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ABSTRACT Miscanthus is a perennial grass with potential for lignocellulosic ethanol production. To ensure its
utility for this purpose, breeding efforts should focus on increasing genetic diversity of the nothospecies
Miscanthus · giganteus (M·g) beyond the single clone used in many programs. Germplasm from the corre-
sponding parental speciesM. sinensis (Msi) andM. sacchariflorus (Msa) could theoretically be used as training sets
for genomic prediction of M·g clones with optimal genomic estimated breeding values for biofuel traits. To this
end, we first showed that subpopulation structure makes a substantial contribution to the genomic selection (GS)
prediction accuracies within a 538-member diversity panel of predominately Msi individuals and a 598-member
diversity panels of Msa individuals. We then assessed the ability of these two diversity panels to train GS models
that predict breeding values in an interspecific diploid 216-member M·g F2 panel. Low and negative prediction
accuracies were observedwhen various subsets of the two diversity panels were used to train theseGSmodels. To
overcome the drawback of having only one interspecific M·g F2 panel available, we also evaluated prediction
accuracies for traits simulated in 50 simulated interspecific M·g F2 panels derived from different sets of Msi and
diploidMsa parents. The results revealed that genetic architectures with common causalmutations acrossMsi and
Msa yielded the highest prediction accuracies. Ultimately, these results suggest that the ideal training set should
contain the same causal mutations segregating within interspecific M·g populations, and thus efforts should be
undertaken to ensure that individuals in the training and validation sets are as closely related as possible.
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Current global reliance on fossil fuels is one of the main drivers of
climate change (Dale et al. 2011), the physical impact of which is
already being observed. It is therefore imperative that alternate sources
of energy be utilized to meet current energy demands. One such source
is bioenergy crops, which offer more sustainable energy through
reduced carbon footprints (Saha et al. 2013). Among the biofuel crops
currently being evaluated, Miscanthus, a C4 perennial grass that is a
phylogenetically close relative to sugarcane (Saccharum officinarum),

has great potential for combustion and lignocellulosic ethanol biofuel
production, as well as abundant genetic diversity for climatic adapta-
tion (Clifton-Brown et al. 2008a; Dwiyanti et al. 2013; Sacks et al. 2013).
To date, most breeding efforts for the development ofMiscanthus as a
bioenergy crop have focused on the nothospecies M. · giganteus
(M·g), an interspecific cross between M. sinensis (Msi, which is
predominantly diploid) andM. sacchariflorus (Msa, which has diploid
and tetraploid forms) (Hodkinson et al. 2002).
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Virtually all M·g accessions used for bioenergy in North America
and Europe are derived from the same infertile clone, ‘1993-1780’
(Clifton-Brown et al. 2008; Glowacka et al. 2014; Heaton et al. 2008).
Reliance on this clone has significant drawbacks for further devel-
opment because it displays insufficient winterhardiness in northern
latitudes of North America (Dong et al. 2019) and flowers too early in
southern latitudes of the US (Erik Sacks, unpublished data), thereby
having substantial negative impact on yield. Thus, there is a critical
need to increase genetic diversity of mainstream M·g biofuel crops.
Breeding efforts are currently underway to incorporate the copious
genetic diversity ofMsi andMsa into newM·g clones (Clifton-Brown
et al. 2019). In particular, it should be possible to use genome-wide
marker data available in both Msi and Msa in genomic selection (GS)
models to predict whichM·g clones have optimal breeding values. By
leveraging genomic and phenotypic data in a training set, GS is
capable of predicting genomic-estimated breeding values (GEBVs) of
unphenotyped related accessions based solely on genome-wide marker
data (Meuwissen et al. 2001; Jarquín et al. 2017). Given that previous
GS studies in Msi obtained moderate- to high prediction accuracies
for biomass and cell wall composition (Slavov et al. 2014; Davey et al.
2017; Clark et al. 2019b), GS is theoretically well-suited to utilize the
genetic diversity of existing Msi and Msa diversity panels and select
genetically distinct M·g clones with superior biofuel capacity.

The task of training a GS model on Msi and Msa diversity panels
and then using it to predict phenotypically optimal M·g clones
presents some challenges that need to be explored. The first is that
subpopulation structure is prominent in both Msi and Msa (Clark
et al. 2014, 2018), which could result in a bias in the prediction
accuracies from GS models trained on these data (Guo et al. 2014).
Such unaccounted population structure could also have a major
impact on the efficiency of incorporating GS into breeding programs
(Windhausen et al. 2012; Isidro et al. 2015). One approach for
mitigating these adverse impacts of population structure on GS
breeding programs is to identify an optimal subset of individuals
with minimal relatedness for training a GS model. In particular, the
coefficient of determination mean (CDmean) criterion (Rincent et al.
2012, 2017) tends to select individuals that span the range of genetic
diversity present in a given diversity panel, thereby resulting in a
training set of individuals with a minimal amount of relatedness to
one another.

The second challenge to consider is the impact of using diversity
panels from two related species (Msi andMsa) to train a GSmodel for
predicting breeding values in interspecific M·g breeding material.
Previous work has shown that the degree of relatedness between
individuals in the training set and the breeding material has a major
influence on GS prediction accuracies, where highest accuracies tend
to be achieved when the individuals in both sets are highly related
(Clark et al. 2012; Windhausen et al. 2012; Wientjes et al. 2013;
Lorenz and Smith 2015). Thus, the impact of using a training set

consisting of diversity panels from two different species on GS
prediction accuracy needs to be carefully explored and quantified.
In particular, a systematic comparison of using both Msi and Msa
diversity panels to train a GS model vs. using each panel separately
will help determine the extent to which the additional degree of
genetic diversity afforded by using both panels impact the accurate
prediction of breeding values in M·g clones.

In summary, the development of optimal training sets will enable
a propitious utilization of the genetic diversity in Msi and Msa for
predicting GEBVs of traits related to biofuel capacity and winter
hardiness in M·g breeding populations. This could enhance current
efforts to incorporate more genetic diversity into M·g clones by
applying GS as effectively and efficiently as possible. Therefore, the
purpose of this study was to explore the influence of Msi and Msa
training set composition on the ability of GS models to predict
breeding values of M·g clones. We considered a prediction set
consisting of a diploid F2 population derived from an Msa · Msi
cross, as well as 50 simulated interspecific diploid F2 populations
derived from different sets of diploid parents that were randomly
selected from Msi and Msa diversity panels. The latter simulation
study was conducted to mitigate the drawback of having only one
interspecific diploid F2 population available for analysis. Our specific
objectives were to (i) evaluate the impact of population structure in
Msi and Msa diversity panels on GS prediction accuracy and (ii)
quantify the advantages and disadvantages of using bothMsi andMsa
panels as a training set for fitting GS models.

MATERIALS AND METHODS
We used both observed and simulated genotypic and trait data to
investigate the ability of an Msi diversity panel (Clark et al. 2019a)
and an Msa diversity panel (Clark et al. 2018) to accurately predict
breeding values in an interspecific diploid F2 population (Kaiser and
Sacks 2015). The observed traits were used to evaluate the impact of
population structure on GS prediction accuracies within each di-
versity panel, as well as to assess the ability of various subsets of the
diversity panels to predict interspecific F2 breeding values. To quan-
tify the stability of prediction accuracies in the F2 population, a
complementary simulation study was conducted. Specifically, 50 in-
terspecific diploid F2 populations were simulated (where each pop-
ulation was derived from a different set of randomly selected parents),
and then simulated traits were used to assess the ability of the Msi and
Msa panels to train GSmodels for accurate prediction of GEBVs in all
51 F2 populations.

Field trials and phenotypic analysis
Phenotypic data, including basal circumference (Bcirc), compressed
circumference (Ccirc), culm length (CmL), diameter of basal in-
ternode (DBI), number of days to first heading (HD1), and dry
biomass yield (Yld), were obtained during the third year of three
panels grown at replicated field trials. Each panel was planted as a
randomized complete block design at multiple locations, with geno-
types propagated vegetatively as clonal replicates. Due to import
restrictions and differential survival of genotypes, not all genotypes
were able to be evaluated at all locations.

The first panel evaluated was a diversity panel of Msi, previously
described by Clark et al. (2019a). These evaluations took place at five
temperate locations, including Sapporo, Hokkaido, Japan (HU),
Leamington, Ontario, Canada (NEF), Fort Collins, Colorado, USA
(CSU), Urbana, Illinois, USA (UI), and Chuncheon, South Korea
(KNU), with four blocks per location. All locations included a trial
planted in 2012 and evaluated in 2014, with an additional trial at
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KNU planted in 2013 and evaluated in 2015. Data from a subtropical
location (Zhuji, China) were omitted from this study. In total
530 diploid genotypes of Msi were evaluated, as well as six diploid
and two tetraploid genotypes of Msa.

The second panel evaluated a diversity panel of Msa. These trials
took place at three temperate locations, including HU (four blocks),
UI (four blocks), and KNU (one block). Trials were planted in
2015 and evaluated in 2017. In total 356 diploid and 242 tetraploid
genotypes of Msa were evaluated, including the six diploid and two
tetraploid genotypes that were also evaluated in the Msi trials.
Population structure and genetic diversity of the genotypes within
the diversity panel have been described by Clark et al. (2018).

Lastly, the third panel was a diploid F2 population derived from
Msa ‘Robustus’ · Msi ‘Cosmopolitan Revert’ (called the “09F2”
population). This population was evaluated in a single field trial
with four blocks planted at UI in 2015 and evaluated in 2017. This
population has been previously described by Kaiser and Sacks (2015)
and Dong et al. (2017). ‘Cosmopolitan Revert’ was also evaluated in
the Msi diversity panel trial, and ‘Robustus’ in both the Msi and Msa
diversity panels. Trait data were obtained for 216 F2 progeny.

Across all three panels and locations, least-squared means
(LSmeans) of the six evaluated traits for each clonal genotype were
estimated using the emmeans R package (Lenth et al. 2019) using the
following model:

Yijk ¼ mþ Gi þ Tj þ ðGTÞij þ BðTÞkðjÞ þ eijk;

where Yijk is the Box-Cox transformed trait (Box and Cox 1964) of the
plot in the kth block in the jth trial (i.e., each combination of location,
year, and panel) with the ith clonal genotype, m us the grand mean, Gi

is the fixed main effect of the ith clonal genotype, Tj is the random
main effect of the jth trial, ðGTÞij is the random two-way interaction
effect between the ith clonal genotype and the jth trial, BðTÞkðjÞ is the
random effect of the kth block nested within the jth trial, and eijk is the
random error term associated with the plot in the kth block in the jth

trial with the ith clonal genotype. For the Box-Cox transformation, the
optimal lambda values selected were 0.4 for Ccirc and Bcirc, 1.2 for
CmL, 0.2 for DBI, and 0.3 for Yld. The trait HD1 was left
untransformed.

Genetic marker data
All Miscanthus genotypes were subjected to RAD-seq, using the
protocol described by Clark et al. (2014). The DNA from the
individuals in the Msi and Msa diversity panels were digested with
PstI and MspI and sequenced adjacent to the PstI site, whereas SbfI
was used in place of PstI for DNA from the individuals in the 09F2
population. In all cases, a 200-500 bp size selection was used to reduce
library complexity.

A custom pipeline using TASSEL5 GBSv2 (Glaubitz et al. 2014),
Python, and R was used to find common markers among the three
trials and call genotypes. The pipeline is available at https://github.-
com/lvclark/TASSELGBS_combine (DOI: 10.5281/zenodo.3367470).
Briefly, in each population, TASSEL5 GBSv2 was used to identify
unique tags and their read depth within each taxon. Bowtie2
(Langmead and Salzberg 2012) was then used to align the tags to
the Miscanthus sinensis v7.1 reference available from DOE-JGI at
https://phytozome.jgi.doe.gov/. A Python script using TagDigger
(Clark and Sacks 2016) was then used to import SAM files, find
common alignment locations among the three datasets, organize tags
into markers, and filter markers based onmissing data rate andminor
allele frequency (MAF). For the Msi and Msa diversity panels, each

marker had to have at least 300 individuals with reads and five
individuals with the minor allele. For the 09F2 population, each
marker had to have at least 200 individuals with reads and at least
30 individuals with the minor allele. An R script using polyRAD
(Clark et al. 2019c) was then used for genotype calling, and amatrix of
posterior mean genotypes, scaled from 0 to 1, was exported for the
combined dataset. The subsequent set of 5,140 markers were used to
fit and evaluate all GS models considered in the analysis of the
observed traits. Using these markers, narrow-sense heritabilities were
estimated for each evaluated trait within each of the three panels by
dividing genetic variance component estimate by the sum of genetic
variance and residual variance component estimates from the mix-
ed.solve function in the rrBLUP R package (Endelman 2011).

A second filtering procedure was conducted to obtain markers
for the simulation study. This procedure used the same markers
segregating in the three panels, but the genotypes called by poly-
RAD were discretized to allow for the quantification of dominance
effects, and hence assess the importance of dominance in the
downstream GS analysis. Another round of filtering was con-
ducted to remove markers that were not anchored to a genetic map
created for the 09F2 population (Dong et al. 2018) (https://
onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12472); such a fil-
tering step was essential because a genetic map was needed to
create the 50 simulated interspecific F2 populations. Upon comple-
tion, a total of 356 markers across 19 linkage groups were available for
the simulation study.

Quantifying subpopulation structure within
diversity panels
To quantify subpopulation structure, a principal component analysis
(PCA) of the genomic markers (Price et al. 2006) was conducted
separately within theMsi andMsa diversity panels using the prcomp()
R funciton. This PCA was conducted in both panels using the same
5,140 markers used to evaluate the performance of GS on the
observed phenotypic data to facilitate an assessment of the contri-
bution of population structure to GS prediction accuracies. Kinship
matrices for accessions within the Msi and Msa diversity panels and
09F2 breeding population was generated using the popkin R package
(Ochoa and Storey 2019).

GS model and quantification of prediction accuracy
The GS model employed to analyze the observed and simulated trait
data were the random regression best linear unbiased prediction (RR-
BLUP) model (Whittaker et al. 2000; Meuwissen et al. 2001), and has
been previously described (e.g., in Rice and Lipka 2019). In brief, this
model is written as follows:

Yi ¼ b0 þ Σ
p
j¼1bjxij þ eij;

where Yi represents the LSMean of the observed trait or the simulated
trait from the ith individual, b0 is the intercept parameter, bj is the
random additive effect of the jth marker�N(0,s2

b), xij is the observed
marker genotype of the jth marker at the ith individual (enumerated as
-1 and 1 for the homozygous genotypes and 0 for the heterozygous
genotype), and ei is the random error term for the ith individual
�N(0,s2

E). The BLUP of bj is subjected to the ridge regression penalty
(Hoerl and Kennard 1970). This model was fitted using the rrBLUP R
package (Endelman 2011). For a given training and validation set
considered in this study, prediction accuracy was assessed by fitting a
GS model in the training set and then estimating the Pearson
correlation coefficient between the observed trait LSMeans or
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simulated trait values and the GEBVs among the individuals in the
validation set.

Assessing the impact of population structure within
diversity panels on GS prediction accuracy
We evaluated two strategies to quantify the influence of population
structure on the performance of GS on the observed traits within the
Msi and Msa diversity panels, which are summarized in Figure 1. To
assess the influence of population structure on GS prediction accu-
racy, we compared the prediction accuracy of the RR-BLUPmodel for
each trait to a corresponding model that included the LSMean of the
trait as response variable and the top PCs explaining the greatest
amount of marker variance as the explanatory variables (the specific
number of PCs were seven for Msi andMsa, shown in Figure S1 A-B).
To quantify the impact of the training set composition on GS
prediction accuracies, we performed ten replicates of a fivefold cross
validation procedure (Kohavi 1995) within each diversity panel. The
individuals of each training set obtained from the fivefold cross
validation procedure were used to assess the impact of training set
composition on GS prediction accuracies. That is, either (i) all
individuals in each training set was used to fit each GS model, (ii)
200 randomly selected individuals in each training set were used to fit
each GS model, or (iii) all individuals in each training set served as a
calibration set for using the CDmean procedure (Laloë 1993; Rincent
et al. 2012) to obtain 200 optimized individuals for fitting each GS
model. The purpose of sets (ii) and (iii) was to compare the prediction
accuracy of a set chosen by the CDmean procedure to a random set of
individuals of the same sample size. Thus, for each training set from
the fivefold cross-validation procedure, GS models were fitted to the
subsets of individuals described in (i), (ii), and (iii), and then pre-
diction accuracy was assessed in the corresponding validation set.

The CDmean procedure has been previously described (Rincent et al.
2012, 2017). In brief, this procedure identifies sets of individuals that
maximizes the mean squared correlation of the actual and predicted (from
the GEBVs) differences between each unphenotyped individuals’ trait
value and the population mean trait value. Each time the CDmean
procedure was conducted, a random subset of 200 individuals in the
training set was initially selected, and then the “Algo1” exchange algorithm
described in Rincent et al. (2012) was conducted 3,000 times to identify a
set of 200 individuals where the CDmean value was maximized.

Assessing the impact using both Msi and Msa as a
training set on GS prediction accuracy
We next assessed the ability of the Msi and Msa panels to obtain
accurate GEBVs of the observed trait LSMeans in the 09F2 population.
Seven different configurations (summarized in Table 1) of individuals
from the Msi and Msa diversity panels were used as training sets. The
GEBVs from the Whole.MsiMsa scenario listed in Table 1 were
calculated as the sum of GEBVs from a model trained in the entire
Msi panel and GEBVs from a model trained in the entire Msa panel.
For each of these configurations, prediction accuracy was assessed on
1,000 bootstrap samples of 216 individuals from the 09F2 population.

Assessment of robustness across multiple interspecific
F2 families via simulation study
Given that the 09F2 population was the only interspecific F2 pop-
ulation available for making inferences, we simulated 50 interspecific
F2 populations to further evaluate the ability of diversity panels to
predict GEBVs in breeding populations. Each interspecific F2 pop-
ulation consisted of one randomly selected Msi parent, and one

randomly selected diploid Msa parent. The simulation of each F2
population began with the random selection of one Msi and one
diploid Msa parent from the respective diversity panels. For each set
of parents, 50 F1 individuals were simulated and then intermated to
simulate 216 F2 individuals. The protocol implemented to simulate
these individuals has been previously described (Olatoye et al. 2019).
In brief, normal meiotic segregation was assumed and a custom
Haldane mapping function was used to simulate crossovers based on
the aforementioned genetic map of 356 markers in the 09F2 pop-
ulation. Upon completion, a total of 50 interspecific F2 families, each
consisting of 216 individuals, were available for evaluation.

A custom script in the R programming language similar to the one
described in Olatoye et al. (2019) was used to simulate traits in each
diversity panel and F2 population. This script randomly selected a
subset of the 356 discrete markers to be quantitative trait nucleotides
(QTNs) underlying these traits. The genetic architectures (i.e., con-
figurations of number of QTNs, as well as how many of them were
additive, dominant, or additive x additive epistatic) of the simulated
traits varied according to five different scenarios presented in Table 2.
Three of these scenarios (Scenarios 1,2, and 3 presented in Table 2)
considered QTNs with effect sizes that were equal across both panels
were simulated. For these scenarios the same number of QTNs were
randomly selected and assigned the same effect size, the latter of
which was determined using the runif() function in R. Two scenarios
(Scenarios 4 and 5) considered the impact of unequal QTN effect sizes
between the two different species on prediction accuracies. Finally,
the impact of different QTNs segregating within the diversity panels
were assessed by selecting QTNs based on the following: (i) the same
set of QTNs were selected for both diversity panels (Scenario 1), (ii),
different QTNs were selected within each diversity panel (Scenario 3,
4, and 5), and (iii) QTNs were selected from each panel such that 50%
of themwere the same while 50%were different (Scenario 2). For each
F2 population, all segregating QTNs from both diversity panels
contributed to the genetic signal of the simulated trait.

The approaches used to assess the prediction accuracy across the
51 F2 populations were similar to those described for evaluating GS
performance in the 09F2 observed trait data. In particular, the
RR-BLUP GS models were trained using the same seven configura-
tions of Msi and Msa diversity panel individuals described in Table 1.
For each simulated trait and configuration, the observed prediction
accuracy in the 09F2 population was compared to the distribution of
prediction accuracies from the 50 simulated F2 populations.

Data availability
R code, sequence data, phenotypic data, and individuals selected by
CDmean during analysis are available at https://github.com/marc-
bios/MsiMsa. Supplemental material available at figshare: https://
doi.org/10.25387/g3.12357563.

RESULTS

Proportion of heritable variation was higher in diversity
panels than in breeding population
We compared the distribution and heritabilities of the LSmeans of six
observed traits measured in the Msi, Msa, and 09F2 panels. With the
exception of Bcirc, the range of observed values of a given trait tended
to be similar across the three panels (Figure S2 and Table S1). The
distributions of HD1 was distinctively trimodal in the Msa panel,
while all remaining distributions were generally unimodal. Finally, all
six traits were less heritable in the 09F2 population than in the two
diversity panels (Figure S3). This could suggest that only a subset of
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the genes comprising the genetic architecture of these evaluated traits
were segregating in the 09F2 population.

Principal component analyses confirmed presence of
subpopulation structure in Msi and Msa diversity panels
The results of the PCA conducted on the genome-wide markers within
each diversity panel underscore previous findings (Clark et al. 2014,
2018) that subpopulation structure is ubiquitous in both Msi and Msa.
This result is illustrated in Figure S4, where the first two PCs within each
panel clearly subdivided the accessions into distinct clusters that were
consistent with the geographical origin of each accession. In addition, the

kinship matrices showed that individuals in Msi and Msa panels formed
two distinct groups and both had partial relationship with 09F2 based on
the kinship values (Figure S5). Thus, these results suggest that sub-
population structure is one of the main drivers of marker variability in
these two panels, and our exploration into the influence of this source of
variability into GS prediction accuracy is justified.

Subpopulation structure had a substantial impact on
prediction accuracies within diversity panels
For each of the observed traits in each diversity panel, the prediction
accuracies of the PCA model were similar, albeit less than those

Figure 1 Schematic representation of the methods to account for population structure within Miscanthus sinensis and Miscanthus sacchariflorus
diversity panels. Yellow rectangles refer to a given training set of individuals obtained from a fivefold cross validation procedure conducted within
each diversity panel. Purple circles refer to the models that are trained; specifically the genomic selection (GS) model is a random regression best
linear unbiased prediction (RR-BLUP) model, and the principal components (PC)-only model includes only the top PCs of 5,140 genome-wide markers
as explanatory variables (see Figure S1 for scree plots). The blue diamonds refer to the process of randomly selecting 200 individuals and conducting
CDmean procedure. Prediction accuracy, quantified as the Pearson correlation between the observed phenotypic values and the genomic estimated
breeding values (GEBVs) from each GS model, is then calculated among individuals in the corresponding validation set (gray symbol).

n■ Table 1 Training populations derived from the Miscanthus sinensis (Msi) and Miscanthus sacchariflorus (Msa) diversity panels that were
used to train genomic selection models fitted to predict trait values in the 09F2 population. Note that the CDmean procedure will select
different subsets of individuals for each trait.

Scenario Individuals from Msi panel used in training set Individuals from Msa panel used in training set

Msi.Random 200 Randomly selected individuals from Msi panel None
Msa.Random None 200 Randomly selected individuals from Msa panel
Msi.CDmean 200 Msi individuals selected from CDmean procedure None
Msa.CDmean None 200 Msa individuals selected from CDmean procedure
Msi.Whole Entire Msi panel None
Msa.Whole None Entire Msa panel
Whole.Msi.Msa Entire Msi panel Entire Msa panel
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from the corresponding RR-BLUP model (Figure 2). This suggests
that a non-negligible proportion of the genomic variability captured
in these RR-BLUP models were from subpopulation structure
within each diversity panel. The differences in prediction accuracy
between the PCA and RR-BLUP models were more variable across
traits in the Msi panel than in the Msa panel, which could indicate that
the influence of population structure on RR-BLUP prediction accu-
racies for these observed traits was more constant in the Msa panel.

The prediction accuracies from the models fitted using 200 indi-
viduals selected from the CDMean procedure and models fitted using
the random samples of 200 individuals were consistently less than
models fitted from all individuals in the training set. However, the

prediction accuracies from the model trained with 200 individuals
selected from the CDMean procedure were uniformly higher than
those trained from the random sample of 200 individuals. This
suggests that individuals selected from the CDMean procedure could
be better at predicting total genetic merit than an equally-sized
random set of individuals, although the best prediction accuracies
can be expected when all individuals in the training set are used.

Training genomic selection models with diversity panels
resulted in poor prediction of breeding population
Regardless of which subset of individuals from the Msi and Msa
diversity panels were used to train the GS model (summarized in

n■ Table 2 Description of trait simulation in theMiscanthus sinensis (Msi) andMiscanthus sacchariflorus (Msa) diversity panels and simulated
50 F2 populations that were used to perform genomic selection

Scenario Description QTNa Effect Model + QTN #b
H2

Panelc H2 F2
1 The same QTNs in Msi

and Msa
Random uniform between 0 and 1 (Same effects
in both Msi and Msa)

A20D0E0, A20D4E0, A20D0E4 0.60 0.37

2 Half of the QTNs similar
and half different
between Msi and Msa

Random uniform between 0 and 1 (Same effects
in both Msi and Msa)

A20D0E0, A20D4E0, A20D0E4 0.60 0.37

3 Completely different
QTNs used
in Msi and Msa

Random uniform between 0 and 1 (Same effects
in both Msi and Msa)

A20D0E0, A20D4E0, A20D0E4 0.60 0.37

4 Different QTNs with Large
Effects in Msi

QTN from Msi with large effects (random uniform
between 0.5 and 0.99) and Msa with small
effects (random uniform between 0 and 0.25)

A20D0E0, A20D4E0, A20D0E4 0.60 0.37

5 Different QTNs with Large
Effects in Msa

QTN from Msa with large effects (random uniform
between 0.5 and 0.99) and Msi with small
effects (random uniform between 0 and 0.25)

A20D0E0, A20D4E0, A20D0E4 0.60 0.37

a
QTN, Quantitative trait nucleotide.

b
A, D, and E respectively refer to additive, dominance, and additive-by-additive epistatic QTNs. The number after each letter refers to the number of QTNs with that
genetic mechanism simulated. For example A20D0E0 means that 20 additive QTN were simulated, 0 dominance QTN were simulated, and 0 epistatic QTN were
simulated.

c
H2, broad-sense heritability.

Figure 2 Prediction accuracy for within diversity panel genomic selection. Each boxplot represents the distribution of prediction accuracy (Y-axis)
across ten replicates of fivefold cross-validation folds for eachmethod (color coded) and for each trait (X-axis), specifically basal circumference (Bcirc;
cm), compressed circumference (Ccric; cm), culm length (CmL; cm), diameter of basal internode (DBI; mm), days to first heading (HD1; days), and
yield (Yld; g/plant) for (A) Miscanthus sinensis, (B) Miscanthus sacchariflorus. RR-BLUP refers to the random regression best linear unbiased
predictionmodel, while PCA refers to themodel where the trait is the response variable and the top principal components of a principal component
analysis of 5,140markers are used as explanatory variables. CDmean refers to the subset of 200 individuals selected using the CDmean procedure,
while Random refers to a random subset of 200 individuals. The white dots represent the mean value of each distribution.
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Table 1), low prediction accuracies were obtained in the diploid 09F2
population (Figure 3). Interestingly, the configuration of adding the
GEBVs frommodels trained separately in the Msi andMsa panels did
not yield the highest prediction accuracies. Depending on the trait,
models trained in either the Msi or Msa panels alone resulted in the
highest prediction accuracies. With the exception of the Msa panel
being used to train GS models for Bcirc, use of the CDMean pro-
cedure to select an optimal training set did not substantially increase
prediction accuracies relative to using an entire diversity panel or a
random sample of 200 individuals as a training set.

Sum of GEBVs From models trained in Msi and Msa
panels yielded highest prediction accuracies in simulated
F2 populations
Similar distributions of prediction accuracies were obtained from
the 50 simulated F2 populations regardless of how many QTNs
were the same across the Msi and Msa panels, or if non-additive
QTNs were simulated (Figure 4). Across all genetic architectures
that were considered, the sum of GEBVs from models trained
separately within the entire Msi and Msa panels yielded the highest
prediction accuracies. However, for the scenarios where only one of
the panels contained large-effect QTNs (denoted “D.QTN.Msa” and
“D.QTN.Msi” on the X-axes in Figure 4), GEBVs from panels
containing these large-effect QTNs were nearly as accurate as the
sum of GEBVs from both panels. Moreover, the GEBVs from GS
models trained on 200 individuals selected from the CDMean
procedure were never as accurate as models trained from all
individuals from the same corresponding panel, nor were they
discernably different from models trained from random subsets
of 200 individuals. Finally, the sum of GEBVs from GS models
trained in the Msi and Msa panels consistently produced prediction
accuracies for the 09F2 population that were most similar to the
distributions of prediction accuracies across the 50 simulated F2
populations.

DISCUSSION
The exploitation of Msi and Msa diversity for genomic prediction of
M·g clones will not reach its full potential until the characteristics of an
optimal training set for a target trait are identified. To this end, we
evaluated the degree to which GS prediction accuracies of six biofuel-
related traits within Msi and Msa diversity panels were influenced by

subpopulation structure, and then we assessed the usefulness of in-
cluding individuals from both of these panels to train GS models that
predict breeding values in an interspecific diploid M·g F2 population.
To overcome the pitfall of having only one interspecific F2 population
available for analysis, we also conducted a simulation study to assess the
empirical distributions of prediction accuracies from GS models
trained in these diversity panels across 50 simulated interspecific
diploid M·g F2 populations. Each of these simulated populations were
derived from crossing different randomly selectedMsi and diploid Msa
parents. Our results demonstrated that (i) unaccounted population
structure can predict breeding values nearly as well as an RR-BLUP
model within each of the panels, (ii) there are differences in the
predictive ability of the diversity panels and such differences are likely
to be trait-dependent, and (iii) the combination of GEBVs indepen-
dently estimated from Msi and Msa resulted in increased prediction
accuracies for the simulated data, but not for the observed trait data.

Impact of subpopulation structure on prediction
accuracies within diversity panels
Our analysis of the observed traits suggests that subpopulation
structure contributed substantially to the prediction accuracies within
each panel (Figure 2), and this finding is consistent with previous
studies conducted by ourselves and others (Clark et al. 2019b; Crossa
et al. 2016; Wientjes et al. 2015). When we previously performed
genomic selection on the Msi panel using a larger set of 46,177
genome-wide SNPs, we observed decreases in prediction accuracy
after accounting for subpopulation structure (Clark et al. 2019b).
Outside of Msi, Crossa et al. (2016) reported a decrease of 15–20%
when using PCs of markers in the GSmodel to account for population
structure present in two collections of wheat landrace accessions,
while Wientjes et al. (2015) observed that using population infor-
mation among three cattle breeds for prediction gave prediction
accuracies up to 30% higher than those from a GS model including
breed as a fixed effect. We interpret these collective findings as
suggesting that population structure is an integral component of
the genomic signal underlying these previously published traits, as
well as the observed traits analyzed in our study. Thus, we recom-
mend against factoring out population structure in practice because
doing so could lead to the implementation of GS models that do not
encapsulate the entire genomic contribution to these six biofuel traits.

Another area of future research is to explore the predictive ability
of GS models that explicitly quantify different marker effects within

Figure 3 Prediction accuracy for using Miscanthus
sinensis (Msi) and Miscanthus sacchariflorus (Msa) di-
versity panels to train genomic selection (GS) models for
prediction in 09F2 breeding population. Each boxplot
represents the distribution of prediction accuracy
(Y-axis; across 1,000 bootstraps of the 09F2 breeding
population) when the genomic selection model was
trained using 200 individuals selected using CDMean
(Msa.CDMean, Msi.CDMean), 200 randomly selected
individuals (Msa.Random, Msi.Random), whole diversity
panels (Msa.Whole, Msi.Whole) and a combination of
the GEBVs estimated from Msi and Msa panels (Whole.
Msi.Msa). The evaluated traits (X-axis) include basal
circumference (Bcirc; cm), compressed circumference
(Ccric; cm), culm length (CmL; cm), diameter of basal
internode (DBI; mm), days to first heading (HD1; days),
and yield (Yld; g/plant). The white dots represent the
mean value of each distribution.
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Figure 4 Prediction accuracy for
using Miscanthus sinensis (Msi)
and Miscanthus sacchariflorus
(Msa) diversity panels to train
GS models for making predic-
tions in simulated F2 populations.
Boxplots represent a distribution
of prediction accuracies (Y-axis)
across 50 simulated interspecific
F2 populations for simulated traits
(X-axis). Boxplots are color coded
according to approaches used to
select training sets: 200 individu-
als selected randomly (Msa.Ran-
dom, Msi.Random) or using the
CDMean procedure (Msa.CDMean,
Msi.CDMean), whole diversity pan-
els (Msa.Whole, Msi.Whole) and the
sum of the genomic estimated
breeding values (GEBVs) esti-
mated from GS models fitted
separately within the Msi and
Msa panels (Whole.Msi.Msa). Traits
were simulated using five different
scenarios namely; D.QTN (traits
simulated with completely differ-
ent QTN in Msi and Msa but with
the same effect sizes), D.QTN.
Msa (traits simulated with differ-
ent QTNs in each of Msi andMsa,
with Msa QTNs having large ef-
fects while Msi QTNs had small
effects), D.QTN.Msi (traits simu-
lated with different QTNs in each
of Msi and Msa, with Msi QTNs
having large effects while Msa
QTNs had small effects), P.QTN
(traits where 50% of the QTNs
were the same across Msi and
Msa, while 50% were different),
and S.QTN (traits simulated inMsi
andMsa based on the sameQTNs
and same effect sizes). Three dif-
ferent combinations of additive
and non-additive QTNs were con-
sidered, specifically (A) traits with
20 additive QTN, 0 dominance
QTN, and 0 epistatic QTN, (B)
traits with 20 additive QTN,
4 dominance QTN, and 0 epi-
static QTN, and (C) traits with
20 additive QTN, 0 dominance
QTN, and 4 epistatic QTN. The
white dots represent the mean
value of each distribution while
the black dot represent the pre-
diction accuracy value for the same
simulated genetic architecture us-
ing polyRAD genetic data in the
09F2 population.
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each subpopulation, as described in Olson et al. (2012), Lehermeier
et al. (2015), and de los Campos et al. (2015). The underlying
rationale of such multivariate models is that marker effects, and
more importantly the effects of causal mutations underlying traits, are
likely to differ between subpopulations. Thus, allowing for different,
albeit correlated, marker effects for each subpopulation in a GSmodel
could provide more accurate GEBVs than models that only consider
marker effects across subpopulations. When applied to a multi-breed
dairy cattle data set in Olson et al. (2012), this multivariate model
slightly outperformed a standard GS model fitted across all breeds in
the data set. Similarly, Lehermeier et al. (2015) showed that the
performance of the multivariate GS model relative to the other tested
models varied depending upon the degree of subpopulation structure
in the three tested crop panels, but consistently performed well.
Finally, de los Campos et al. (2015) considered a Bayesian multivar-
iate GS model that included marker main effects and marker x
subpopulation two-way interaction effects that respectively enabled
across- and within-subpopulation marker effect estimates, and ob-
served that this model on average performed better than simpler GS
models. Given the relatively high prediction accuracies we obtained
from the PCA-only models (Figure 2), it is reasonable to hypothesize
that the effect sizes of the markers and causal mutations differ
between subpopulations of the Msi and Msa diversity panels. Ac-
cordingly, we would expect these multivariate GS models to estimate
differing marker effects across subpopulations more accurately than
the models we investigated, and that on average we would expect to
observe a modest increase in prediction accuracies.

The CDmean procedure had a tendency to sample heavily from the
subpopulation clusters located at the extremes of the PC biplots made for
both the Msi and Msa individuals (Figures S6 and S7). Relative to the
maize data analyzed by Rincent et al. (2012) and the wheat and rice data
analyzed by Isidro et al. (2015), the degree of subpopulation structure
present in theMsi andMsa diversity panels was most consistent with the
rice data from Isidro et al. (2015). Consequently, the relative location of
Msi and Msa individuals selected by the CDmean procedure were at
similar positions on the PC biplots as what was observed in those for
these rice data (compare Figures S7-S8 with Figure 5d-f in Isidro et al.
2015 for a visual assessment). Across all of the studies we conducted, the
only instance where the CDmean procedure selected training sets that
decisively outperformed an equally-sized training set of 200 randomly-
selected individuals was in the fivefold cross validation study conducted
within each diversity panel (summarized in Figure 2). Coupled with the
performance of the CDmean-based training sets in the simulation studies
(where population structure was not accounted for when randomly
selecting QTN underlying simulated traits), we infer that training sets
obtained from the CDmean procedure should outperform an equally-
sized training set for (i) traits where subpopulation structure contributes
substantially to the genomic sources of their variability and (ii) validation
sets where subpopulation structure is roughly similar to that of the
corresponding training sets. However, it is also important to emphasize
that we never observed an instance where use of the CDMean procedure
resulted in prediction accuracies that exceeded those from using all
individuals in a training set. Thus, we recommend against using the
CDmean procedure in practice and instead suggest that all available
individuals be used as a training set.

Contribution of low marker density to low
prediction accuracies
A key limitation of our study is that we used only 5,140 markers
common to all three panels to evaluate the ability of the GS models to

predict breeding values of the observed traits. Given the rapid LD
decay rate that we observed in both the Msi and Msa diversity panels
(where pairwise LD decayed to nominal levels at distances less than
3 kb, Figure S8A-C), we conclude that the markers we used for GS did
not provide sufficient density to tag enough causal variants; conse-
quently, the observed prediction accuracies might be lower than
expected with a denser marker set. This conclusion is in part justified
given that prediction accuracies tended to be higher when Clark et al.
(2019b) performed GS on the same Msi diversity panel using 46,177
SNPs. Thus, one avenue for future research would be to redo this
study with a larger number of genome-wide markers. Similar to
previous studies that evaluated GS prediction accuracy as a function
of the number of markers (Lorenzana and Bernardo 2009; Asoro et al.
2011; Arruda et al. 2015), our expectation is that prediction accuracy
would tend to increase as the number of markers increase. In
particular, we expect that initially substantial gains in prediction
accuracy will be followed by smaller increases, culminating in a
plateau (and potentially a slight decrease) as the markers begin to
tag a sufficient number of causal variants underlying the studied trait.

Comparison of experimental and simulation genomic
selection results
Extremely low and often negative prediction accuracies were obtained
for the observed traits in the 09F2 panel when either one or both of
the Msi or Msa panels were used to train the GS models (Figure 3).
Our analysis expands upon previous studies conducted in maize
(Windhausen et al. 2012; Brauner et al. 2020) and cattle (Raymond
et al. 2018) by showing that adding the GEBVs calculated from
training separate GS models within diversity panels, each from one of
two different species, can also yield low prediction accuracies. How-
ever, one limitation of our analysis of the observed traits was that only
one interspecific cross was available for evaluation, and we were
therefore unable to observe how our results might differ across
multiple interspecific F2 populations.

The lack of availability of such multiple F2 populations motivated
our evaluation of prediction accuracies across 50 simulated inter-
specific populations, each of which have one randomly selected Msi
parent and one randomly selected diploidMsa parent. Although these
prediction accuracies were from simulated traits, they nevertheless
provided additional insight into the ability of diversity panels to
predict breeding values in interspecific crosses. For instance, we
observed similar ranges of prediction accuracies regardless of the
amount of non-additive genetic signals underlying the simulated
traits. We also observed slightly higher prediction accuracies when
the QTNs were common between Msi and Msa. These results suggest
that prediction accuracies might be robust to variations in genetic
architectures within and between panels, especially if predictions are
made based on the sum of GEBVs fitted separately within the two
diversity panels.

We noticed several major differences between GS prediction
accuracies in the observed and simulated traits. Most importantly,
prediction accuracies were noticeably lower in the observed traits
than the simulated traits. It is likely that this result arose because the
marker set used lacked the density to sufficiently tag the causal
mutations underlying the observed traits (discussed previously).
Another important difference was that for the simulated traits, adding
the GEBVs together from the GS models trained separately in the
panels were consistently yielded the highest prediction accura-
cies; meanwhile for the observed traits, this strategy never yielded
the highest prediction accuracies. One hypothesis explaining this
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discrepancy was that the size of the genetic effects, and possibly the
genetic architectures, of the observed traits substantially differed
between the panels. This hypothesis is supported by the prediction
accuracies observed in the simulation settings where one of the
diversity panels contained the large-effect QTNs, while the other
contained only small-effect QTN (Figure 4).

Thus, the inferences wemade for the six observed traits are limited
because we were unable to assess prediction accuracy for these traits
across multiple F2 families. To fully assess whether or not our results
for the six observed traits are generalizable to interspecific M·g
material, multiple F2 families are needed. This important shortcom-
ing motivated us to simulate multiple F2 populations, where each
population was derived from randomly selected Msi and diploid Msa
parents. Although not as useful as actual F2 populations, the simu-
lation study provided additional preliminary insight into the para-
digm of breeding interspecific M·g breeding material. As shown in
Figure 4, we obtained the highest prediction accuracies in the
simulated F2 populations whenever we added the GEBVs from the
model trained in the Msi panel to those trained in the Msa panel. This
suggests that a potential breeding strategy could be to produce
interspecific F2 populations using Msi and Msa parents that are
selected from GS models trained within their respective species.
Preliminary simulation results suggest that such a strategy could
yield prediction accuracies that are equivalent (after controlling for
sample size differences between the F2 populations and the diversity
panels) to those from GS models trained in multiple interspecific F2
populations, each with different parents (Figure S9). However,
these preliminary results from simulated data need to be confirmed
using real trait data on actual interspecific F2 populations. Such a
follow-up study on real data will help determine if the gains in
prediction accuracy from using these F2 populations are substantial
enough to justify the additional time and resources needed to
develop these populations.

Implications of this work within the context of
breeding M3g
The actual and simulated M·g F2 germplasm that we analyzed
consisted of diploid individuals, and thus our inferences on the
prospects of GS in M·g are most directly applicable to diploid F2
M·gmaterial. BecauseMsa exists in diploid and tetraploid forms, there
can be diploid, triploid, or tetraploid M·g, all of which have exhibited
strong hybrid vigor (Clark et al. 2019a). As such, M·g F2 populations
can help determine which regions of the genome are acting in an
overdominant fashion for this heterosis (which may just be due to the
linkage of dominant alleles) and which might be more advantageous to
introgress directly from Msi or Msa. This can feed back into the
generation of triploid and tetraploid Mxg if we were to create more
complex hybrids, for example hybrids derived from fertile hybrid
or introgressed individuals (e.g., 2x M·g · 4x M·g = 3x M·g).
Therefore, one logical extension of the work presented here would
to use and modify approaches from other studies (e.g., Bernal-
Vasquez et al. 2017; Guo et al. 2019; Technow 2019; Beyene et al.
2019) to assess the ability of Msi, Msa, and/or non-diploid M·g
populations to predict general and specific combining ability in
Mxg hybrids.

In any case, GS is expected to benefit breeding in Miscanthus by
facilitating early selection. Moreover, M·g often has greater yield-
potential than either of its parental species (Clark et al. 2019a); thus,
such hybrids are typically the focus of biomass cultivar development
programs (Clifton-Brown et al. 2019). Depending on the target

environment and how one balances the goal of preventing invasive-
ness via sterility vs. the goal of minimizing the cost of establishing
production fields via direct seeding, the breeder’s objective may be to
develop diploid, triploid or tetraploid M·g cultivars (Clifton-Brown
et al. 2019). Population improvement within the parental species of
M·g (i.e., Msi and Msa) is anticipated to be an effective use of GS for
developing germplasm pools that produce exceptional parental geno-
types for cultivar development.Moreover, population improvement via
GS within diploid and tetraploid F2 or backcross M·g populations will
provide a full range of interspecific genomic compositions to test and
from which to develop cultivars that are diploid, triploid or tetraploid.
Thus, the work presented in this paper should serve as only the
beginning of more complex future studies that evaluate the effective
use of Msi, Msa, andM·g germplasm that is currently being developed
for training the most efficient GSmodels for rapid genetic gain inM·g.
Indeed, our findings suggest that more research is needed into address-
ing the question of optimal training set composition.

CONCLUSION AND RECOMMENDATIONS
We ultimately conclude that using Msi and Msa diversity panels to
train GS models for prediction of breeding values in an interspecific
diploid F2 population is not an ideal strategy for increasing the genetic
diversity of M·g. One potential reason for the low prediction
accuracies we observed in the 09F2 population is the inherent
difficulty in obtaining an ideal training set for an interspecific F2
cross. When analyzing the performance of GS in multiple maize
breeding populations, Windhausen et al. (2012) showed that GS
prediction accuracy for a targeted breeding population increased
whenever the training sets were augmented with individuals from the
same breeding population. This finding underscores the importance
of including individuals in training sets that have approximately the
same QTN in as those in the validation set. Indeed, we observed in
our study that prediction accuracies were slightly higher for the
simulated traits where the same QTN were segregating in both Msi
and Msa, and hence these QTN were also segregating in the in-
terspecific F2 populations (Figure 4). We therefore recommend that
the best-suited training set for efficient GS of interspecific M·g
populations should contain QTNs that are common in both the
training and validation sets, and importantly are containing QTNs
that are segregating between Msi and Msa. Because it is unlikely that
QTNs are genotyped, we suggest taking efforts to ensure that
individuals in the training and validation sets are as closely related
as possible. Such a strategy will increase the genetic similarity between
the training and validation sets, and hence increase the likelihood that
that the trained GSmodel is accounting for QTNs that are segregating
in the both of these sets.
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