliculi appeared 
overaU to be in a direction opposite to the liver's microcircu- 
lation which is in a portal to centrilobular direction. Bile 
canalicular contractions were most notable in zone 1 
(periportal) regions; they were not observed in the subcapsu- 
lar "chicken-wire" network of canaliculi on the liver surface. 
Great care was taken to ensure that the observed movements 
were not induced by changes of focus of the microscope or 
by movement of the liver itself; this was ascertained by using 
noncontractile reference points in the same field and by 
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Figure 7. Biliary excretion of 
sodium fluorescein. The graph 
shows the amount of sodium 
fluorescein in the bile duct 
samples (volume of sample 
collected x concentration of 
sodium fluorescein). In con- 
trois, there is a short rise fol- 
lowed by a fall following the 
bolus injection. In the CB- 
treated group, there is a slow 
rise to a significantly low level 
and a delayed peak indicating 
impairment of bile flow. 
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deliberately focusing up and down periodically to ensure the 
focus was correct. Moreover, when a segment of canaliculus 
was in a closed or contracted state the fluorescence disap- 
peared, and deliberately changing the plane of focus did not 
cause the segment to reappear. 

Cytochalasin Infusion 
As in normal liver, '~30 rain after injection the fluorescence 
appeared in the bile canaliculi in both control and CB- 
infused groups. In the controls, a uniform polygonal mesh- 
work of bile canalicular fluorescence was recognized on the 
surface of the liver (Fig. 4 a). However, in the CB-infused 
rats, bile canaliculi in acinar zone 1 became progressively 
dilated (Fig. 4 b). Saccular dilation of bile canaliculi was 
most noticeable at the branching points of the bile canalicu- 
lar meshwork. In the control group, the diameter of bile 
canalicular fluorescence was 0.72 5:0.03/~m (mean 5: SEM, 
n = 37) and the minimum and maximum diameters were 
0.41 and 1.16 /~m. In the CB-infused group, the mean 
canalicular diameter increased to 1.83 + 0.20/~m (n = 10) 
and the minimum and maximum diameters were 1.20 and 
3.46/~m (p < 0.005). With CB, bile canaliculi were widened 
irregularly, and commonly this was extensive. Canalicular 
motility in the dilated areas, was impaired and contractile ac- 
tivity was reduced (Fig. 5). In addition, segments of the 
canalicular network displayed saccular or tubular distension 
with virtual cessation of canalicular motility. The distension 
progressed even after the removal of CB. In the saccular dila- 
tations, the fluorescence was more intense than in surround- 
ing canaliculi. The motile activity in areas of saccular disten- 
sion was infrequent and extremely slow, and there were no 
contractions or loss of fluorescence. Dynamic and forceful 
movements of bile canaliculi observed in vivo in control liver 
(CB experiment) were identical to those found in normal 
liver. The microcirculation of the liver appeared normal in 
both controls and CB-infused rats. 

Bile Flow 
CB caused a diminution in bile flow and a delay in the ap- 
pearance of sodium fluorescein in the bile. Bile flow, as as- 
sessed by measuring the bile collected in the bile duct cannu- 
la, was reduced by CB (Fig. 6). After the addition of CB, 
bile flow gradually decreased with time, and was significantly 
reduced (2.5 + 0.5 pl/min/100 g b.w., n = 5) 2 h after CB 
as compared to controls (7.8 + 0.7 pl/min/100 g b.w., n = 
5) (p < 0.001). The time between injection and the appear- 
ance of sodium fluorescein in bile duct bile was significantly 
increased in CB-infused groups (220 5 :9  s, n = 5) com- 
pared to controls (83 ~- 3 s,'n = 5) (9 < 0.001). The excretion 
of sodium fluorescein into bile duct bile was also altered by 
CB. In controls, sodium fluorescein appeared in the bile duct 
samples immediately after the injection via the mesenteric 
vein, and reached the maximum concentration 30 min after 
the injection of sodium fluorescein, subsequently disappear- 
ing from the bile quickly. In the CB-infused group, sodium 
fluorescein disappeared significantly later than in controls, 
and the excretion of sodium fluorescein was reduced (Fig. 7). 
In terms of liver function, the excretion of sodium fluores- 
cein, as measured by bile duct collections, was significantly 
impaired by CB, confirming previous reports (40, 53). The 
effects depicted were after 2 h of CB infusion in a dosage that 

produces a potentially reversible injury (40). Despite the im- 
pairment of bile flow at the bile duct level, canalicular bile 
secretion apparently continues with CB administration (67). 

The pH of bile was 8.70 in both the control and the CB- 
treated group. There was no fluctuation and no significant 
differences before or after injection with sodium fluorescein, 
hence it is unlikely that changes in pH are critical in this 
study. 

EM 

EM documented the nature of the bile canalicular changes 
observed in vivo. By scanning EM, marked bile canalicular 
dilation was noted mainly in zone 1 with CB (Fig. 8). As ob- 
served in vivo, there were two kinds of bile canalicular dila- 
tion, saccular and tubular. Saccular dilatation occurred 
mainly at the bifurcations in the bile canalicular meshwork. 
Transmission EM of the controls showed normal pericana- 
licular actin microfilamentous networks and actin cores in 
canalicular microviUi (Fig. 9 a). The livers of CB control 
rats were also normal, but in the CB-treated group, bile cana- 
liculi were dilated, showed loss of microvilli, and had a gran- 
ular rather than a filamentous ectoplasmic zone (Fig. 9 b). 

Image Quantification 
Changes in the IOD measurements of a canalicular segment 
reflect the degree offilling with fluorescence and hence the 
size or calibre of that segment. The values of IOD, which 
represent a relative measurement, were constantly changing 
(Fig. 10). At times, an increase in the luminal diameter of 
one segment was associated with a decrease in the luminal 
diameter of an adjacent segment. There appeared to be coor- 
dination of contraction and dilatation, with emptying of one 
segment associated with filling of the next segment (e.g., 
time 190-235 s in Fig. 10). The video sequence has sug- 
gested a unidirectional pattern of flow, although such a phe- 
nomenon could not be evaluated by IOD measurements. The 
length of time required for the canaliculi to empty was vari- 
able, but at times was 15 s or less. 

Discussion 

Dynamic contractile movements of bile canaliculi were ob- 
served in the normal rat in vivo, but the motile activity was 
inhibited or abolished by cytochalasin B. These results have 
important implications for liver structure and function with 
respect to mechanisms of bile secretion and flow. The con- 
tractions appear functional since they have an active pump- 
ing action with movement of canalicular bile from contrac- 
tile to conducting regions of the'canalicular system. Their 
functional role in bile flow is exemplified further by the alter- 
ations seen with CB since impairment of canalicular motility 
leads to intrahepatic canalicular cholestasis. 

There may be two routes of bile filling of canaliculi in vivo. 
One is the active secretion of bile by the contiguous hepato- 
cytes which compose any individual segment of the bile 
canaliculus (47). Secondly, bile may come from the up- 
stream regions of the bile canalicular system which is an 
open network of channels. 

The general overall direction of bile flow in the liver lobule 
is from zone 3 (central) to zone 1 (periportal) and from there 
into the portal bile ducts which drain into the interlobular 
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Figure 9. Transmission electron rnicrographs of rat liver. (a) Control liver. Portion of bile canaliculus (BC). Actin filaments (arrowheads) 
are noted in microvilli and form a network around the canaliculus. Intermediate filaments (arrows) in bundles are also seen. Uranyl acetate 
and lead citrate stain. (b) CB-infused liver. Part of a dilated bile canaliculus (BC) is shown. Note the loss of mierovilli and ectoplasmic 
thickening (asterisks). The actin microfilamentous zone is granular in appearance (compare with a). Intermediate filaments (arrows) are 
again seen. Uranyl acetate and lead citrate stain. Bar, 0.1 ~m. 

and main hepatic ducts. While the video sequences sug- 
gested that flow was unidirectional (as indicated by the arrow 
in Fig. 3), such dynamic events cannot be readily demon- 
strated by static images. IOD measurements of unidirec- 
tional flow would be characterized by sequential contractions 
of the lower, middle and upper segments (Fig. 10). Such an 
observation could not be made with certainty because of the 
limits of the microscopic methods and quantitation tech- 
niques. 

The almost continuous fine fluctuations in caliber are per- 
haps related to maintaining tone and may reflect the elastic- 
ity of the canalicular membrane, and are not regarded as 
contractions. With regard to contractions per se, not all 
components of the bile canalicular network exhibited equal 

contractile activity. For instance, the "chicken-wire" network 
of canaliculi present on the surface of the liver (subcapsular) 
showed no contractions. Contractions were most frequently 
observed in zone 1 (periportal) canaliculi. This is especially 
interesting since bile acid secretion is predominantly a func- 
tion of zone 1 hepatocytes (8, 22, 41). It is of special interest 
that the effects of CB were also most marked in zone 1, which 
would be expected if the functional basis of canalicular con- 
traction is actin filament mediated. Not only were contrac- 
tions greatly impaired by CB, but canalicular walls which are 
normally supported by aetin, appeared weakened and be- 
came overdistended to the point of sacculation. Bile canalic- 
ular sacculations have also been reported in the rat treated 
with alpha-naphthyl isothiocyanate (6). The observation that 

Figure & Scanning electron micrographs of a fractured surface of rat livers. (a) Control liver. Note the chicken wire-like anastomosing 
network of bile canaliculi (arrowheads). Canalicular lumina are uniformly filled with microvilli. (S), sinusoid. (b) CB-infused liver. Note 
the marked tubular dilatation of bile canaliculi (arrowheads). (c) CB-infused liver. Bile canaliculi are extensively dilated. Note the saccular 
dilatation of bile canaliculi (arrowheads). (d) High magnification of the tubular dilatation of bile canaliculi in CB-infused livers. Note 
the complete loss of canalicular mlcrovilli and the greatly dilated canalicular lumen (arrowhead). (e) High magnification of the saccular 
dilatation of bile canalicnli in CB-infused livers. Mainly at the bifurcation of the canalicular system, bile canaliculi are saccularly dilated 
with loss of microvilli (arrowhead). 
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Figure 10. IOD measurements, 
taken from three adjacent seg- 
ments of bile canaliculi similar to 
that shown in Fig. 3. The vertical 
scale represents the intensity of 
fluorescence within canalicular 
lumina, and hence the size of the 
canaliculi. Arrows demonstrate 
those times when a diminution 
in fluorescence of one segment 
(interpreted as contraction) was 
associated with an increase in 
fluorescence (dilation) of a neigh- 
boring segment. During some 
contractions of the middle and 
upper segment, the lower seg- 
ment appears to have remained 
isometric (e.g., times 15 and 65). 
At other times (e.g., 206 and 
235), contraction of the lower 
segment was associated with dila- 
tation of the middle segment. In 
the case of the middle and upper 
segments, there is a "saw-tooth" 
type pattern with a tendency for a 
decrease in intensity of the mid- 
die segment to be followed almost 
immediately by an increase in flu- 
orescence of the upper segment 
(e.g., scale points 15, 65, 140, 

148, and 190-235). This pattern fits best with the sequences seen in the movie and with the images depicted in Fig. 3. The apparent lack 
of synchrony at other time points is not because of retrograde filling, since the upper segment empties into the next adjacent segment (not 
shown); the presence of branch points and the limitations of the method are the likely explanation. In the region where there is a burst 
of canalicular contractions (179-240 s) the time interval between contractions is in the 20--40 s range. At other times it is more variable. 
Notice that in the last 60-90 s of this 6-min video sequence, there appears to be diminution in the intensity of fluorescence within the 
canaliculi; this could represent a physiological change or it may have resulted from artefactual extinguishing of the fluorescence by UV 
illumination. 

the sacculations appeared first at branch points of canaliculi 
suggests special sensitivity, or function of actin filaments in 
these regions. 

In neither CB-treated animals nor in the controls was there 
evidence of leakage of fluorescent material between the cells 
(paracellular pathway of bile secretion) (21). This is an im- 
portant difference from isolated liver cell couplets in which 
emptying of canalicular lumina is accompanied by passage 
of canalicular bile between the cells through tight junctions 
which are presumably leaky (52, 55). The in vivo phenome- 
non of dynamic, pumping motions that visibly propel bile 
along the canaliculus would be inconsistent with the rupture 
and collapse theory of canalicular motion that has been ap- 
plied to liver cell couplets (9, 10, 30, 35). Hence, while "col- 
lapses" may occur in isolated hepatocyte couplets, this is not 
seen in vivo. 

These in vivo results using normal and CB-treated rats add 
significant weight to the concept that bile canalicular motil- 
ity is an active, dynamic process in the normal liver, where 
it likely facilitates canalicular bile flow (52). The results of 
these in vivo studies can be compared to previous in vitro 
investigations using isolated hepatocyte couplets (55, 62). In 
both, canalicular contractions follow the same general pat- 
tern, the degree of canalicular emptying was variable, as 
were the lengths of time required for the dilatation phase 
(canalicular filling) and contractile phase. Also, in both, ran- 

dom appearing partial or complete contractions occurred at 
variable time intervals interrupted by bursts of contractile ac- 
tivity in which the contraction interval is much shorter. 
However, canaliCular contractions in vivo are capable of a 
10-fold increase in contraction rate compared to that seen in 
isolated couplets. For instance, in bursts of activity, the time 
interval between contractions was 300-360 s in couplets (55) 
and 20--40 s in vivo (Fig. 3). It must be remembered how- 
ever, that bile canalicular contractions are closely linked to 
bile flow and that in vivo, bile can reach an individual 
canaliculus from dual sources, that secreted and that coming 
from contiguous canaliculi; in contrast, in the isolated coup- 
let, the only bile present is that secreted by the couplet cells 
themselves; this could explain an order of magnitude differ- 
ence in the contraction rate. 

In previous in vivo studies, it has been difficult to obtain 
both satisfactory resolution and to record fluorescence im- 
ages for more than a few seconds because of fading of the 
fluorescence and because of photooxidation-induced damage 
to living cells. These problems have have resolved by ad- 
vances in technology which permit very low levels of illumi- 
nation and enhancement of video images by real-time pro- 
cessing, to visualize what would otherwise be indefinite, 
blurred, or simply invisible (31). Further, this study exem- 
plifies the usefulness of this technology (36, 38) in the exami- 
nation of in vivo functions at the tissue and organ level, per- 
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mitting correlation of subcellular events with structural and 
functional changes in the living organism. 
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