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Abstract

Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In
particular, clustering helps at analyzing unstructured and high-dimensional data in the form of sequences, expressions,
texts and images. Further, clustering is used to gain insights into biological processes in the genomics level, e.g. clustering of
gene expressions provides insights on the natural structure inherent in the data, understanding gene functions, cellular
processes, subtypes of cells and understanding gene regulations. Subsequently, clustering approaches, including
hierarchical, centroid-based, distribution-based, density-based and self-organizing maps, have long been studied and used
in classical machine learning settings. In contrast, deep learning (DL)-based representation and feature learning for
clustering have not been reviewed and employed extensively. Since the quality of clustering is not only dependent on the
distribution of data points but also on the learned representation, deep neural networks can be effective means to
transform mappings from a high-dimensional data space into a lower-dimensional feature space, leading to improved
clustering results. In this paper, we review state-of-the-art DL-based approaches for cluster analysis that are based on
representation learning, which we hope to be useful, particularly for bioinformatics research. Further, we explore in detail
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the training procedures of DL-based clustering algorithms, point out different clustering quality metrics and evaluate
several DL-based approaches on three bioinformatics use cases, including bioimaging, cancer genomics and biomedical text
mining. We believe this review and the evaluation results will provide valuable insights and serve a starting point for
researchers wanting to apply DL-based unsupervised methods to solve emerging bioinformatics research problems.

Introduction

Clustering is a fundamental unsupervised learning task com-
monly applied in exploratory data mining, image analysis, infor-
mation retrieval, data compression, pattern recognition, text
clustering and bioinformatics [1]. The primary goal of clustering
is the grouping of data into clusters based on similarity, density,
intervals or particular statistical distribution measures of the
data space [1–3], e.g. clustering gene expressions (GEs) can reveal
groups of functionally related genes in which genes with a
small distance share the same expression patterns and might be
similar [4]. Such analysis determines which genes are switched
‘on’ or ‘off’ under certain conditions [4–6]. Another example is
the clustering of genes or biomedical images by learning the hid-
den patterns from an unlabeled dataset [7]. Further, visualizing,
interpreting and analyzing high-dimensional and large-scale
biological data in its unstructured entirety can be perplexing
unless the data is organized into clusters.

Clustering based on biological entities such as genes, dis-
eases, proteins, pathways and small molecules depends on the
amount, quality and type of input data [8] or samples (e.g.
patients or distinct cells). Although a vast amount of biological
data are being generated from numerous ubiquitous medical
devices, applications of clustering still limited within genomic
medicine and microarray analysis focusing on gene clustering
with a limited amount of data [9, 10]. Accordingly, cluster analy-
sis covering bioimaging, human-genetics, plant and animal ecol-
ogy, biomedical texts and genomic data are not fully explored
and still in their infancy when compared to what has been inves-
tigated for microarrays [11], e.g. RNA-Seq has become the de-
facto technology for GE-level measurements and offers several
advantages over microarrays. Further, single-cell experiments
have become an emerging bioinformatics research topic, where
clustering is a crucial part of the analysis [12].

However, since cluster analysis itself is not one specific algo-
rithm, various techniques can be applied and differ in terms
of understanding of what constitutes a cluster and how to
efficiently find them. In practice, different problems require
different similarity measures and separation techniques [13].
Further, finding an optimal clustering algorithm for a specific
bioinformatics problem is challenging and can be formulated
as a multi-objective optimization problem [14]. Accordingly, over
the decades, clustering analysis approaches such as hierarchical
clustering (HC) [15], centroid-based clustering (CC), distribution-
based clustering (DC) [16], density-based clustering (DC1) and
self organizing maps (SOMs) [17] have been proposed in the
literature [1, 7, 13, 18]. Other approaches include probabilistic
clustering, grid-based clustering, spectral clustering and non-
negative matrix factorization [3]. HC algorithms (e.g. agglom-
erative [19]) involve creating clusters having a predetermined
ordering (top-down or bottom-up), where lower-level clusters are
merged into even larger clusters at higher levels, giving a hierar-
chy of clusters. In agglomerative clustering (AC), initially, each
data point is considered an individual cluster. Similar clusters
are then merged with other clusters until one or K clusters are
formed in each iteration. Advantages of HC algorithms lies in

their simplicity and visual appeal, and depending on the desired
granularity, one can choose to ‘cut’ the hierarchy at the desired
level to obtain a suitable clustering. However, clustering quality
(CQ) is sensitive to noise [1], which complicates the interpreta-
tion of the hierarchy. Besides, data points are clustered with local
decisions based on deterministic attributes, with no chance to
reexamine the clustering [1, 7].

In contrast, CC algorithms (e.g. K-means [16], partitioning
around medoids (K-medoids) [20]) offer several advantages over
SOM and HC [21], e.g. often they obtain superior performance in
terms of point density accuracy, topology preservation and com-
putational requirements. However, CC algorithms are incapable
of finding non-convex clusters [18]. DC algorithms [e.g. Gaussian
mixture model (GMM) [22]] are based on distribution models,
where clusters are defined as data points belonging to the dis-
covered distribution(s). In general, DC approaches produce com-
plex models for clusters, hence correlation and dependencies
between biological attributes can be captured. The downside
is that concisely defined model cannot be developed if the
Gaussian distributions are based on a strong assumption on the
data. Further, DC algorithms inherently suffer from overfitting
issues, unless constraints are put on the model complexity. In
DC1 algorithms (e.g. DBSCAN and it’s generalization OPTICS),
clusters are defined as areas of higher density compared to
the remainder of the dataset; objects in sparser regions are
usually considered noise or border points. The critical drawback
of DBSCAN and OPTICS, however, is that both expect density
drop to detect cluster borders, where GMM based on expecta-
tion minimization (EM) can precisely overcome this limitation.
Table 1 summarizes different ML-based clustering algorithms
showing their strengths and potential limitations.

Albeit these, algorithms work reasonably well for medium-
scale and low-dimensional data, accuracy and efficiency for the
high-dimensional datasets having a massive number of samples
degrade drastically, mainly due to the curse of dimensional-
ity. Besides, ML-based methods generally suffer from high
computational complexity on large-scale data [2]. To mitigate
the computational complexity, representation learning (RL) is
extensively used alongside clustering, to map the input data
into a feature space where separation is more straightforward
concerning the problem’s context [23]. On the other hand,
while dimensionality reduction (DR) using linear transformation
methods [e.g. principal component analysis (PCA) [24]], non-
linear transformation (e.g. kernel methods [25]) and spectral
methods [26] are employed. As observed, clustering with PCA
instead of using original variables does not necessarily improve
but often degrades the CQ [27]. The reason is that PCA is
fundamentally limited to linear embedding, and essential
features are often lost [3]. Hence, for better clustering results,
high-dimensional datasets require non-linear and spectral DR,
without losing important features.

On the other hand, only the fundamentals of deep learning
(DL) are currently actively used [28] in bioinformatics research,
especially for supervised learning tasks, where RL based on DR
and clustering are treated separately and sequentially applied to
the data. However, assume, for example, from a large collection
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of unlabeled images, how to divide them into K-groups in terms
of inherent latent semantics? Using an ML-based approach one
would (i) first, extract feature vectors according to domain-
specific knowledge and (ii) then employ clustering algorithm
on the extracted features to group them [29]. In contrast, DL-
based approaches can be more effective at RL and feature extrac-
tion from the images, which can be used to refine clustering
with an auxiliary target distribution derived from the current
soft cluster assignment and iteratively improve the clustering
[2, 30]. In particular, with a deep neural network (DNN) archi-
tecture [e.g. autoencoders (AEs)], more complex and higher-
level features can be embedded from the input data, and con-
textual information can be captured [31]. Eventually, learning
non-linear mappings allows transforming input data into more
clustering-friendly representations in which the data is mapped
into a lower-dimensional feature space [2, 23]. Hence, the cluster
assignments can be done with a base clustering algorithm, while
iteratively optimizing the clustering objective [23].

Previous reviews [2, 23] on DL-based clustering analysis
approaches focused mainly on general-purpose clustering
from the perspective of network architectures. In this paper,
we provide a comprehensive review of the state-of-the-art
DL-based approaches, summarize advantages and point out
their potential limitations. Further, we evaluate clustering
performance on three bioinformatics use cases—bioimaging,
cancer genomics and biomedical text clustering—and provide
comparative analyses. To the best of our knowledge, we are
the first to review unsupervised DL-based clustering analysis
techniques for bioinformatics research. The rest of the paper is
structured as follows: Section DL for clustering discusses neural
network architectures for clustering analysis, working principles
and formulating metrics for evaluating the quality of clus-
tering; Section Evaluation and comparative analysis provides
evaluation and comparative analysis of the approaches studied;
and Section Conclusions and outlook summarizes the study
reported and discusses future work before concluding the paper.

DL for clustering
As summarized in Table 2, several DL-based clustering analysis
approaches have been proposed in the literature. These
approaches can be categorized into two leading families:
(i) pipeline methods for learning representation using DNN
architectures [e.g. multilayer perceptrons (MLPs), convolutional
neural networks (CNNs), deep belief networks (DBNs), generative
adversarial networks (GANs) [38], variational autoencoders
(VAEs), denoising autoencoders (DAEs) and adversarial autoen-
coders (AAEs) [39]] and clustering using an ML-based clustering
algorithm (refer to Table 1 for details) and (ii) single-model
methods for end-to-end clustering [2].

However, pipeline methods are extensively discussed in the
literature.Examplesincludedeepembeddingclustering(DEC) [40],
deepclusteringnetwork(DCN) [41],clustering using pairwise con-
straints clustering CNN (NNCPC) [42], deep embedding network
(DEN) [43], joint unsupervised learning of deep representation for
images (JULE) [41], DL with non-parametric clustering (NMMC)
[44], clustering using CNN (CCNN) [45] and deep clustering with
convolutional autoencoder (CAE) embedding (DEPICT) [46].

More recent approaches include convolutional embedded
networks (CENs) [30], deep convolutional embedded clustering
(DCEN) [29], discriminatively boosted clustering (DBC) [47], CNN-
based joint clustering and RL with feature drift compensation
(UMMC) [51], deep continuous clustering (DCC) [49], learning
latent representations for clustering (IMSAT) [50] and deep adap-

tive clustering (DAC) [48]. We listed reviewed approaches includ-
ing links to the original papers and their implementations that
can be found at https://github.com/rezacsedu/Deep-learning-
for-clustering-in-bioinformatics.

Working principles of DL-based clustering methods

Let us consider the problem of clustering of n samples, X =
{x(1), x(2), ..., x(n)} into K-categories, each represented by a centroid
μj, j = 1, . . . , K where X ∈ R

D. In pipeline methods, more or
less a similar working principle is followed in which a DL-based
clustering algorithm is usually trained in two phases:

• Phase 1: parameter initialization and RL with a DNN architec-
ture and training using non-clustering loss (e.g. standard RL1).
Then clustering-friendly representations of the data called
latent features (LFs) are extracted from one or more layers
(depending on the type of network architecture).

• Phase 2: parameter optimization by iterating between com-
puting an auxiliary target distribution and minimizing clus-
tering loss [e.g. Kullback–Leibler divergence (KLD) [54] and
cluster assignment hardening loss (CAHL)] in which clus-
ter assignments are formulated, followed by the centroid
updated with the backpropagation in which an ML-based
clustering algorithm is applied to optimize the clustering
objective iteratively. In particular, AC [41] and K-means [42,
48, 51] algorithms are broadly used in the literature [2].

Followed by this principle, instead of clustering the samples
directly in the original input space X, it is transformed with a
nonlinear mapping fθ : X → Z where θ are learnable parameters
and Z ∈ R

K is the learned or embedded feature space, where
K � D. To parametrize fθ , a DNN architecture such as AEs is
used due to their function approximation properties and feature
learning capabilities [40] (refer to Section 2.2). However, for a
better clustering result, the network is often trained and updated
to optimize both clustering and non-clustering losses jointly in
phase 2. Concisely, the following three steps are broadly involved
in existing approaches:

• RL by embedding a higher-dimensional input space into a
lower-dimensional feature space to generate cluster-friendly
features using a neural network architecture;

• Combining clustering and non-clustering losses;
• DNN and clustering algorithm’s parameters updates to opti-

mize the combined loss.

RL with DNNs

Good clustering accuracy can only be attributed to the fact that
multiple network layers are stacked together in which weights
are reused in subsequent layers for the RL [23]. Since most of
the state-of-the-art approaches used AEs, we avoid the details
of MLP, CNN and DBN-based RL. A regular AE consists of multi-
layer dense networks called encoder and decoder, which is archi-
tecturally an MLP. First, the encoder learns the representation
of input x in a compressed format in which the data is mapped
and transformed into an embedding z. Then the decoder tries
to reconstruct x from z by reducing the reconstruction loss (RL1)
between x and its corresponding reconstruction x′ ∈ R

D such that
useful information is not lost in the encoding phase [54]. Usually,
RL1 is the distance measure (dAE) between input xi and network’s
output f(xi):

LAE = dAE(xi, f(xi) =
∑

i

||xi − f(xi)||2. (1)

https://github.com/rezacsedu/Deep-learning-for-clustering-in-bioinformatics
https://github.com/rezacsedu/Deep-learning-for-clustering-in-bioinformatics
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Data preprocessing

In bioinformatics research, a large variety of datasets are curated
from multiplatform (e.g. TCGA provides DNA methylation data
curated from HumanMethylation450 and HumanMethylation27
platforms) and heterogeneous sources (e.g. similar types of data
curated from Broad Institute, the Massachusetts Institute of
Technology and Harvard) need to be dealt with. Further, since
clustering algorithms are used to discover hidden patterns from
the data, CQ depends on the distributions of the data points
and the underlying representation [40]. Therefore, depending
on problems and data types, different types of preprocessing
may require depending upon DNN architectures. For example,
genomics data like GE can be represented using log-transformed
expression values [e.g. log2(FPKM + 1), where FPKM (a normal-
ized estimation of GE-based on RNA-Seq data) is the number
of fragments per KB per million mapped reads [56]] to model
proportional chances rather than additive changes, which is
biologically more relevant. This way, genes with low information
burden (e.g. mean < 0.4 or SD < 0.75) across all the samples can
be removed.

In bioimaging, different types of preprocessing required
depending on modality types in order to mitigate bottlenecks
like noise and artifact, e.g. rescaling, horizontal flipping and
enhancement using histogram equalization and slight Perona–
Malik filtering for radiographs, while MRIs require contrast
enhancement, intensity regulation and noise elimination [57].
Moreover, approaches such as DEC expects normalized input
such that 1

d ||zi||22 is approximately 1, where d is the dimension of
the data space {zi ∈ Z} [58].

Extracting cluster-friendly deep features

In the context of clustering, after the training, the decoder part
of an AE is no longer used but only the encoder is left, which
acts as the feature extractor. LF then can be extracted from one
or more layers (depending on the type of network architecture).
For example, if extracted from a single layer, features come
typically from the last layer of the network. However, if extracted
from a multilayer or deep network (from any hidden layer or
the deepest layer), it is found that LF can lead to better feature
representations that can enhance the separation of data points
during the similarity computation [59]. Table 3 provides a short
overview of different feature extraction methods, showing their
advantages and potential limitations.

Enhancing robustness of RL

In some early approaches (e.g. NMMC and UMMC) DBN
is employed as the feature extractor in which Restricted
Boltzmann Machines (RBM) [60] formed the basic building
block. However, despite numerous successes, DBN has gradually
been replaced with AE. On the other hand, although used
for clustering numeric data and LQ images, AE is mostly not
suitable for 2D/3D finite and discrete signals or digital images
[2], primarily because of their weak RL capability. Subsequently,
several ways by employing different DNN architectures have
been proposed to improve the quality of the RL [2, 23]:

CNN and CAE: since a vanilla AE is not suitable for handling
data with spatial invariance (e.g. HQ images), they are incapable
of preserving spatial relationships between pixels in an object.
However, CNN can be a better feature extractor as it can preserve
local structure in which output from the deepest convolutional
(conv) layer can be extracted as LF (e.g. JULE). On the other hand,
instead of manually engineered conv filters, conv and pooling

layers can be added to construct a CAE, where each layer consists
of an encoder (that performs convolution and pooling opera-
tions), and a decoder (to perform unpooling and deconvolution
operations), and a conv layer of the encoder calculates the jth

feature map as follows [62]:

hj = σ
(
xi ∗ Wj

ij + bj
)

, (2)

where xi is the input sample, Wj
ij is the jth filter from input

channel i and filter j, bj is the bias for the jth filter, i.e. single
bias per latent map (one bias per GV would introduce many
degrees of freedom), σ is an activation function [i.e. rectified
linear unit (ReLu)] and ∗ denotes the conv operation. To obtain
translation-invariant representations, max-pooling is performed
by downsampling conv layer’s output and taking the maximum
value in each m × n non-overlapping sub-region [62]. In the
decoding phase, unpooling and deconvolution operations per-
formed to preserve the positional-invariance information during
the pooling operations. Then the deconvolution operation is
performed to reconstruct xi as follows [62]:

xi = σ
(
oj ∗ Wj

oj + cj
)

, (3)

where oj is jth feature map and Wj
oj is jth filter of unpooling layer o;

j and cj are filter and bias of jth output layer, respectively. This way,
compared to CNN (e.g. DBC, CEN, DCEN and DEPICT), CAE learns
optimal filters and minimize the RL1, which results in more
abstract features from the encoder (e.g. pixel-level features from
images) that help to stabilize training and network converges
faster, avoid corruption in feature space and improve the CQ [29].
Besides,ref40, VAE or LSTM-AE can be constructed in different
scenarios (e.g. imaging, sequence) for the RL.

VAE: generative variants of AE are also used in literature
(e.g. VaDE [53]) in combination with a mixture of Gaussian. VAE
enforces the latent code of AE to follow a predefined distribution,
which combines variational Bayesian methods and increases the
flexibility and scalability of the base network. Architecturally,
VAE is different compared to AE or CAE and deeply rooted
in the methods of variational Bayesian and graphical models,
where the input is into distribution, as shown in Figure 3. This
distribution, say pθ , is parameterized by θ , where pθ (z) is the prior,
pθ (x|z) is the likelihood, and pθ (z|x) is the posterior given that the
real parameter θ∗ is known for the distribution.

To generate a sample similar to a real data point x(i): (i) first,
z(i) can be sampled from a prior distribution pθ∗ (z); (ii) then, x(i)

can be generated from the conditional distribution pθ∗
(
x|z = z(i)

)
,

θ∗ is the optimal parameter that maximizes the probability of
generating real data samples [53]:

θ∗ = arg max
θ

n∑
i=1

log pθ

(
x(i)) (4)

pθ

(
x(i)) =

∫
pθ

(
x(i)|z)

pθ (z)dz (5)

The data generation process involving the encoding vector
can be expressed in (5) [53]. Eventually, VAE consists of a prob-
abilistic encoder as an approximation function qθ (z|x) (which is
similar to gφ(z|x)) and a generative probabilistic decoder as the
conditional probability pθ (x|z) (which is similar to the decoder
fθ (x|z)). In variational inference, objective is to maximize the
variational evidence lower bound (ELBO) by maximizing the
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Table 3. Comparison of the feature extraction process in DL-based clustering algorithms

Feature
extractor Advantages Disadvantages

AE One of the simplest and MLP-based autoencoding
techniques. It learns hidden features to encode and decode
the data without considering the probability distribution of
the input samples. Hence, it is easy to implement and
extract features from the encoder component.

AEs have a huge number of hyperparameters, which is why
it is tricky to optimize and balance between clustering and
non-clustering losses. Since it learns the hidden
representation discriminatively to encode and decode the
data blindly using a shallow network architecture. A
fundamental problem with an AE is with the LF it embeds
their inputs to and where their encoded vectors lie, may not
be continuous and may allow easy interpolation.
Consequently, CQ would be poor in the case of bioimaging
and biological sequence data. Although the computational
complexity depends on the clustering loss, it requires many
iterations to optimize a large number of hyperparameters.

DBN A simple generative model based on RBM, which has very
rich mathematical and conceptual justification in its
structure as well as its training algorithms. Works
moderately well even in a limited labeled dataset because it
can be pre-trained in an unsupervised way, and the
pre-training weights can be reused for a supervised
learning task.

DBN-based RL has a risk of obtaining a corrupted LF space
if the RBM pretraining loss goes out of bounds. Further, to
avoid overfitting, it typically requires many samples to train
well.

CNN Has a straightforward graceful objective, hence can be
extended to large-scale clustering tasks. Deep and quality
features can easily be extracted for numerous
bioinformatics use cases, e.g. bioimaging, text (i.e.
sequence) clustering and genomics. It has a fewer number
of hyperparameters than a regular AE or VAE, which makes
it easier to optimize the overall network.

Since there is a risk of obtaining a corrupted LF space, a
well-defined clustering loss is required to balance between
clustering and non-clustering losses, which is tricky. To
avoid overfitting, CNN typically requires many samples to
get trained well.

CAE Has straightforward graceful objective, hence can be
extended to large-scale clustering tasks. Deep and quality
features can be easily extracted for bioimaging and text
clustering. Further, since in CAEs, weights are shared
among all locations in the input, preserving locality and
reducing the number of parameters than regular AEs, VAEs
and CNNs [61].

Since there is a risk of obtaining a corrupted LF space, a
well-defined clustering loss is required to balance between
clustering and non-clustering losses, which is tricky.
Similar to CNN, CAE also requires many samples to be
trained well to avoid overfitting.

VAE Capable to generate artificial samples, which makes it
suitable for bioinformatics use cases with limited labeled or
unlabeled samples. Particularly suitable for numeric and
genomic data. Besides, it has a decent theoretical guarantee
and mathematical interpretation.

The computational complexity is very high, hence requires
many iterations to optimize numerous hyperparameters.
Exhibits poor clustering in the case of HQ bioimaging.

AAE Capable to generate artificial samples, which makes it
suitable for bioinformatics use cases with limited labeled or
unlabeled samples. Particularly suitable for numeric and
genomic data. Besides, the flexible nature of GAN and its
variants can be used to disentangle both discrete and
continuous latent factors. Hence, it can scale to complex
datasets.

Since AAE’s optimizing objective comprises several losses
(i.e. RL1, GMM likelihood, and adversarial objective),
computation complexity is very high and hard to converge.

lower bound (‘lower bound’ comes from the fact that KL diver-
gence is always non-negative, hence −Lvae is the lower bound of
log pθ (x)) as follows [53]:

− Lvae = log pθ (x) − Lref55
(
qφ(z|x)‖pθ (z|x)

) ≤ log pθ (x). (6)

VAE and its variants (e.g. LSTM-based VAE [63]) are used in across
use cases such as anomaly detection. In which anomalous or
outliers can be identified based on the reconstruction probability
(RP) [64], which is a probabilistic measure that takes into account
the variability of the distribution of variables. Since RP has a
theoretical background, it is a more principled and objective
anomaly score than the RL1.

LSTM-AE: VAE or CAE are not the best options for han-
dling sequence or time-series data, e.g. length of the input
sequence in case of text clustering may vary while the
network requires fixed-length inputs. Further, the temporal
ordering of the observations makes the feature extraction
difficult. Hence, regular AEs will fail to generate a sam-
ple sequence for a given input distribution in generative
mode, whereas LSTM-AE can handle variable lengths as the
encoder learns fixed-length vector representation of the input
[65, 66].

Given X = {x(1), x(2), ..., L(1)} a input sequence, h(i)
E ∈ Rc is

encoder’s hidden state at time ti for each i ∈ {1, 2, ..., L}, and c
is the number of LSTM units [67]. The encoder and decoder are
jointly trained to reconstruct the original vector in reverse order
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Fig. 1. An example of clustering microscopy image with CEN in which a CAE is used for the RL. LFs are then extracted and fed into a base clustering algorithm for the

soft clustering assignment. Finally, the RL of CAE (blurred image signifies the existence of RL1) and CAHL of base clustering algorithm are optimized jointly through

backpropagation.

Fig. 2. Schematic representation of the LSTM-AE, used for biomedical text clustering, where individual drug review texts are embedded using word2vec before feeding

as a sequence.

by minimizing the following objective [68]:

∑
X∈Sn

L∑
i=1

‖x(i) − x′(i)‖2, (7)

where Sn is a set of training sequences. The final state h(L)

E of
the encoder is used as the initial state for the decoder. The the
decoder uses x(i) as input to obtain state h(i−1)

D and predict x′(i−1)

corresponding to target x(i−1) [67] as shown in Figure 2.
AAE: in more recent approaches, adversarial AE is employed

in which the adversarial training procedure is followed to match
the aggregated posterior of the latent representation with the
prior distribution. Thus, AAE can be used to generate artificial
samples for bioinformatics use cases with a limited number of
labeled or unlabeled (i.e. numeric or genomic) data, where the
flexible nature of GAN can be utilized to extract discrete and
continuous LF from large-scale data [2].

In particular, information maximizing generative adversarial
network (a.k.a. InfoGAN) [69] is used for optimizing the mutual
information between a fixed small subset of the GAN’s noise

variables and the observation [70], assuming (i) computation
complexity is not a prime concern and (ii) appropriate hyperpa-
rameters can be found.

DAE: since a good representation is one that can be obtained
robustly from a corrupted input, and that will be useful for
recovering the corresponding clean input [71], to improve the
robustness of the RL, features noise can be introduced to the
input [2]. As a result, denoising helps the AE to learn the LFs
present in the data. In particular, DAEs take a partially corrupted
input, learns a vector field for mapping the input data into a
lower-dimensional manifold (fθ ) in order to recover the original
undistorted input by (i) ignoring the added noise and (ii) by
minimizing the RL1 between reconstructed and the original
input:

LDAE = |x̃ − g(f(x))|. (8)

For bioimaging, however, convolutional denoising autoencoder
(CDAE) can be used to denoise corrupted images, which then
ensures a good representation is one that can be derived robustly
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Fig. 3. Schematic representation of a VAE used for clustering GE data, where an individual GE sample is fed into the model for learning representation.

from a corrupted input to be used for recovering the correspond-
ing clean input.

Stacked AE: The input can be denoised and passed through
by stacking autoencoders (SAE), e.g. where the input corruption
is used only for the initial denoising. Once the mapping function
fθ is learned, the uncorrupted input from the previous layers are
reused in the subsequent layers, e.g. DEC initializes the network
with SDAE, where each layer is a DAE trained to reconstruct
previous layer’s output after random corruption (i.e. DAE). Intu-
itively, such an SDAE can be considered a two-layer network and
formulated as follows [40]:

x̃ ∼ dropout(x) (9)

h = g1(W1x̃ + b1) (10)

h̃ ∼ dropout(h) (11)

y = g2(W2h̃ + b2), (12)

where dropout(.) is the dropout operation [72], g1 and g2 are
activation functions for encoding and decoding layer, respec-
tively, and θ={W1, b1, W2, b2} are model hyperparameters [40].
Then greedy layer-wise training (GLW) is performed by mini-
mizing the least-squares loss ||x − y||22, i.e. after training one
layer, output h is used as the input to the next layer and so
on. In such a scenario, ReLU activation function is used in
all encoder and decoder pairs, except for g2 (first pair) and g1

(last pair).
Once the GLW training is finished, all the encoder and

decoder layers are concatenated in reverse layer-wise training
order, by forming a deep AE and fine-tuned to minimize the
RL1. During the GLW pretraining, each layer is pretrained for a
relatively higher number of iterations with a dropout. The result
is a multilayer deep AE with a bottleneck-coding layer in the
middle. Based on a similar principle, other types of AE can be
stacked to form such a deep AE architecture.

Network updates and training

Training DL-based clustering algorithms may vary depending
on the DNN architecture, different loss functions and train-
ing methods. However, since covering each of them in com-
plete detail would be cumbersome in this comparative analy-
sis, we discuss the detail of network updates and training for
the pipeline methods (e.g. DEC) only that includes most of the
possible steps explained in other DL-based approaches. In DL-
based clustering, following two types of losses are optimized
(interested reader can refer to the literature [2, 23] for the details
of these loss functions):

• Non-clustering loss: this types of losses (e.g.[54], CAHL, K-
means loss, balanced assignments loss, locality-preserving
loss, group sparsity loss and AC loss) are independent of
the clustering algorithm and usually enforces a desired
constraint on the learned model, which guarantees that
the learned representation preserves important informa-
tion (e.g. spatial relationships between features) so the orig-
inal input can be reconstructed in the decoding phase [2].

• Clustering loss: this type of loss (e.g. RL1 and self-
augmentation loss) is specific to the clustering method
and the clustering-friendliness of the learned represen-
tations [23].

In phase 1, RL1 of the AE is minimized. Once RL1 of the decoder
module is optimized, the decoder module is no longer used, but
only the LF are extracted from encoder with a bottleneck-coding
layer in the middle. Then from an initial estimate of the non-
linear mapping fθ and initial centroids {μj ∈ Z}K

j=1 (as trainable
weights Z), clustering can be improved by alternating between
two steps as in the literature [40]:

• Step 1: soft assignment of Z to the cluster centroids;
• Step 2: updating the mapping fθ and refining cluster cen-

troids by learning from initial assignments using an auxil-
iary target distribution.

These steps are repeated until a convergence criterion is met. Ini-
tializing clustering on LF generates the second type of loss called
CAHL, which is specific to the clustering method and clustering-
friendliness of the learned representations [23]. Similar to liter-
ature [40], we considered normalized similarities between data
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points and centroids as soft cluster assignments in which Stu-
dent’s t-distribution [73] is used as a kernel to measure the
similarity between embedded point zj and centroid μj, where zi=
fθ (xi) ∈ Z corresponds to xi ∈ X after embedding, α is the degree
of freedom, and qij is the probability of assigning sample i to
cluster j [40].

qij = (1 + ||zi − μj||2/α)− α+1
2∑

j′ (1 + ||zi − μj′ ||2/α)− α+1
2

(13)

However, cross-validation of α in the unsupervised setting is not
a viable option. Moreover, learning α is superfluous, similar to
literature [40], we set α to 1. In step 2, the similarity between
the distributions is evaluated using KLD w.r.t. by decreasing
the distance between soft assignments (qij) and the auxiliary
distribution (pij) as follows [40]:

Lref55 = KL(P||Q) =
∑

i

∑
j

pij log
pij

qij
, (14)

where qij ∈ Q and pij ∈ P are optimized through backpropagation.
Minimizing this loss w.r.t. network parameters lead to smaller
distances between the data points and their assigned cluster
center for a better CQ, where the loss is computed by favoring
a situation where points of a cluster are close to the mean of the
cluster. Conversely, points that are close to the mean of another
cluster will adversely affect the loss. However, since setting P
is crucial to increase the CQ, soft assignment qij is computed
by raising auxiliary distribution pij to the second power and
normalizing by frequency per cluster as follows [40]:

pij = q2
ij/fj∑

j′ q2
ij′ /fj′

, (15)

where fj = ∑
i qij are soft cluster frequencies and P forces the

assignments to have stricter probabilities between [0–1]. On the
other hand, since the constraints enforced by the RL1 can be
lost after training the network longer, using only clustering loss
may lead to worse clustering results [23]. To tackle this issue, the
literature [2, 43, 50] performed joint training by setting α such
that the network training is affected by both clustering and non-
clustering loss functions simultaneously in which we combine
clustering and non-clustering losses with a linear combination
of individual loss [23]:

L(δ) = σLref55(δ) + (1 − σ)LAE(σ ), (16)

where Lref55(δ) is the clustering loss, LAE(σ ) is the non-clustering
loss, and σ ∈ [[0, 1]] is a constant hyperparameter to specify the
weighting between both functions. To assign and schedule σ ,
following options are employed [40]:

• Pre-training and fine-tuning phase: σ is usually set to 0 and
network is trained using non-clustering loss only.

• Afterwards: σ is set to 1 by removing the non-clustering net-
work branches (e.g. decoder), which ensures the clustering
loss to be used to fine-tune the pretrained network.

The combined loss L(δ) is then optimized using first-order
gradient-based optimizers such as Adam, AdaGrad or RMSprop
with varying learning rates and different batch size, where gra-

dients of L (w.r.t Z) for each data point zi and cluster centroid μj

are computed as follows [40]:

∂L
∂zi

= α + 1
α

∑
j

(
1 + ||zi − μj||2

α

)−1

(17)

×(pij − qij)(zi − μj)

∂L
∂μj

= −α + 1
α

∑
i

(
1 + ||zi − μj||2

α

)−1

(18)

×(pij − qij)(zi − μj).

Gradients ∂L/∂zi are then passed to the DNN and used in stan-
dard backpropagation to compute network’s parameter gradi-
ent ∂L/∂θ . This iterative process continues until less than tol%
of points change cluster assignment between two consecutive
iterations for the cluster assignments [40].

Evaluation metrics for clustering

In the literature [23, 30], three empirical approaches are used
for determining the optimal number of clusters to be set before
training based clustering algorithms. These are Elbow [74], gen-
eralizability G and Normalized Mutual Information (NMI) [75].
In Elbow, the cost is calculated using the within-cluster sum of
squares (WCSS) as a function of the number of clusters, K. Since
Elbow performs better in a classical clustering setting [30], for
evaluating clustering results with different cluster numbers, NMI
is proposed [40], which tells us the reduction in the entropy of
class labels we get assuming the cluster labels are known and
can be computed as follows:

NMI(y, c) = I(y, c)
1
2 [H(y) + H(c)]

, (19)

where y signifies the ground-truth labels, c means the cluster
assignment from the algorithm, I is the mutual information
between y and c and H(.) is then entropy. NMI is a good measure
for determining the quality of the clustering. Further, since it
is normalized, we can measure and compare the NMI between
different clustering having a different number of clusters. For
example, if the NMI for the second clustering is higher than
the first clustering, we should prefer the second clustering to
the first. On the other hand, G is defined as the ratio between
training and validation loss [40] as in (20), in which G is small
when training loss is lower than the validation loss, an indication
of a high degree of overfitting.

G = Ltrain

Lvalidation
(20)

Since a good clustering performance is also characterized
by high intra-cluster similarity and low inter-cluster similarity
for the data points, rand index (RI) is calculated based on the
permutation model (PM) as follows:

RI = TP + TN
TP + FP + FN + TN

, (21)

where TP, TN, FP and FN signify true positive, true negative,
false positive and false-negative rates, respectively. RI, which is
used to measure the percentage of decisions that are correct
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to evaluate the CQ [76], has a value between 0 and 1, where 0
indicates the disagreement between two data clusters on any
pair of points and 1 signifies the perfect agreement (i.e. the same
cluster). Thus, the higher the RI, the better the CQ is. Since RI
was corrected using the PM for clusters in which the number
and size of clusters within a clustering are fixed, and all random
clusters are generated by shuffling the elements between the
fixed clusters, the premises of the PM are frequently violated [77].
For example, in many clustering scenarios, either the number of
clusters or the distribution size of the clusters varies drastically
[78]. Therefore, RI is normalized to adjusted rand index (ARI) for
values between -1 (independent labeling) and 1 (perfect match)
[79], even though it is safer to use ARI, especially in case of
smaller sample sizes or larger number of clusters.

Further, to evaluate the CQ, unsupervised clustering accuracy
(ACC) [40] metric is used, which takes a cluster assignment from
an unsupervised algorithm, assigns the ground truths and com-
putes the best match between them. Intuitively, it measures the
best matching between cluster assignments from a clustering
method and the ground truth. So, given the ground-truth label
yi and the cluster assignment from the algorithm ci, ACC can be
computed as follows:

ACC = max
m

n∑
i=1

1
{
yi = m(ci)

}

n
, (22)

where m ranges overall possible one-to-one mappings between
clusters and labels using Hungarian algorithm [80]. Additionally,
if the ground truth class assignments of the samples are given,
metrics like homogeneity and completeness can be formulated
to desirable objectives for any cluster assignment using condi-
tional entropy analysis [81]. While the former signifies if each
cluster contains only members of a single class, the latter sig-
nifies if all members of a given class are assigned to the same
cluster.

Evaluation and comparative analysis
To show the effectiveness of DL-based clustering approaches,
we focus on clustering genomics data, biomedical text mining
and bio-imaging using different methods. Since DEC is based on
MLP, for each use case, CAE, VAE and LSTM-AE were trained with
five different base clustering algorithms for the soft clustering
assignment. For the brevity, however, we demonstrated CAE-,
VAE- and LSTM-AE-based RL in detail for bioimaging, GE and text
clustering, respectively. Finally, we evaluated the performance of
all these approaches both quantitatively and qualitatively and
provided a comparative analysis.

Experiment setup

All programs were written in Python, and experiments were
carried out on a machine having 32 cores, 256GB of RAM and
Debian 9.9 OS, where the software stack consisted of Keras and
scikit-learn with the TensorFlow backend. Network training is
carried out on an NVIDIA Titan XP GPU with CUDA and cuDNN
for faster network training. Interactive Python Notebooks and
further technical details can be found at https://github.com/
rezacsedu/Deep-learning-for-clustering-in-bioinformatics.

Results based on best hyperparameters produced through
random search are reported empirically, where we verified
whether the network converges to the optimal number of

clusters by setting K = 2 and increasing it slowly. We also focused
on investigating how the network training converged during the
cluster assignments and updates by utilizing the Elbow method
in which WCSS is calculated along with other metrics such as
ARI, NMI, ACC, completeness and homogeneity.

Clustering breast microscopy images

Breast cancer is one of the main causes of death worldwide.
However, early diagnosis significantly increases treatment suc-
cess for which histology images are essential [82]. The diagnosis
of biopsy tissue with hematoxylin and eosin-stained images
is non-trivial, and specialists often disagree on the final diag-
nosis. Individually, during the diagnosis procedure, specialists
evaluate both overall and local tissue organization via whole-
slide and microscopy images [83]. We applied CEN on the Grand
Challenge on the BreAst Cancer Histology (BACH) [84] dataset in
which images are classified into four classes according to the
predominant cancer type in each image: healthy tissue, benign
lesion, in-situ carcinoma and invasive carcinoma. The original
balanced image dataset is composed of 400 labeled microscopy
high-resolution (2040 x 1536 pixels), uncompressed and anno-
tated haematoxylin and eosin stain (H & E) stain images. The
annotation was performed by two medical experts, and images
with disagreements were discarded.

The schematic representation of the CA E-based clustering is
depicted in Figure 1, where the CAE consists of 24 layers. Batch
normalization (BN) is used before non-linearities (i.e. conv and
dense layers) and ReLU activation function in every layer. During
the RL phase, a conv layer of encoder calculates the feature map
from a given image and the up-sampling layer scales up the
image. Layer-wise structure of the CAE is as follows:

- Input layer: each 2040×1536×3 microscopy image is reduced
to 508 × 508 × 3

- Convolutional layer: of size 127 × 254 × 254
- BN layer: of size 127 × 254 × 254
- Max-pooling layer: of size 2 × 2
- Convolutional layer: of size 64 × 127 × 127
- BN layer: of size 64 × 127 × 127
- Max-pooling layer: of size 2 × 2
- Convolutional layer: of size 32 × 64 × 64
- BN layer: of size 32 × 64 × 64
- Max-pooling layer: of size 2 × 2
- Convolutional layer: of size 32 × 64 × 64
- BN layer: of size 32 × 64 × 64
- Max-pooling layer: of size 2 × 2
- Upsampling layer: of size 2 × 2
- Deconvolutional layer: of size 32 × 64 × 64
- BN layer: of size 32 × 64 × 64
- Upsampling layer: of size 2 × 2
- Deconvolutional layer: of size 64 × 127 × 127
- BN layer: of size 64 × 127 × 127
- Upsampling layer: of size 2 × 2
- Deconvolutional layer: of size 127 × 254 × 254
- BN layer: of size 127 × 254 × 254
- Upsampling layer: of size 2 × 2
- Deconvolutional layer: of size 508 × 508 × 3.

Then clustering steps are similar to CAE as discussed before
in which we initiate the clustering by setting K = 2 (where
applicable) for the base clustering algorithms and increase it
up to 10 to see the performance towards optimal clustering
assignments. We observed how the generalizability and WCSS

https://github.com/rezacsedu/Deep-learning-for-clustering-in-bioinformatics
https://github.com/rezacsedu/Deep-learning-for-clustering-in-bioinformatics
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values change for different K values to find the optimal number
of clusters. We perform the hyperparameters tuning of each
approach separately in which 5-fold cross-validation and ran-
dom search techniques were employed.

Clustering results for this experiment are reported in Table 4
showing different metrics. In particular, as highlighted in cyan,
with the best hyperparameters, AC algorithm performs best
based on CAE-based LF, giving an ARI of 0.85, an NMI of 0.83
and an ACC of 0.84 in which each cluster contains only members
of a single class in 75% of the cases and in 77% of the cases all
members of a given class (either healthy tissue, benign lesion, in-
situ carcinoma or invasive carcinoma) are assigned to the same
cluster (since ground truth class assignments of the samples
are given).

Inspired by Rhee et al. [85], we further qualitatively assess
whether the learned representation can express the biological
characteristics of the patients. The raw image pixels, encoder’s
output (i.e. LF maps), the clusters generated by AC and clustering
with AC using LF maps are plotted in Figure 4. From the right-
most sub-figure, we can observe moderately low distinctive pat-
terns between four types of breast cancer subtypes in the t-SNE
plot. For example, specific breast cancer subtype has the worst
prognosis, e.g. basal, followed by HER2, Luminal B and Luminal
A [86]. The reason is that each subtype has distinctive molecular
characteristics from other cancer types, which is also reflected in
the microscopy images. Although microscopy images of ‘in-situ
carcinoma’ and ‘invasive carcinoma’ patients are moderately
well-separated, ‘healthy’ and ‘benign’ patients are mostly mixed,
albeit not all these patterns are visible in the t-SNE plot with raw
images. The final output of AC on CAE-based LF maps is slightly
better the best base clustering algorithm (AC, in this case). The
latent image features learned by the CAE are better than the
raw image pixels, which eventually tends to slightly improve
the separability of the microscopy images, albeit not all these
patterns are visible in the t-SNE plot of raw microscopy images.

Clustering semantically similar biomedical texts

With the exponential increase of online resources, e.g. scientific
articles published, sentiments about drugs, diseases and
treatment in the biomedical domain, there is a need to build
automated systems to extract hidden knowledge from the
unstructured texts [87]. For example, sentiment analysis of
drugs can provide valuable insights, help decision-making and
improve monitoring public health by revealing collective experi-
ences, particularly in the pharmaceuticals [88]. Since most of the
unstructured texts are unlabelled, unsupervised text mining is a
viable option, which can facilitate the extraction of vast amounts
of knowledge on a given topic and draw meaningful conclusions
that are not possible otherwise [87]. We used 215 063 reviews
from https://www.drugs.com/ on specific drugs, conditions and
a 10-star rating reflecting overall user satisfaction. Reviews
contain information about the effectiveness of the drugs and
possible side-effects. We apply a DL-based unsupervised clus-
tering to discover similarities among these reviews, and evaluate
whether the clusters generated by the network correspond to the
overall patient’s satisfaction with applied medications.

Inspired by the literature [88], we derived three-level polarity
labels for overall patient satisfaction and drug effectiveness:
ratings under and including 4 as negative, between 5 and 7
as neutral and 8 and above as positive. Given drug review
texts, we apply a light preprocessing to normalize the texts,
reduce the vocabulary size by avoiding colloquial nature and,

to some degree, address the sparsity in word-based feature
representations. Then we created a word2vec model, which
aims to quantify and categorize semantic similarities between
linguistic items based on their distributional properties. First,
we initialized the word2vec model’s weights using Google news
vectors (https://code.google.com/archive/p/word2vec/). Then
to exploit the semantic similarities among the tokens, we
fine-tuned it using gensim (https://radimrehurek.com/gensim/
models/word2vec.html) based on the skip-gram method in
which each token from the preprocessed input is embedded
into a 300-dimensional real-valued vector. The LSTM-AE based
on the literature [67] is depicted in Figure 2 has the following
structure:

- Input shape: of size 215, 063 × 300
- Embedding layer: of size 300 × 300
- LSTM layer: 128 hidden units
- BN layer: 128 hidden units
- Dropout layer: dropout rate of 20% as weight constraint
- Repeat vector: 300 × 128
- LSTM layer: 300 hidden units
- BN layer: 300 hidden units
- Dropout layer: dropout rate of 20% as weight constraint.

During the RL phase, encoder learns fixed-length vector rep-
resentation of the input texts, while the decoder uses this rep-
resentation to reconstruct the original vector using the current
hidden state and the value predicted at the previous time-step.
The probabilistic encoder as an approximation function maps
the input into a distribution. Then, the generative probabilistic
decoder tries to generate the original sample by means of con-
ditional probability. Next, clustering steps are similar to CAE we
discussed before.

The best clustering results are reported in Table 4. In particu-
lar, with the best hyperparameters, OPTICS clustering algorithm
performs the best based on the LF generated by the LSTM-AE
(highlighted in cyan), giving an ARI of 0.85, an NMI of 0.83 and
an ACC of 0.84 in which each cluster contains only members of
a single class (either negative, positive and neutral) in 75% of the
cases and in 77% of the cases all members of a given class are
assigned to the same cluster.

Similar to bioimaging use case, we qualitatively assess
whether the learned representations can express characteristics
of different types of reviews, raw text vectors, encoder’s output
(i.e. LSTM-AE latent vectors), clusters generated by the OPTICS
clustering algorithm and clustering with the OPTICS clustering
algorithm on LSTM-AE based LF vectors are plotted in Figure 5.
From Figure ??, we can observe highly distinctive patterns
between three types of reviews in the t-SNE plot. In particular,
the final output of OPTICS clustering on LSTM-AE-based LF
vectors is moderately better than that of one solely based on the
best base clustering algorithm (the OPTICS clustering algorithm,
in this case). The reason is that LSTM learned features are
better for clustering than the raw review texts. To support this
argument, we note that not all these patterns are clearly visible
in the t-SNE plot of raw review texts.

Further, since OPTICS is inherently better for sequences,
it leads to a slightly better separability of the review texts. In
particular, ‘negative’, ‘positive’ and ‘neutral’ reviews are well-
separated, even though ‘negative’ and ‘neutral’ reviews are
slightly mixed in the t-SNE plots. The reason could be the
colloquial nature of review texts in which reviews about drugs
were provided a neutral rating but still contain negative words.
Consequently, embedding vectors also got ‘contaminated’ with
both negative and neutral sentiments.

https://www.drugs.com/
https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
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Fig. 4. t-SNE plots of different stages in clustering breast microscopy images.

Clustering GEs

A previous study [10] focused on analyzing GE data using dif-
ferent clustering methods and proximity measures. It reveals
that the finite mixture of Gaussians, followed closely by K-
means, exhibited the best performance in terms of recovering
the true structure of the data. For this experiment, we aim to
see how DNN architecture can be used for a similar purpose.
The dataset used for this example is a random subset of The
Pan-Cancer Analysis Project [89], in which data from thou-
sands of patients with primary tumors occurring in different
sites of the body covering 12 tumor types were assembled.

The random extraction contains only RNA-Seq data from 801
patients, each having 20 531 attributes covering breast carci-
noma (BRCA), renal kidney carcinoma (KIRC), colon adenocarci-
noma (COAD), lung adenocarcinoma (LUAD) and prostate adeno-
carcinoma (PRAD). Samples are stored row-wise, and attributes
of each sample are RNA-Seq GE levels measured by the Illumina
HiSeq platform. A dummy name is given to each attribute,
but all the attributes are ordered consistently with the original

submission. Since GE data are very high dimensional and a
significant number of genes have a small or no effect on the
tumor, making them very weak features [90], we hypothesize
that VAE-based RL can be more effective at learning hierarchical
features. Schematic representation of the VAE-based clustering
is depicted in Figure 3, which is architecturally a 12-layer VAE
in which the BN layer is used before non-linearities and ReLU
activation function in every layer. The layer-wise structure of VAE
is as follows:

- Input layer: of size 32 × 1048, 576
- Dense layer: of size 32 × 256
- BN layer: of size 32 × 256
- Dropout layer: dropout rate of 20% as weight constraint.
- Dense layer: of size 32 × 32
- BN layer: of size 32 × 2
- Dropout layer: dropout rate of 20% as weight constraint.
- Dense layer: of size 32 × 2
- Lambda layer: of size 32 × 2
- Dense layer: of size 32 × 1048, 576
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Fig. 5. t-SNE plots of different stages in text clustering.

- Dropout layer: dropout rate of 20% as weight constraint.
- Dense layer: of size 32 × 1048576.

During the RL phase, the probabilistic encoder acts as an
approximation function to map the input into a distribution.
Then, the generative probabilistic decoder tries to generate the
original sample by means of conditional probability. Then the
clustering steps are similar to CAE we discussed before, whereas
clustering results are reported in Table 4 with different metrics
in which the AC algorithm performs the best with optimal
hyperparameters based on LSTM-AE based LF (highlighted in
cyan). In particular, we observed an ARI of 0.87, an NMI of 0.88
and an ACC of 0.89 in which each cluster contains only members
of a single class (either BRCA, KIRC, COAD, LUAD and PRAD) in
83% of the cases and in 84% of the cases all members of a given
class are assigned to the same cluster. Similar to bioimaging
and text clustering, we qualitatively assess whether learned
representation can express biological characteristics of patients,
raw GE profiles, LF vectors and clusters generated by AC on LF
are plotted in Figure 6.

From Figure 6d, we can observe moderately high distinctive
patterns between five types of cancer patients in the plot. In
particular, BRCA, COAD and LUAD patients are clearly clustered,
even though PRAD and KIRC patients are moderately mixed and
not separated well. The final output of the AC using CAE-based
LF is slightly better than that of one solely based on the best base
clustering algorithm (AC algorithm, in this case). The reason is
LSTM-AE learned LF that are more quality ones than raw GE data,
which eventually tends to a slightly better separability of the GE
profiles. As seen in the t-SNE plot, not all these patterns clearly
visible in the raw GE profiles.

Discussion and comparative analysis

The clustering results summarized in Table 4 look promising
except for the bioimaging use case, albeit CEN performed the
best. There could be several reasons for this low confidence
in separating the images. One could be the low number of
samples (i.e. 400 images). Deep architectures usually require a
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Fig. 6. t-SNE plots of different stages of clustering GEs.

higher number of samples for generalization, which indicates
that these techniques are not suitable for small-sized data sets.
In contrast, approach based on LSTM-AE with OPTICS also per-
form moderately and better than AE and VAE-based approaches,
giving an ARI of 0.83, an NMI of 0.81 and an ACC of 0.82, where
each cluster contains only members of a single class in 70% of
the cases and in 73% of the cases all members of a given class are
assigned to the same cluster. The MLP-based AE performs worst,
even though K-means performs best among all the base clus-
tering algorithms. For the biomedical texts and GE clustering,
LSTM AE-based approach performs best, albeit approach based
on CAE with the same base clustering algorithm also performs
moderately good.

For text clustering, we experience an ARI of 0.83, an NMI of
0.81 and an ACC of 0.82 in which each cluster contains members
of a single class only in 70% of the cases and in 73% of the
cases all members of a given class are assigned to the same
cluster. Overall, AE performs the worst, even though K-means
performs the best among the base clustering algorithms. In
contrast, for clustering GE, approach based on CAE with the same

base clustering algorithm performed moderately well giving an
ARI of 0.86, an NMI of 0.85 and an ACC of 0.87 in which each
cluster contains only members of a single class in 81% of the
cases and in 83% of the cases all members of a given class are
assigned to the same cluster. Here the MLP-based AE performs
worst, even though the DBSCAN performs best among all the
base clustering algorithms.

In summary, for bioimaging, CAE + AC turns out to be the
best option, while CAE + OPTICS also performs well. In contrast,
AC and OPTICS performed the best on LF generated by LSTM-AE
for both GE and text clustering. To summarize, results covering
three different use cases show that clustering results depend on
the data type, quality of RL and base clustering algorithms. It
turns out that different problems require different techniques,
i.e. there is no ‘one size fit all’.

Conclusions and outlook
In this paper, we provide a comprehensive review of DL-based
clustering approaches for bioinformatics research. Clustering
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results in three different use cases covering different types
of data show that approaches based on DL outperform ML-
based clustering algorithms. However, overall evaluations are
hindered due to the limited amount of labeled data used for
the bioimaging and clustering GE. However, neural networks
typically require many samples to converge well toward gener-
alization. This study suggests several future directions and an
outlook for an improved clustering analysis for bioinformatics
use cases:

• Firstly, transfer learning can be employed by means of pre-
trained models, e.g. Inception, AlexNet, ResNet, DenseNet
and VGG16/19 to extract deep features from the images.
Weights of the first layers are kept intact, and only the
last few layers are fine-tuned to get an improved feature
representation. This could then be used to improve the DL-
based clustering analysis by reducing the input dimensions
to a lower number of features. However, since CNN-based
pretrained models are trained on general-purpose images
(e.g. ImageNet), they are often not suitable for bioimaging.
U-Net [91] can be a better option, which is used for biomed-
ical image segmentation. It consists of a contracting path to
capture the context in an asymmetric expanding way that
enables precise localization from the biomedical images
and outperforms sliding-window based CNN on bioimag-
ing tasks. Further experiments should show whether these
improvements also carry over to DL-based clustering.

• Secondly, it would be worth investigating the effect of DSAE
[92] on LQ biomedical images and learned representation
robust against partial corruption, i.e. partially corrupted
inputs should yield almost the same representation. Then,
the latent space can be fed to a base clustering algorithm
and might learn a better clustering assignment. The unsu-
pervised initialization of layers with a specific denoising
criterion would help to capture new structure in the input
distribution, which in turn would lead to intermediate rep-
resentations better suited for subsequent learning tasks
such as supervised classification.

• Thirdly, in case of limited labeled data setting, semi-
supervised learning could be employed to reduce the need
for a large number of labeled examples and instead utilize
unlabeled ones. Unsupervised data augmentation [93], for
example, achieves state-of-the-art results on a wide variety
of language and vision tasks.

• Fourthly, the model ensemble technique could help the
networks to achieve improved performance compared to
the predictions from single models by reducing the general-
ization error. It could be achieved by training multiple model
snapshots during a single training and by combining their
predictions to make an ensemble prediction, i.e. snapshot
neural ensemble [94].

• Fifthly, one of the tricky drawbacks of word embedding is
that words with multiple meanings are conflated into a
single representation in the semantic space. Consequently,
polysemy and homonym may occur multiple times. Further,
out of vocabulary (OOV) is an issue. For the former, sentence
or paragraph embedding approaches or transformer models
like BERT [95] (where the encoder reads the entire sequence
of words at once that allows the model to learn the context
of a word based on its surrounding words) can be used.
For the latter issue, using other word embedding methods
resilient to OOV can be employed, e.g. fastText.

We believe researchers will find it valuable to apply deep
architectures for clustering analysis to advance bioinformatics

research. However, many potential challenges remain, including
heterogeneous and imbalanced data, interpretation of DL results
in an unsupervised setting and selection of appropriate archi-
tectures and hyperparameters [28]. In particular, albeit DL-based
approaches have shown tremendous success in solving many
bioinformatics research problems, they are perceived mostly as
‘black box’ methods because of the lack of understanding of
their internal functioning [90]. Further, LF learned by different
AE architectures are not easily interpretable, which is a serious
drawback. Hence, interpretability is essential to provide insights
into what features captured during the RL what attributes of
the samples are the clusters based on, e.g. interpretability is a
key to generate insights on why and how a certain prediction
has been made by the model (e.g. most important biomarkers
exhibit shared characteristics while clustering patients having
a certain cancer type, which can help in recommending more
accurate treatments and drug repositioning). Further, the ‘right
to explanation’ of the EU GDPR [96] gives patients similar rights
and discuss algorithmic diagnosis decision making and fairness
across bioinformatics research scenarios.

In the future, we intend to extend this work by (i) alleviat-
ing more samples by combining genomics data from different
sources and training a multimodal architecture, (ii) comparing
studies on clustering based on feature extracted by DNN vs. PCA
and (iii) improving the explanations about the predictions using
both ante-hoc and post-hoc approaches. In particular, we plan
to employ multimodality [55], since multiple factors are involved
in disease diagnosis (e.g. estrogen, progesterone and epidermal
growth receptors in breast cancer), AI-based diagnoses might not
be trustworthy solely based on a single modality, which demands
the requirements of multimodal features (e.g. DNA methylation,
GE, miRNA expression and CNVs data) with a reversed time
attention model and Bayesian deep learning [97].

Key Points

• DL, based on DNN architectures, has shown huge suc-
cess in image recognition, speech recognition and nat-
ural language processing as well as bioinformatics cov-
ering omics, bioimaging, genetics and texts mining.

• DNN architectures such as CAE can learn better feature
representations by mapping a high-dimensional input
space to a lower-dimensional feature space based on
it, clustering assignments can be done using different
ML-based clustering algorithms before optimizing the
clustering objective iteratively.

• Clustering result itself depends on the type of input
data, quality of the RL and base clustering algorithms.
This suggests that different problems require different
techniques, i.e. there is no ‘one size fit all’.

• The comprehensive review and evaluations of state-of-
the-art DL-based clustering analysis approaches pro-
vide valuable insights and motivates researchers to
extend and apply similar approaches to other emerg-
ing bioinformatics research problems, where DL-based
approaches outperform classical clustering analysis
algorithms.

• Since the representation learned by different AE archi-
tectures is not easily understandable, interpretability
is required to provide insights into what features and
attributes of the samples are captured are clusters
based on.
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• Python notebooks provided will help bioinformatics
researchers to reproduce the result interactively, extend
the implementations by changing the network architec-
tures, optimize the hyperparameters and customize for
other bioinformatics research problems.
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Abbreviations and acronyms

MC probably best mapping abbreviation to expanded form. We
can also use some abbreviation packages here.

• Adversarial Autoencoder (AAE)
• Adjusted Rand Index (ARI)
• Agglomerative Clustering (AC)
• Autoencoders (AEs)
• Autoencoder Loss with Mixture Model for Clusters (ALWMMFC)
• Bayesian Deep Learning (BDL)
• Batch Normalization (BN)
• BreAst Cancer Histology images (BACH)
• Convolutional Neural Network (CNN)
• Centroid-based Clustering (CC)
• Clustering Classification (CC)
• Clustering Assignment Hardening (CAH)
• Clustering Assignment Hardening Loss (CAHL)
• Convolutional Embedded Networks (CEN)
• Convolutional denoising autoencoder (CDAE)
• Clustering and RL with Feature Drift Compensation (UMMC)
• Clustering using CNN (CCNN)
• Convolutional Autoencoder (CAE)
• Clustering Accuracy (ACC)
• Clustering Quality (CQ)
• Deep Learning (DL)
• Deep Neural Networks (DNN)
• Deep Belief Networks (DBN)
• Deep Embedded Clustering (DEC)
• Deep Clustering Network (DCN)
• Dimensionality Reduction (DR)
• Distribution-based Clustering (DC)
• Density-based Clustering (DC1)
• Deep Continuous Clustering (DCC)
• Discriminatively Boosted Clustering (DBC)
• Denoising Stacked AE (DSAE)
• Deep Embedding Network (DEN)
• Deep Clustering with CAE embedding (DEPICT)
• Deep Adaptive Image Clustering (DAC)
• Deep Learning with Non-parametric Clustering (NMMC)
• Expectation Minimization (EM)
• Gaussian Mixture Model (GMM)
• Generative Adversarial Networks (GAN)
• Gene Expressions (GEs)
• Greedy Layer-wise (GLW)
• Hierarchical Clustering (HC)
• High Quality (MQ)
• Info Maximization and Self-augmentation Loss (IMSAL)
• Joint Unsupervised Learning of Representation for Images

(JULE)

• Kullback-Leibler Divergence (KLD)
• Latent Features (LFs)
• Learning Rate (LR)
• Locality preserving loss (LPL)
• Locality Preserving and Group Sparsity (LP+GS)
• Low Quality (LQ)
• Learning Latent Representations for Clustering (IMSAT)
• Long Short-Term Memory (LSTM)
• Machine Learning (ML)
• Multilayer Perceptron (MLP)
• Max Margin for Mixture Components (MMMC)
• Medium Quality (MQ)
• Neural Network (NN)
• NN-based Clustering using Pairwise Constraints Clustering

(NNCPC)
• Normalized Mutual Information (NMI)
• Pairwise Constraints (PC)
• Partitioning Around Medoids (K-medoids)
• Principal Component Analysis (PCA)
• Permutation Model (PM)
• Representation Learning (RL)
• Reconstruction Loss (RL1)
• Self-Organizing Maps (SOM)
• Stacked Convolutional Autoencoder (SCAE)
• Stochastic Gradient Descent (SGD)
• Transfer Learning (TL)
• Unsupervised Data Augmentation (UDA)
• Variational Autoencoder(VAEs)
• Within-cluster Sum of Squares (WCSS).
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