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Abstract

Background: High-throughput experimental methods have fostered the systematic detection of millions of genetic
variants from any human genome. To help explore the potential biological implications of these genetic variants,
software tools have been previously developed for integrating various types of information about these genomic
regions from multiple data sources. Most of these tools were designed either for studying a small number of variants
at a time, or for local execution on powerful machines.

Results: To make exploration of whole lists of genetic variants simple and accessible, we have developed a new
Web-based system called VAS (Variant Annotation System, available at https://yiplab.cse.cuhk.edu.hk/vas/). It provides
a large variety of information useful for studying both coding and non-coding variants, including whole-genome
transcription factor binding, open chromatin and transcription data from the ENCODE consortium. By means of data
compression, millions of variants can be uploaded from a client machine to the server in less than 50 megabytes of
data. On the server side, our customized data integration algorithms can efficiently link millions of variants with tens of
whole-genome datasets. These two enabling technologies make VAS a practical tool for annotating genetic variants
from large genomic studies. We demonstrate the use of VAS in annotating genetic variants obtained from a migraine
meta-analysis study and multiple data sets from the Personal Genomes Project. We also compare the running time of
annotating 6.4 million SNPs of the CEU trio by VAS and another tool, showing that VAS is efficient in handling new
variant lists without requiring any pre-computations.

Conclusions: VAS is specially designed to handle annotation tasks with long lists of genetic variants and large
numbers of annotating features efficiently. It is complementary to other existing tools with more specific aims such as
evaluating the potential impacts of genetic variants in terms of disease risk. We recommend using VAS for a quick
first-pass identification of potentially interesting genetic variants, to minimize the time required for other more
in-depth downstream analyses.
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Background DNA of a studied sample that differ from the reference
High-density microarrays and massively parallel sequenc- ~ genome. To explore possible links between these variants
ing have made genome-wide detection of genetic variants ~ and the phenotypes of the sample, it is necessary to
from human DNA samples systematic, efficient and inex-  first analyze the potential biological significance of each
pensive. In these experiments, it is common to observe  variant.

hundreds of thousands or even millions of loci in the Early-days analysis methods have focused on the poten-
tial impacts of genetic variants in coding regions, the
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frameshift, and the level of disruption to protein functions
and structures [1-6].

On the other hand, it is now well-recognized that many
functionally important genetic variants do not change the
coding sequences directly but rather perturb gene regula-
tion [7,8]. For example, a single nucleotide variant (SNV)
may hit the binding motif of a transcription factor, which
affects the proper binding of it and leads to an expression
level change of the regulated gene. Since currently there is
not a complete catalog of regulatory regions in the human
genome, in order to determine how likely a genetic variant
may affect gene regulation, one needs to examine many
types of static and cell/tissue-specific features indicative of
functional significance. Static features such as evolution-
ary conservation and sequence motifs help evaluate the
possibility for a genomic region to ever play a functional
role, while cell/tissue-specific features provide informa-
tion about regulatory activities in each genomic region
in particular cell/tissue types and conditions. Combining
both types of features provides a quick and low-cost way
to pinpoint the potentially most interesting variants for
downstream validation and functional studies. For exam-
ple, DNase I hypersensitivity and certain histone marks
together could identify regulatory regions active in partic-
ular cell types that are far away from their target genes [9],
while integrating such information with sequence motifs
could further predict the transcription factors involved in
the gene regulation.

A large amount of data containing cell/tissue-specific
features have been produced for various human cell types
in large-scale studies such as ENCODE [8] and Roadmap
Epigenomics [10]. To utilize these data in studying genetic
variants, a number of Web tools have been developed for
automatic large-scale genomic data integration [11-20].
Each of them provides a database of genomic features col-
lected from multiple data sources, and a procedure for
users to query selected features around their genetic vari-
ants. These tools face two common challenges, namely
1) A list of genetic variants in standard Variant Call For-
mat (VCF) could take up hundreds of megabytes and need
a long time to upload; and 2) Integrating a long vari-
ant list with a large number of whole-genome features is
time-consuming.

Concerning the data uploading issue, some tools restrict
the maximum number of genetic variants per job to a
small value, while others do not set an explicit limit but
practically cannot handle full lists of millions of vari-
ants [11-13,17]. Some other tools avoid the uploading of
large files by allowing local installation and execution,
which requires a large amount of genomic features to be
downloaded to the user machine [18].

Regarding the data integration issue, most tools use
a relational database to store the collected data. As
a result, a table join between a stored feature and
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the uploaded genetic variants is often performed by
time-inefficient algorithms that make use of standard
tree-based indices. Although more efficient linear-time
sort-merge join algorithms are available, it could be dif-
ficult to instruct the query optimizer to use them. Some
tools attempted to solve this problem by pre-computing
the results of a large amount of table joins [18,21], which
requires extra disk space for storing the pre-computed
results and new pre-computation needs to be performed
every time a new genomic feature is added to the
database.

To overcome these two issues, we have developed VAS
(Variant Annotation System), a tool for efficient genomic
data integration.

Implementation
The overall workflow of VAS is shown in Figure 1. Below
we describe its different components in detail.

Genomic features in VAS

VAS provides a large variety of genomic features collected
from different data sources (Table 1). To help explore
genetic variants in non-coding regions, it provides a rich
set of whole-genome features about sequence patterns,
conservation, chromatin states and expression signals
from various experimental and computational data sets.
Cell/tissue-specific data based on different cell types stud-
ied by the ENCODE Project Consortium and Roadmap
Epigenomics are provided for some features. Additional
features are provided for referencing previous findings
about known variants and their loci, including previously
cataloged SNPs, information about disease SNPs, and
Gencode gene annotation, which contains a large number
of non-coding RNAs.

Feature selection, data compression and data integration

A user uploads a list of genetic variants and selects the
features to be integrated through a user-friendly Web
interface. Multiple data formats are supported for the
input list of genetic variants, including VCF and white-
space-delimited lists. In our test, uploading 3 million
genetic variants involved less than 50 megabytes of data
transfer (Figure 2). The enabling technology behind this
small uploading data size is a compression procedure that
VAS performs on the client side. In a standard VCF file,
there is a lot of information not required for the data
integration purpose. Our Flash plugin takes the user-
supplied variant file, retains only genomic locations, and
removes repetitive text such as chromosome names. The
resulting file contains compact arrays of chromosomal
locations, one for each chromosome. This compression
process is transparent to the user in that a user only
needs to specify a standard genetic variant file as input
and the compression will be automatically performed
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Figure 1 Schematic illustration of the VAS workflow. Genomic features are pre-sorted and stored in data files with pointers for direct access to
particular genomic locations. A user supplies the list of genetic variants and selects the genomic features to integrate with the variants at the client
side. The variants extractor produces a compressed form of the input variants. The task is then sent to the backend and put into a waiting queue,
and the user is shown a waiting page. When an execution daemon becomes available, it fetches the next task in the queue and uses the
customized algorithms to perform data integration. The integration results are stored in a tab-delimited file. The user will then be shown a summary
page of the integration results. An email notification will also be sent, with a link for a user to retrieve the summary page later. The user can then
view the integration details of each input variant, perform interactive analysis on the UCSC Genome Browser, or download the annotation results in
tab-delimited or Excel format.

before the compressed data is transferred to the list of the features available. Functions are also provided
server. for searching for particular datasets using their attributes

The genomic features to be integrated with the genetic ~ such as cell type (Figure 3a). For each genetic variant,
variants are selected from a Web interface that providesa  VAS can search for genomic features overlapping its exact
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Table 1 List of genomic features provided by VAS

Type Genomic features

Chromatin ENCODE open chromatin, histone modifications,
protein-DNA binding [8], Roadmap Epigenomics

DNA methylation [10]

Genomic states  ChromHMM segmentation [22], supervised genomic

region classification [23]

Expression ENCODE RNA-seq [8]

Sequence UCSC [24] conservation scores [25,26], transcription
factor binding motifs [27], sequence uniqueness [28],
repeats [29], GC content

Annotation Gencode [30]

Variations dbSNP [31]

Diseases GWAS Catalog [32], The Human Gene Mutation

Database [33]

location or a flanking window of it up to 1Mb, allowing
exploration of nearby loci in genetic linkage to the input
variants.

Upon submitting the input variants and the selected
genomic features, the data integration job is added to a
queue on the server side. The back-end system adopts
a scalable design that allows executing multiple jobs on
different computing nodes in parallel. The user is redi-
rected to a waiting page that provides the latest status
of the job. Optionally, if an email address is entered, an
email notification will be sent to the user when the job is
finished.

We store data in a customized file format without rely-
ing on a relational database, which facilitated our design
of linear-time integration algorithms that can efficiently
identify overlapping genomic regions in different data
files. Specifically, for each feature, the genomic regions
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containing feature values are sorted according to their
genomic locations. Special pointers are added to particu-
lar locations (such as the start of each chromosome) in the
genome to allow direct access of these locations without
a sequential scan of all regions from the beginning of the
file.

We provide two types of data integration. The first
one is identifying genomic features overlapping exactly
the locations of the input genetic variants (exact loca-
tion for an SNV or insertion, mid-point for a deletion).
The second one is identifying genomic features overlap-
ping a flanking window of each input genetic variant.
Both types of integration are performed by sort-merge
algorithms.

For the first type of data integration, we first sort the
input variants according to their locations. We then use a
pointer to scan through all the genetic variants and all the
genomic feature regions sequentially. Whenever a region
of the genomic feature is encountered, we add it to a fea-
ture queue. Any genetic variant that is then encountered
before the end of the region will be annotated with the
region and the result is stored in the variant map (see
Figure 4 for an example). More specifically, during the
scanning process, the algorithm takes one of the follow-
ing actions whenever a point of the corresponding type is
encountered:

e Location of a variant: Annotate the variant with all
the regions currently in the feature queue and store
the results in the variant map

e Starting position of a feature region: Add the region
to the feature queue

¢ Ending position of a feature region: Remove the
region from the feature queue

70 -
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Figure 2 Amount of data upload and uploading time required at various sizes of the input list of genetic variants in our simulation study,
before and after client-side data compression. The data uploading time for the uncompressed case was estimated based on the file size and the
data transfer rate when transferring the compressed version of the same files .

—— Before client-side
compression

Data uploading time (second)
n
(=]
S

—+— After client-side
compression

0 T T
0.0 1.0 2.0 3.0 4.0

Original number of genetic variants (million variants)




Ho et al. BMC Genomics 2014, 15:886
http://www.biomedcentral.com/1471-2164/15/886

Page 5of 12

(a)

Select datasets

Open Chromatin, Peaks ~ Open Chromatin, Signal  Protein Binding. Peaks ~ dbSNP  Evolutionary Conservation

o
encrsomyr [EEIECE
pe—

chrésseant? 0359289
ovemsaa 039139
enasnasea

crveseasy

avesssan | 0266366 oéstod  0sonms | 02
12303956
enrtammsoos

Chvamatinsaesegmencaon  chvomtinsate astcsion onaveryaton svaseo [ R

[ ] sesensr 1 2i2 155 ]

Window Pesiion Human Feb. 2009 (GRCN3#/mg19) chfl:115,675,945-115,681,945 (8,001 bp)
Scale e |
chri: 115,675,000| 115,680,000]
= Ref5eq Genes
RefSeq Genes

ENCODE Transcription Fach P-seq Peals fnd Signal based on Uniform g ing pipe

Conserved TFBS  CpGlisland  Sequence uniqueness  Simple Repeat ~ GWAS Catalog ~ GENCODE :
Search for datasets in "Histone Modification. Signal* |
Cell Type ~ N Search Show all
Batch selection @ Nha I
et S ¥ Nhdfad =
. 1
= LR Iy Reset i
List of datasets Nhif
S |
Select Window size ( NNdfne Histone Mark  Display Name
[ n] 1 = 2 & 2 2a
r 1 = Bro: 21 k2 Bi
r 1 | 0 X -
r 1 = H3k H H -
Clear all selected Status: § out of 40 datasets (max.) selected m
NHGRI Ca
CpG Istands
) HMB Consarved Factor Binging Sites__________________
g g i VaAPT_OT V3HNF1_C| VSERGB| | eee
§ § g g ivspACHI 01 | viEor ]
s = g g ; verer o] |
£ & -3 1 Dhasel by Digital DNasel from ENCOD ‘of Washington
g g ~ ~ g g E H £ & & HAR HE 1 :
El bl el e o || L0 ELE R[5 Han P 1
- = g g § q g 2 3 b} i i HAR Hi 2 !
3 1 = 5 g ] T ] ] 5 g HAR Pk 2 :
£ E 3 £ £ 2 : & £ |
O TN T Y - i 1
g g g g g H S H S : z 3 3 HAsp Pk 1 | ”
F 2 F 2 2 = z £ £ H H i H HAsp Ht 2 i
I T O RN T i
4 5 H 4 § 3 z z ; i E H B HAc H 1 :
] : L] : ? 2 2 : i £ § § HAE P 1 :
nrmamy) o B | nle | adv|aly|ndv | ade|ady | alv|advalyabke | b HAc Hi 2
enrteiiserysas [IEEERE s PRl s | 11 sies  o7vess oo onesvs [EETCIEN NENEEE EETENN acPkal | | (0[] ][]l el L L
encrzsyuszocs IERIEE [ a5sus | 35wy | 2 o I ] [ sz 1 sos ] SKNSHRA HI 1
EEE T < nami E - | SKNSHRA Pk 1
[ o [ e P o 25 SKNSHRA Ht 2
3R 1! < 1 SKNSHRA Pk 2
s 2aseeo [N 5

Simple Nucleolide Po wimllrmsms (@bSNP 135) Found in >= 1% of Samples

Common SNPs(135) LRIt | RRIARRL RN e

Figure 3 Usage of VAS. (a) Selecting genomic features to be integrated with the genetic variants. (b) Summary of the annotation results. Genomic
features identified around each genetic variant (within a 10 kb window in this case) are shown, where a darker color indicates a stronger signal value.
(c) Detailed view of a genetic variant, with an embedded UCSC Genome Browser image in which each genomic feature is shown as a signal track .

For the second type of data integration, the integration
algorithm is similar to the one for the first type, except
that now instead of considering a single location of each
genetic variant, we consider the starting and ending posi-
tions of its flanking window. During the scanning process,
the algorithm takes one of the following actions when-
ever a point of the corresponding type is encountered (see
Figure 5 for an example):

e Starting position of the flanking window of a variant:
Add the variant to the variant queue, annotate the
variant with all the regions currently in the feature
queue and store the results in the variant map

¢ Ending position of the flanking window of a variant:
Remove the variant from the variant queue

e Starting position of a feature region: Add the region
to the feature queue, annotate all variants currently in
the variant queue with the region and store the
results in the variant map

¢ Ending position of a feature region: Remove the
region from the feature queue

We have compared the speed efficiency of these data
integration algorithms with some alternative methods. For
all the methods, we tried to integrate a list of 57,902
variants with a genomic feature with 17,524 regions. We
tested both types of data integration, with the size of the
flanking window set to 100bp in the second type of inte-
gration. The time needed for the different methods to
perform the integration task is shown in Table 2. Our cus-
tomized algorithms were found to be the most efficient
among the methods in comparison.

When the data integration is finished, the results are dis-
played on a Web page that shows information about the
selected features around each input variant (Figure 3b).
In the case of numeric features, the average feature val-
ues around each variant and their percentiles among
all genomic regions are also shown. Details of the fea-
tures can be displayed in a signal-track image gener-
ated by the UCSC Genome Browser (Figure 3c). Linking
to a corresponding UCSC Genome Browser session is
provided for more visualization options and interactive
explorations. Integration results can also be downloaded
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Figure 4 An example of point-to-region data integration using our algorithm .

in Microsoft Excel or tab-delimited formats for further
analyses.

Each data integration job is given a unique 512-bit iden-
tifier. The user who issues a job can browse and download
the results at a later time by using the provided hyperlink
with this identifier embedded. All job files are kept on the
server for 30 days. Other users without this identifier are
unable to access the uploaded data or the corresponding
data integration results.

Currently there are several related tools providing
genome-wide annotation of genetic variants. Each of these
tools has its unique features and advantages. We list in
Table 3 some of the distinctive properties of VAS.

Results and discussion

Case studies

As a demonstration of using VAS in exploring potential
functional meanings of genetic variants, we used it to

analyze two sets of genetic variants with different sets of
genomic features.

The first set of genetic variants includes the suscepti-
bility loci for migraine identified in a recent study [35].
In that study, a genome-wide meta-analysis was per-
formed on the data from 29 genome-wide associa-
tion studies, which together involved 23,285 individuals
with migraine and 95,425 population-matched controls.
Twelve loci were identified to be significantly associated
with migraine, while 5 loci were found to have significant
expression quantitative trait loci (eQTL). We used VAS to
retrieve information about various types of static and cell-
specific data around these 17 loci. For static features, we
considered evolutionary conservation, known variants in
dbSNP and GWAS Catalog, protein binding motifs and
CpG islands. For cell-specific features, we considered his-
tone modifications, open chromatin and transcription fac-
tor binding data from ENCODE sequencing experiments
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Figure 5 An example of region-to-region data integration using our algorithm .

Table 2 Data integration time of different methods

Method Integrating variant Integrating variant flanking

locations (second) windows (second)

BigBed 277.90 275.63
Interval tree 041 0.60
Relational database 8.05 736.23
Tabix 8.87 8.88
Our algorithms 0.21 0.52

For BigBed reader and interval tree, we used the implementation of bxpython.
For relational database, we tried several indexing methods including standard
B-tree index and spatial index, and report here the shortest time among these
approaches. Tabix was called using the pytabix library in Python.

for both normal brain and spinal cord cells (HAc, HA-h,
HA-sp and NH-A) and brain cancer lines (BE2_C, Gliobla,
Medullo and SK-N-SH_RA).

Figure 3b shows part of the annotation results, where
the darkness of a table entry indicates how strong
the signal value is. It can be seen that many fea-
tures have strong signals around the susceptibility loci.
As an example, Figure 3c shows the detailed view of
rs12134493 (marked by the red line), which is at position
115,479,469 (hg18)/115,677,946 (hg19) of chromosome 1.
It is located in an intergenic region downstream of and
close to the TSPAN2 gene. In the original study [35],
it was found that the susceptibility loci in general had
strong open chromatin signals in terms of DNase I
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Table 3 Some distinctive features of VAS as compared to some related tools

Tool CADD [16] GEMINI[18] GWASdb[17] GWAVA[19] HaploReg[20] RegulomeDB[12] VAS
Client-side data compression  No (local) N/A No No No Yes

Input variants allowed ~100,000 (Unlimited) 1 >10,000 10,000 ~5,000 3,000,000
Genomic features/aggregated 63 (User defined) 37 14 10 1,012 1,000+
features provided (5 categories) (6 categories) (13 categories) (16 categories)
Data storage and integration  (Not described) Relational DB Relational DB (Not described) Relational DB Relational DB Customized
Searching flanking regions No No Yes No No No Yes
Asynchronous access of results  Yes (local) No No No No Yes

Linkout to genome browser No No UCSC [24] Ensembl [34] No ucsc ucsc

For GWAVA and RegulomeDB, the maximum number of input variants allowed is based on our own tests of the system. Properties of the tools are based on their

versions on 8th September 2014.

hypersensitivity, and they overlapped with some tran-
scription factor binding motifs. Consistent with their
findings, VAS was able to find overlaps between the
SNP and open chromatin signals in various normal brain
cells (Figure 3c i, ii) and the presence of binding motifs
for multiple transcription factors around that region
(Figure 3c iii).

We also made a number of additional interesting obser-
vations based on the VAS results. First, the open chro-
matin signals were found only in normal brain cells but
not in the cancer line SK-N-SH_RA. Second, in astrocytes
(NH-A), the SNP overlapped a local region with strong
H3K27ac signals (Figure 3c iv), which suggests that the
region could be an active enhancer in this cell type. Third,
the SNP was inside a region with strong evolutionary
conservation among placental mammals and among ver-
tebrates (Figure 3c v), suggesting that the region is under
evolutionary constraints. Finally, there was active bind-
ing of CTCF, RAD21 and YY1 in a nearby region a few
kilobases away (Figure 3c vi) with corresponding open
chromatin signals. Given the closeness of this region and
the susceptibility locus, it may be useful to include this
region into the study.

The second set of genetic variants comes from the
Personal Genome Project [36] (https://my.pgp-hms.org/).
We randomly downloaded 5 lists of genetic variants with
at least one variant reported to have high clinical impor-
tance according to the report on the Web site (Table 4).
We tested if we could identify these variants of potential
clinical importance using VAS, by annotating them with
the information from GWAS Catalog [32] and the Human
Gene Mutation Database [33]. On average, uploading and
completing the annotation of each data file took less than
10 minutes. VAS was able to annotate all 21 unique vari-
ants reported to be likely pathogenic and rare pathogenic
using the information from the two databases, which con-
firms that VAS can be used to quickly integrate informa-
tion from diverse sources for more in-depth downstream
analyses.

Data uploading and integration time

To test the speed performance of VAS in handling large
data files, we recorded the time required to integrate 6.4
million genetic variants present in the CEU trio obtained
from the 1000 Genomes Project with the information of
the whole list of SNPs in dbSNP. We compared the perfor-
mance of VAS with both the reported results and our local
execution of GEMINI [18], a tool that allows large-scale
genomic data integration by means of local execution and
pre-caching of table join results. Both VAS and our local
execution of GEMINI were tested on a machine with dual
quad core Xeon CPU at 2.4 GHz and 64 GB of main
memory.

The resulting time measurements of the two tools
(Table 5) show that VAS finished the data integration
in around half an hour. As for GEMINI, although our
time measurements are different from those reported in
the original paper due to the use of different machines,
in general a long data loading time (1.5-3 hours) was
required for the extensive pre-computation, followed by a
very quick data integration phase. This pre-computation
step needs to be performed whenever a new set of genetic
variants is to be annotated.

Since GEMINI was executed locally while VAS is an
online system, there was extra data uploading time for
VAS. For the data set tested, the data uploading time was
negligible as compared to the time needed for data inte-
gration. This result is consistent with our above analysis
on file size and data uploading time at different numbers
of input genetic variants (Figure 2).

Overall, VAS is more efficient and flexible in handling
new variant lists since it does not require pre-loading of
data, while GEMINI works better in situations where the
same list of genetic variants is to be repeatedly analyzed by
integrating with many different subsets of genomic data.

Conclusion
In this paper, we have described VAS, a new Web tool
that can efficiently integrate millions of genetic variants


https://my.pgp-hms.org/

Table 4 Lists of genetic variants from the personal genome project tested on VAS

Sample Total number of variants PGP variants Chromosomal location dbSNP ID Clinical importance Found by VAS
hu47A9D1 960,613 APOA5-S19W chr11:116662407/chr11:116167616 rs3135506 Low Yes
APOE-C130R chr19:45411941/chr19:50103780 rs429358 High Yes
MBL2-G54D chr10:54531235/chr10:54201240 rs1800450 Low Yes
MBL2-R52C chr10:54531242/chr10:54201247 rs5030737 Low Yes
MTRR-149M chr5:7870973/chr5:7923972 rs1801394 Low Yes
MYO7A-R302H chr11:76869378/chr11:76547025 rs41298135 High Yes
1s5186 chr3:148459988/chr3:149942677 1s5186 Low Yes
hu7DA960 960,613 AMPD1-Q12X chr11:115236057/chr11:115037579 1517602729 Low Yes
KCNE1-D85N chr21:35821680/chr21:34743549 N/A High Yes
KRT5-G138E chr12:52913668/chr12:51199934 rs11170164 Low Yes
MBL2-G54D chr10:54531235/chr10:54201240 rs1800450 Low Yes
1s5186 chr3:148459988/chr3:149942677 155186 Low Yes
hu8D40D6 598,897 APOE-C130R chr19:45411941/chr19:50103780 1s429358 High Yes
HFE-S65C chr6:26091185 N/A Low Yes
MTRR-149M chr5:7870973/chr5:7923972 rs1801394 Low Yes
PRPH-D141Y chr12:49689404 rs58599399 High Yes
RPF1-A91V chr10:72360387/chr10:72030392 r1s35947132 Low Yes
SERPINA1-E288V chr14:94847262/chr14:93917014 rs17580 Low Yes
hu998A3D 960,613 BTD-D444H chr3:15686693/chr3:15661696 rs13078881 Low Yes
C3-R102G chr19:6718387/chr19:6669386 152230199 Moderate Yes
COL4A1-Q1334H chr13:110818598/chr13:109616598 153742207 Low Yes
HFE-S65C chr6:26091185 N/A Low Yes
MTRR-149M chr5:7870973/chr5:7923972 rs1801394 Low Yes
1s5186 chr3:148459988/chr3:149942677 1s5186 Low Yes
SERPINAT-E366K chr14:94844947/chr14:93914699 1528929474 High Yes
hgD53911 612,647 COL4A1-Q1334H chr13:110818598/chr13:109616598 153742207 Low Yes
MTRR-149M chr5:7870973/chr5:7923972 rs1801394 Low Yes
PKD1-R4276W chr16:2139814/chr16:2079814 rs114251396 High Yes
1s5186 chr3:148459988/chr3:149942677 1s5186 Low Yes
SCNN1G-E197K chr16:23200963/chr16:23108463 rs5738 Low Yes
VWF-R854Q chr12:6143978/chr12:6014238 1s41276738 Moderate Yes

The variants listed in the “PGP variants” column include likely pathogenic and rare (<2.5%) pathogenic variants according to the reports available on the Personal Genome Project Web site. The information in the
“Chromosomal location”, “dbSNP ID” and “Clinical importance” columns was all obtained from these reports.
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Table 5 Time measurement of GEMINI and VAS
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Tool Data loading/uploading (s)* Data integration (s) Total (s)
GEMINI (as reported in [18]) Average 5,050.0 24.0 5,064.0
GEMINI (our testing results) Trial 1 9,944.6 154.1 10,098.6
Trial 2 9,960.5 1555 10,116.1
Trial 3 10,1824 156.9 10,339.3
Trial 4 10,182.3 162.8 10,345.1
Trial 5 10,053.2 169.1 10,222.2
Average 10,064.6 159.7 10,224.3
Std. dev. 115.2 6.2 1176
VAS Trial 1 9.9 1,711 1,721.1
Trial 2 104 1,7723 1,782.7
Trial 3 9.7 1,552.5 1,562.1
Trial 4 9.2 1,541.6 1,550.8
Trial 5 9.6 1,580.9 1,590.5
Average 938 1,631.7 16414
Std. dev. 04 103.7 104.1

"Time for GEMINI to load the data into database and perform pre-computations, and time for VAS to upload the file from the client browser to our server.

with tens of whole-genome data sets in a single integration
task. The client-side data compression procedure and the
customized data store allowed fast uploading and integrat-
ing whole lists of genetic variants obtained from genomic
studies, making VAS a practical tool for routine first-step
annotation of genetic variants.

When analyzing large-scale genomic data, the main
bottleneck is usually inspecting long lists of results,
pinpointing the most biologically or medically signifi-
cant parts, and making correct interpretations of them.
The time spent on data integration is usually relatively
unimportant. However, the time difference between a
standard data integration method and a customized
one could become large when the numbers of input
genetic variants and integrating genomic features are
large. In addition, since VAS can accept multiple job
requests from different users simultaneously, having an
efficient data integration method can also shorten the
time spent on waiting for other earlier jobs in the queue to
complete.

Currently VAS supports job-level parallelization, which
means multiple jobs can be run at the same time in par-
allel on different computing units. In the future, we plan
to extend VAS to support sub-job-level parallelization,
which means a single job can be divided into sub-tasks
simultaneously performed on different computing units.
As the integration of each genetic variant is independent
of the other variants, high-level distributed computing
frameworks such as MapReduce should be readily appli-
cable. An additional advantage of adopting such a frame-
work is the distribution of data to multiple machines,
which allows for better scalability.

VAS is currently implemented as an online system,
which enjoys the advantage of requiring no local installa-
tion or downloading of genomic features by the user. We
have ensured data integrity and confidentiality by provid-
ing encrypted network connections and assigning task IDs
that are only made known to the users who submit the
tasks. However, there are situations in which some private
data can only be analyzed locally. Theoretically a user can
install a local version of VAS on his/her own machine to
perform the analysis offline, but that would also require
downloading a large amount of stored data features. We
will investigate ways to facilitate data integration in these
situations, such as allowing users to easily download a
selected subset of features or dynamically download data
features at the time needed, and developing privacy-
preserving distributed data integration algorithms.

In the case study we have demonstrated that with the
data currently loaded into VAS, one could already use it
to obtain some interesting patterns around each genetic
variant. As more and more cell/tissue-specific data are
being produced, we will keep updating the data reposi-
tory of VAS to cover more cell/tissue types and more data
for each cell/tissue type. We also plan on supporting the
GRCh38 human reference genome when most data files in
our database have a CRCh38 version available.

Availability and requirements

Project name: Variant Annotation System (VAS)
Project home page: https://yiplab.cse.cuhk.edu.hk/vas/
Operating system: VAS can be accessed from any plat-
form by using one of the listed Web browsers
Programming languages: PHP, Python
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Other requirements: We recommend accessing VAS by
using Google Chrome (version 35 or higher), Microsoft
Internet Explorer (version 10 or higher), or Mozilla
Firefox (version 24 or higher), with JavaScript enabled
and a minimum screen resolution of 1024 pixels x 768
pixels

Any restrictions to use by non-academics: Nil
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