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Abstract
Plasmodium falciparum is an obligate intracellular parasite and the leading cause of severe malaria responsible for tre-
mendous morbidity and mortality particularly in sub-Saharan Africa. Successful completion of the P. falciparum
genome sequencing project in 2002 provided a comprehensive foundation for functional genomic studies on this
pathogen in the following decade.Over this period, a large spectrum of experimental approaches has been deployed
to improve and expand the scope of functionally annotated genes. Meanwhile, rapidly evolving methods of systems
biology have also begun to contribute to a more global understanding of various aspects of the biology and patho-
genesis of malaria. Herein we provide an overview on metabolic modelling, which has the capability to integrate
information from functional genomics studies in P. falciparum and guide future malaria research efforts towards the
identification of novel candidate drug targets.
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INTRODUCTION
According to the recent ‘World Malaria Report’ by

the World Health Organization, malaria remains a

major healthcare issue, being responsible for more

than 200 million cases and hundreds of thousands of

deaths in 2010 alone [1]. An efficient and cost-effect-

ive artemisinin-based treatment is now available, but

the emergence of resistance in malaria parasites, as a

result of drug treatments, urges the development of

medicines with new targets and novel mechanisms of

action. Despite tremendous research efforts and the

passing of a decade since the publication of the

Plasmodium falciparum genome sequence [2], about a

half of the genes still remain annotated as coding for

‘hypothetical proteins’ or ‘conserved hypothetical

proteins’ [3]. These genes, and especially those re-

stricted to Plasmodium or apicomplexan species, are

of particular interest as their unique nucleotide se-

quences may provide higher selectivity for new anti-

parasitic drugs. However, in the absence of tools for

high-throughput gene knockdown such as RNAi [4],

the identification and validation of the essentiality of

these genes for the parasite remains a major bottleneck

[3]. Available experimental approaches for establish-

ing gene essentiality in P. falciparum are cumbersome

due to several unique properties of the pathogen.

First, it possesses an extremely AT-rich genome

along with an unusually low frequency of
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homologous recombination, which makes it refrac-

tory to genetic manipulation such as gene replace-

ment [3]. Second, in vitro cultivation is a delicate

process [5] that is still mainly restricted to the intraer-

ythrocytic stages. Third, the limitation of using pri-

mates as an animal model makes the invivo assessment

of gene essentiality very limited and expensive.

Nevertheless, emerging experimental breakthroughs

hold promises for cost-effective gene knockdown

strategies of the P. falciparum essential genes at a high-

throughput scale [6, 7]. In this context, there is a need

to list genes of immediate interest, which should be

validated as antimalarial targets once affordable ex-

perimental means are available.

Metabolic modelling is a modern approach of sys-

tems biology that, among several other applications,

has been extensively exerted to predict gene essen-

tiality in various bacteria including a number of

pathogenic species [8]. Computational (i.e. in silico)
metabolic models offer a cost-effective pipeline to

identify putatively indispensable metabolic functions

that, in the case of pathogens, represent potential

targets for medical intervention [9]. Eight years

after the publication of the first computational

model of a tentative metabolic network of P. falcip-
arum, it has become evident that reconstruction and

analysis of in silico models is a valuable tool for study-

ing various aspects of the pathogen [10–14]. In this

study, we aim to review and provide an outlook on

the current state and contribution of in silico meta-

bolic modelling efforts to functional genomics

studies on the deadly malaria parasite.

THE PATH FROMMETABOLIC
MAPSTO ‘CONTEXT FOR
CONTENT’MODELS
With the constantly decreasing cost of high-

throughput measurements, the tendency to generate

very large -omics datasets is emerging and this holds

also true for P. falciparum [15]. There are two distinct

approaches to high-throughput measurements: hy-

pothesis-driven studies generate large datasets to

prove or falsify a hitherto existing hypothesis, while

hypothesis-free studies primarily rely on a thorough

analysis of datasets without presumptions aiming at

the formulation of conclusions and testable hypoth-

eses. Importantly, hypothesis-free approaches require

an appropriate context, i.e. a framework of related

prior knowledge, within which an obtained dataset

can be interpreted. In the case of functional genomic

studies, in silico metabolic models have been shown

to provide such context, thus enabling researchers

to use available datasets (i.e. content) to improve

and challenge the models and to derive additional,

non-intuitive insights. In particular, this need for an

explicit, up-to-date context is a driving force for

the progress from a scope of generic biochemical

knowledge to organism-specific (or life stage specific)

metabolic networks, which we will discuss further.

In the past two decades, several databases of bio-

chemical reactions and metabolic pathways have been

developed to provide a systematic and comprehensive

overview of metabolism. A pertinent example is the

Kyoto Encyclopedia of Genes and Genomes (KEGG)

Pathway Database [16], which has established itself as

an encyclopedia of biochemical knowledge and the

first point of reference for numerous academic and

industrial researches. However, KEGG and similar

large databases are more universal than organism-

specific, thus they do not cover some crucial aspects

of the P. falciparum metabolism, such as cofactor util-

ization, compartmentalization and proteins involved

in the transport of metabolites. The web-resource

Malaria Parasite Metabolic Pathways (MPMP) is es-

sentially the product of an extensive manual revision

of KEGG maps according to known and recently es-

tablished metabolic features of the P.falciparum intraer-

ythrocytic life stage. Furthermore, integration with

other web-resources facilitates quick access to add-

itional information and related primary literature

[17]. MPMP is probably the most comprehensive

and up-to-date knowledge database on P. falciparum’s
metabolism, but unfortunately the lack of any appli-

cation-programming interface limits the access of a

broad research community to this high-quality data.

Utility of MPMP for research purposes has been

demonstrated via interpretation of the expression pat-

terns for the genes involved in the pentose-phosphate

pathway using the corresponding maps [18]. This led

the authors to postulate that the oxidative part of the

pathway is predominantly active during the early stage

of the intraerythrocytic replication cycle, whereas the

non-oxidative part is activated only during the later

stages [18]. In contrast to this approach, further at-

tempts to comprehend metabolic fluxes in the malaria

parasite aimed at going beyond the study of a particu-

lar pathway and ultimately led to the reconstruction

of large-scale models with hundreds of metabolites

and interconnected reactions involved [10–14].

Graph-based models (GBMs) were built to com-

prehend and analyse the metabolic capabilities of
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P. falciparum in a systematic manner. GBMs represent

metabolism as graphs with nodes (to denote metab-

olites) and links between them (respective metabolic

reactions) [19]. The links only represent the possibility

of interconversion for a particular metabolite into an-

other one (justified by the correspondingly annotated

genes), regardless of all the properties of the reaction

including its stoichiometry. A natural advantage of

GBMs is that they require minimal input information

and can assess well-annotated parts of a given meta-

bolic network while skipping unclear ones. However,

such representation of a metabolic network without

capturing its mass-balance property is not a suitable

framework for incorporation of experimental infor-

mation, thus making the scope of GBM-based meth-

ods in metabolic modelling rather limited. Nowadays,

graph-based metabolic reconstructions and topo-

logical analysis are largely obsolete and have been

replaced by more comprehensive constraint-based

approaches.

Over the past decade flux-balance analysis (FBA)

has been established as a leading approach for study-

ing constraint-based models (CBMs) of cellular me-

tabolism [20]. Constraint-based metabolic models for

FBA are based on two-dimensional arrays, where

each row represents a metabolite and each column

corresponds to a reaction, which, as a rule, is linked

to a certain enzyme and gene in the organism [21].

Each intersection of row and column contains a nu-

merical value standing for the stoichiometric coeffi-

cient of a given metabolite in a given reaction. Such

notation enables the explicit and quantitative de-

scription of a metabolic network and allows the

imposing of the first basic constraint—mass balance.

A model that only accounts for mass balance is lar-

gely undefined and further constraints are imposed to

enrich the range of feasible solutions with biologic-

ally realistic ones. The scope of additional constraints

is constantly growing and currently includes thermo-

dynamic (tFBA), regulatory (rFBA) and other con-

straints inherent in cellular metabolism (reviewed in

[22]) and constraints inferred from experimental data.

CBMs, unlike GBMs, do require a pre-defined

objective towards which utilization of available sub-

strates should be optimized [23]. A common object-

ive function for fast-growing cells is the biomass

reaction (other plausible objectives are reviewed in

[24]). It represents cellular replication as a reaction

that consumes pre-defined amount of metabolites

referred to as precursors of biomass. Existence of a

solution implies that the stoichiometric array

describes at least one uninterrupted pathway that

leads to the transformation of externally supplied

substrates into biomass precursor for each of the

precursors. To satisfy this requirement, the model-

building process often involves the inclusion of ‘or-

phan reactions’, for which no enzyme-coding gene

has been annotated yet [25].

A conventional reconstruction workflow [25]

clearly defines the list of enzymes that should be

found in the genome to complete the pathways

and meet experimentally observed metabolic beha-

viour. With this approach, putative metabolic func-

tions have been proposed for 17 genes of Leishmania
major, which previously had no functional annota-

tions [26]. Although these assignments, often based

on moderate sequence identity, are not sufficient

proofs of the suggested functions, they do represent

a set of testable hypotheses for experimental valid-

ation. Such a list of orphan reactions provides an

invaluable guidance for functional genomics studies

into P.falciparum that has more than 2000 genes with-

out even putative functional annotation.

One of the most important applications for CBMs

of pathogenic species is the capability to predict po-

tential vulnerabilities in their metabolism [9]. Often

metabolic networks are redundant and contain more

than one chain of reactions to produce certain bio-

mass precursors. To explore this redundancy, FBA

enables an attempt at the simulation of growth

when each of the reactions in the model is removed

in a one-at-a-time manner. Whenever production of

biomass is blocked without a certain reaction, the

latter is classified as essential. In a similar manner,

FBA can simulate outcomes of withdrawal of

enzymes or genes by attempting to simulate growth

when utilization of all the reactions associated with an

enzyme or gene is disabled. We refer the reader to a

comprehensive publication on insilico essentiality stu-

dies in the CBM of Saccharomyces cerevisiae [27] for

further details and examples.

OUTLOOKOF IN SILICO
METABOLICMODELS FOR
P. FALCIPARUM
Several studies to date have focused on the compre-

hensive reconstruction of the metabolic network

of P. falciparum (Table 1). Early studies produced

several GBMs [11, 14, 28] that considered the

set of metabolic activities reported at the time with-

out taking into account information on the
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compartments they occur in nor the differences

in life-stage-specific metabolism of the pathogen.

As mentioned before, without consistency in mass-

balance relationships, these models were not suitable

for integration of experimental data and allowed

only qualitative predictions of gene essentiality.

Nevertheless, during the reconstruction process

putative functions were suggested for hundreds of

genes previously annotated as coding for a ‘hypo-

thetical protein’ [14]. These first modelling efforts

gave a broad overview of the metabolic capabilities

of P. falciparum annotated in its genome when

compared with the expected ones and provided a

solid foundation for building the modern, more

comprehensive reconstructions discussed hereafter.

Using a constraint-based approach, Huthmacher

et al. [12] assembled the first compartmentalized,

mass-balanced and life-stage-specific model of

P.falciparum metabolism. Through insilico simulations,

the authors identified enzymatic activities that are

essential for proliferation of the parasite. Thirty

of the in silico essential reactions were catalyzed by

enzymes with no homologues in the human prote-

ome (E-value> 0.075). These were ranked as targets

of particular interest based on evidence of activity

during the multiple stages of P. falciparum life cycle

studied and/or the presence in SuperTarget database

[29] as candidates for treatment of other infections

[12]. Furthermore, the natural environment of the

parasite was simulated by embedding its CBM into

the metabolic reconstruction of a human erythro-

cyte. This limited the substrate accessibility to only

those available in the host cell milieu. Such con-

straints at the cellular interface and constraints on

reaction fluxes, deduced from gene expression pro-

files (obtained on different life stages), not only

allowed the model to retrieve known directions of

metabolite exchanges between the host cell and the

parasite, but also identified several inconsistencies

with experimental data, which need further investi-

gation [12].

The second CBM developed independently by

Plata et al. [13] also took account of compartmental-

ization of the intracellular space and mass-balance

constraints. The results of gene deletions performed

in silico were found to be in correspondence with

reports in the primary literature: 100% agreement

when compared with gene deletion studies and

70% in case of enzymatic inhibition experiments.

Comparison of the number of essential genes in

the models of P. falciparum and S. cerevisiae confirmed

the notion that the parasite likely possesses signifi-

cantly lower metabolic flexibility to bypass single-

gene deletions when compared with free-living

organisms with similar genome sizes [13]. Forty

genes were suggested as potential drug targets due

to their in silico essentiality and extremely low or

absent sequence identity to human proteins [13].

The essentiality of one of these genes encoding the

nicotinate mononucleotide adenylyltransferase was

verified using an experimental inhibitor, which

caused an arrest of P. falciparum proliferation at an

IC50 of 50mM in in vitro culture [13]. In addition,

Plata etal. [13] were the first to report insilico double-

gene deletion simulations in P. falciparum leading to

the identification of 16 pairs of genes that were pre-

dicted as non-essential by single-gene knockout

simulation but resulted in a dramatic impairment of

the metabolism if targeted simultaneously.

Holzhutter and co-workers have developed the

most recent CBM of the P. falciparum metabolic net-

work [10] by updating their previous PlasmoNet1

model [12]. In PlasmoNet2 [10] they have added

new transport reactions based on metabolomics

Table 1: Comparison of in silico metabolic reconstructions of P. falciparum

Authors (year of publication) Information about the modela

Metabolites Reactions Genes Compartmentsb

Yeh et al. (2004) [14] 525 696 ç ç
Fatumo et al. (2009) [11] 554 575 ç ç
Huthmacher et al. (2010) [12] P: 1622 E: 566 P: 1375 E: 437 P: 579 P: c, m, a, n, r, v, g; E: e, c
Plata et al. (2010) [13] 915 1001 366 P: e, c, m, a
Bazzani et al. (2012) [10] P: 1622 H: 1149 P: 1394 H: 2539 P: 579 H: 704 P: c, m, a, n, r, v, g;H: c, r, g, l, m, n, p, b, s

The first twomodels [11,14] were built using graph-based approach and the following are constraint-basedmodels [10,12,13].
a‘P’denotes themodel of the parasite,‘E’ human erythrocyte,‘H’ human hepatocyte.
bAbbreviatednames of compartments: e, extracellular space; c, cytosol;m,mitochondrion, a, apicoplast; n, nucleus; v, digestivevacuole; r, endoplas-
mic reticulum; g,Golgi complex; l, lysosome; p, peroxisome; b, bile canaliculus; s, sinusoidal space.
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data [30] and removed one reaction according to an

updated version of KEGG database. Through inte-

gration of PlasmoNet2 with the CBM of human

hepatocyte [31], they evaluated in silico the essential-

ity of P. falciparum genes in liver stage and assessed,

using a ‘reduced fitness’ approach, effects of targeting

enzymes that are homologous and predicted to be

essential both in the host and the pathogen [10].

Comparison of the essentiality predictions made

by the aforementioned models is not a trivial task.

First, because the study by Plata et al. aimed at pre-

dicting the essentiality of genes, whereas the other

studies assessed the essentiality of enzymes, the pre-

dictions made do not overlap when gene-to-enzyme

relations are not one-to-one. Second, a gene or

enzyme may be absent from the list of ‘predicted as

essential’ not only because it has been predicted as

non-essential, but possibly, also due to the fact that

the corresponding metabolic process simply is not

included in the model of interest. Third, essentiality

predictions in CBMs are directly dependent on the

set of metabolites included into their biomass reac-

tion, so that differences in assumed biomass compos-

ition directly affect the results of in silico simulations.

For an overview of P. falciparum genes and enzymes

predicted as essential in existing models, we refer the

reader to the Supplementary Table 1. The table also

provides the reader with literature references on the

experimental assessment of genes/enzymes predicted

to be essential by the different models.

An important simplification common to all the

aforementioned models is the ad hoc assignment of

directionality to the reactions, which are pre-set

either as all reversible [12] or assumed to have the

same reversibility as in the metabolic models of non-

related organisms [13]. In principle, the directionality

of a reaction is subject to its thermodynamic proper-

ties and spurious ad hoc assignments might violate this

fundamental constraint. This issue has been addressed

rigorously in genome-scale metabolic networks of

several organisms [32–34] by implementation of

thermodynamic constraints on reaction directionality

as an extension to conventional FBA methodology.

Overall, metabolic modelling of P. falciparum to

date lags several years behind the similar efforts for

the model eukaryote S. cerevisiae; there exist a few

independently reconstructed models that often lack

consistency with each other due to the differences in

the reconstruction workflows, the sources of primary

information, the level of complexity and the varying

degree of comprehensiveness. Similarly to the trends

in modelling of the yeast metabolism, we expect the

emergence of reconciliation efforts that will aim at

obtaining a consensus, up-to-date CBM of P. falcip-
arum. Recently developed workflows for manual

[35] and semi-automated [36] reconciliations of

existing metabolic models may significantly facilitate

these efforts. There are several other areas in which

we foresee room for upcoming improvements: the

first, as mentioned before, is a systematic implemen-

tation of thermodynamic constraints in the models of

P. falciparum; the second is a deliberate revision of

the objective function (i.e. biomass reaction) to

make it consistent with the actual biomass compos-

ition of the parasite at the life stage of interest; the

third is an experimental verification and quantifica-

tion of the uptake fluxes present in the models.

These improvements are likely to make in silico pre-

dictions of gene essentiality more reliable and also

expand the number of metabolic functions currently

known to be essential for P. falciparum.

Metabolic reconstruction efforts to date have

summarized the results of decades of experimental

research on the metabolism of P. falciparum in the

form of in silico models, which not only reproduce

the prior knowledge, but also provide novel insights.
Nevertheless, the fact that cultivation of the parasite

in a fully defined medium is still impossible clearly

highlights that some important metabolic peculiari-

ties remain to be discovered. The promising direc-

tion is the utilization of the CBMs as frameworks of

current knowledge, which can then be challenged,

refined and constrained by various high-throughput

datasets as discussed in the following section.

HIGH-THROUGHPUTDATA AND
METABOLICMODELS: ‘CONTENT
FORCONTEXT’
As mentioned above, CBMs hold a great potential to

incorporate various types of experimental data as

content for the context of computational metabolic

networks. In this section of the review we provide an

outlook of the currently published studies that have

integrated computational modelling and experimen-

tal research efforts for each type of high-throughput

data introduced in Table 2.

Genomics
Genomics studies of P. falciparum have yielded so far

several complete genome sequences (for 3D7 and IT

strains [55]); however, their functional annotation
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remains far from being complete [3]. Nonetheless,

these partially annotated genomes gave rise to nu-

merous genome-wide transcriptomics and large-scale

proteomics studies as well as made possible the

reconstruction of the parasite’s metabolic network

in silico.
High-throughput functional genomics of P. falcip-

arum is a nascent field in malaria research since only

a limited number of studies have succeeded in gen-

erating single-gene mutant parasite clones at a large

scale. The largest coverage reported to date was

achieved with a forward genetics approach based

on transposon mutagenesis using the transposable

element piggyBac [56]. The collection regroups

about 200 mutant parasite lines that cover only a

modest part of the P. falciparum genome. Among

those, 24 single-gene disruptions caused severe

growth defects in vitro, which might lead to lethal

phenotypes in vivo [56]. A major drawback of this

method is its inability to reveal essential genes due

to the haploid state of the malaria parasite through-

out most of its life stages. Although specific design

of the transposon with an integrated inducible pro-

moter has been proposed to assess essential genes [6],

it still remains to be proved practicable. In contrast,

in vitro essentiality data of the genetically tractable

parasite Trypanosoma brucei have been obtained

for nearly all the coding sequences of its genome

using the RNA-interference target sequencing

approach [57].

The value of the gene essentiality datasets is

reinforced by the possibility of in silico simulation of

similar genetic perturbations. This offers reciprocal

benefits for experimental and computational

research: CBMs can often suggest the underlying

reason for viable/non-viable phenotypes of knock-

out strains and, otherwise, reveal the weak points,

where the model should be improved.

Accordingly, the algorithm GrowMatch [39] has

been applied for comparison of the high-throughput

datasets of viable/non-viable single- and double-

gene knockout mutants in S. cerevisiae with in silico
gene essentiality predictions [27]. This approach has

led to over a hundred corrections in the model (e.g.

inclusion of additional reactions, compounds and

genes as well as changes in biomass reaction), each

supported by literature evidence and largely im-

proved consistency of the model with the existing

experimental data [27]. Once a successful high-

throughput forward or reverse genetic technique is

established for P. falciparum, GrowMatch or a similar

algorithm could validate the computational model,

to improve understanding of the obtained results and

produce hypotheses for experimental investigation,

applicable to malaria drug research.

Transcriptomics
Transcriptomic profiling appears to be the one of

most common high-throughput methods applied in

malaria research; numerous gene expression datasets

are available in PlasmoDB database (http://www.

plasmodb.org) for different lineages of the parasite

under various conditions. Although the scope of

gene expression data is growing, new increasingly

advanced algorithms to integrate these datasets into

CBMs are also being developed [44]. To date, two

models of P. falciparum metabolism have incorporated

available transcriptomics data as constraints [12, 13]

to represent life-stage-specific metabolic features of

the parasite.

Huthmacher et al. integrated their model with

several life-stage-specific gene expression profiles

[40–42, 58, 59] to avoid, whenever possible, utiliza-

tion of reactions that are likely to be inactive based

on the abundance of the corresponding messenger

ribonucleic acids (mRNAs) [12]. This approach has

allowed the authors to infer plausible metabolite

exchanges between the human erythrocyte and the

Table 2: Overview of the high-throughput methods applied for functional genomics of P. falciparum and available
options for integration of the data with CBMs

Approach Examples of the methods Maximal coverage Integration with CBMs

Genomics BLASTP [2], metaSHARK [37], DETECT [38] ca. 50% Used as input data for building CBMs [25]; validation
of in silico gene essentiality [39]

Transcriptomics DNA microarray [40^42], RNA-seq [43] ca. 99% Used to constrain CBMs [12, 13]; reviewed in [44]
Proteomics 2D LC-MS/MS [45], nano-LC-MS/MS [46] ca. 45% Used to constrain CBMs [47]
Metabolomics HPLC-MS/MS [30, 48], 1H-NMR [49] ca. 15-20% Used to constrain CBMs [32, 34], reviewed in [33]
Fluxomics 13C-NMR [50, 51], 14C-NMR [52] Less than 1% Used to constrain CBMs, reviewed in [53, 54]
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parasite, as well as to predict directionality of the

pathways that cannot be easily inferred from gene

expression data alone. The predictions of the host–

parasite metabolite exchanges were in significantly

better agreement with the physiology reported in

literature when fluxes were allowed through any re-

action for which the mRNA was absent at the life-

stage-specific transcriptome but had been present

earlier (up to 12 preceding hours) [12]. This obser-

vation is consistent with the earlier study that found a

significant time delay between maximal gene expres-

sion and peak of accumulation of the corresponding

proteins [60].

Plata et al. [13] also attempted to integrate gene

expression data [30, 61] into their model to predict

the shifts in the extracellular (intraerythrocytic)

abundance of some metabolites between ring to

trophozoite and trophozoite to schizont stages. The

authors assumed that a higher influx of a metabolite

into the parasite will lower the abundance of the

substrate molecule in the cytosol of the infected

erythrocyte, whereas a higher efflux rate of a metab-

olite from the parasite will increase its intraerythro-

cytic abundance. The computational predictions

were verified against the existing metabolomics

data [30] and had an average accuracy of 70%.

With major improvements in accuracy and sensi-

tivity thresholds that can be achieved by modern

RNA-seq approaches [43], utility of transcriptomic

studies will increase significantly for experimental

and in silico functional genomics.

Proteomics
The first two large-scale proteomics datasets pub-

lished in 2002 [45, 46] provided a relatively high

coverage (ca. 45% and 23% respectively) of the ex-

pected proteome of P. falciparum [62]. While deliver-

ing only semi-quantitative results, these studies

provided the unique possibility to verify and correct

the genome annotation in terms of assignments of

open reading frames, splicing patterns and to confirm

the presence of particular enzymes in different stages

of infection.

Several approaches have been used to generate

quantitative proteomics datasets. Nirmalan et al. [63]

have established a method for fully quantitative

proteomics using [13C6
15N1]-labelled isoleucine to

recognize denovo synthesized proteins. Following this

method, Prieto et al. [64] quantified 1253 proteins in

P. falciparum trophozoites before and after exposure of

the parasite to chloroquine and artemisinin, allowing

identification of proteins involved into the parasite’s

response to treatment with these conventional anti-

malarial drugs. A recent alternative method for quan-

titative proteomics relies on externally supplied,

known amounts of proteins of interest, obtained

using QconCAT technique [65]. QconCAT-derived

proteins are labelled with heavy isotopes and serve

both as markers for identification of the similar un-

labeled proteins and a scale for their quantification

[65]. This approach offers a new level of sensitivity

and holds promise for comprehensive high-

resolution quantitative proteomics in P. falciparum.

Taking into account the complexity of the inter-

play between mRNA and protein abundances (thor-

oughly examined in [66]), the studies that combine

both transcriptomic and proteomic measurements

are of particular interest. As a result of such an inte-

grated approach applied to P. falciparum, time-delayed

correlation between peaks of transcription and max-

imal abundance of the proteins has been observed

for all the glycolytic enzymes with the exception

of enolase [60]. However, for several enzymes,

accumulation of the mRNA did not correlate with

the changes in the abundance of the corresponding

enzymes over a complete intraerythrocytic replica-

tion cycle [60]. Mair et al. [67] demonstrated that in

the Plasmodium species some genes can be transcribed

but not expressed due to translational repressions.

Despite the availability of the data and necessary

computational methods, proteomics have not been

used systematically in the development and analysis

of CBMs of P. falciparum. Meanwhile however, it has

been done for an intercellular pathogen Trypanosoma
cruzi: Roberts et al. have integrated in their CBM a

proteomics dataset that constrains fluxes through re-

actions whenever the corresponding enzyme is not

detected in life-stage-specific proteome. Using this

constraint the authors aimed at making the model

the most representative possible of the metabolic

state of the pathogen at a particular stage of its life

cycle. Initially this resulted into an over-constrained

model that was unable to simulate growth, suggesting

that even though enzymes for some reactions were

not detected in the proteome they were likely to be

present. On the other hand, constraints inferred from

the proteomics data corrected those reaction essenti-

ality predictions that were not in agreement with ex-

perimental data without these constraints [47].

Although a complex interplay between concen-

trations of mRNAs and enzymes with the fluxes

through the corresponding reactions remains to be
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elucidated, utilization of transcriptomics and prote-

omics information together can ensure higher con-

fidence that an enzyme of interest is (or is not)

present in the life stage of interest. For instance, it

is reasonable to assume that a reaction for which both

enzyme and transcripts cannot be detected is most

likely not to occur and should be tightly constrained

in the stage-specific CBMs.

Metabolomics
Several recent reviews discuss in detail the methodol-

ogies and techniques that are currently used for

metabolomics of various organisms [68–70] and mal-

aria parasites in particular [71]. The largest metabo-

lomics profile to date was obtained by liquid

chromatography coupled to a tandem mass-spec-

trometry (LC-MS/MS) analysis of both uninfected

and P. falciparum-infected human erythrocytes [30].

Relative changes in the concentrations of about 90

metabolites were monitored in both the medium

and cell lysates within a whole replication cycle,

with measurements every 8 h [30]. A further attempt

to correlate these results with gene expression data

obtained at the same time points of the infection

revealed that despite a common periodic pattern in

gene expression, only less than a third of the mea-

sured metabolite abundances fluctuated periodically

[30]. The coverage of the P. falciparum putative meta-

bolome achieved in this study is between 15% and

20% (estimated similarly to [72]) and compares with

the metabolomics of Leishmania donovani promasti-

gotes [72]. Currently, no algorithm is available to

directly incorporate the relative concentration

values in CBMs. Even so, Plata et al. used this data

as a reference to verify their in silico predictions as

discussed above. Furthermore, the dataset [30] gives

a valuable insight into actively consumed and se-

creted metabolites, an aspect of the metabolic fate

that can be used as a constraint by CBMs.

Quantification of absolute concentration values

using MS is technically possible, although it is ham-

pered by the need for a standard solution for each

metabolite [48, 73]. On the contrary, nuclear mag-

netic resonance (NMR) techniques do not require

external standards neither for identification nor for

quantification of metabolites as the integral of the

output signal is proportional to the concentration

of the studied nuclei. Despite its lower sensitivity

compared with the modern MS methods [70],
13C-NMR can identify metabolites that are other-

wise undetectable by MS due to their low ionization

potential (e.g. glycerol as reported in [74]). Using
1H-NMR, the concentrations of more than 50 me-

tabolites were measured in cell extracts of

P. falciparum trophozoites [49]. The unbiased nature

of the method also enabled identification of some

unexpected metabolites (e.g. aminobutyric acid and

buffering agent HEPES) present in relatively high

concentrations in lysates of the parasite cells [49].

An important drawback of the current metabolo-

mics studies of P. falciparum is that, for metabolites

present in more than one compartment (e.g. cyto-

solic and mitochondrial adenosine diphosphate), the

measured concentration only reflects an average

value, which may differ significantly from the

actual concentration in each of the compartments.

Metabolomics on separate organelles is an emerging

field in functional genomics research, as exemplified

in algea [75], which will enrich and verify current

knowledge on the subcellular localization of various

metabolic processes. The issue of compartmentaliza-

tion is especially complex in the case of malaria para-

sites. Indeed, these obligate intracellular parasites

develop in either hepatocytes or erythrocytes in the

intermediate host. Moreover, the parasite harbours

two symbiotic organelles: the mitochondrion and

the apicoplast (relic of a plastid organelle acquired

by engulfment of an algae), both of which are host

metabolic pathways that are crucial to the central

carbon metabolism of P. falciparum.

Fluxomics
Fluxomics is a largely unexplored area in malaria

research, while for experimentally amenable species

it represents a relatively well-established and rapidly

developing field [53, 54]. Incorporation of the mea-

sured values of flux through the reactions present in

CBMs can significantly improve the accuracy of the

models by reducing the uncertainty in the ranges and

distributions of metabolic fluxes. To the best of our

knowledge, the only fluxomics studies in P. falcip-
arum, to date, are the assessments of influx rates for

single substrates: glucose (in infected and non-in-

fected human erythrocytes [50, 51]), isoleucine

[76], pantothenate [52] and inorganic phosphate

[77]. Due to the indispensability of these substrates

for the parasite, incorporation of these flux values

may represent overriding constraints for the CBMs.

In the case of model organisms, e.g. S. cerevisiae,
measured metabolic fluxes were included into the

CBMs and allowed in silico resolution of experimen-

tally observed metabolic features that could not be
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inferred otherwise—neither from transcriptomics

nor proteomics data [54]. A relevant example is a

large increase in glycolytic flux, which can be main-

tained by the yeast exposed at low levels of oxygen

without changing the expression levels for involved

genes [78]. This led to an important conclusion that

fluxes in primary metabolism are more likely to be

controlled via regulation of enzymatic activities and

not by changes in gene expression as in secondary

metabolism [54].

Overall, out of numerous methods developed for

the integration of experimental data with CBMs,

only a modest proportion have hitherto been applied

to pathogenic organisms and P. falciparum in particu-

lar. We argue that this is not only due to the com-

plexity of the experimental study of pathogens, but

also due to the fact that a majority of the in silico
methods discussed above were initially designed for

free-living organisms. Although the methods are, in

principle, applicable to intracellular pathogens, some

aspects unique to the parasites may be crucial for

obtaining relevant computational results. Examples

of such aspects would be the common absence of a

clearly defined set of substrates and by-products for

the metabolism of intracellular parasites, the changes

in composition of biomass across multiple stages of

their life cycles or sub-optimal utilization of available

substrates, etc. These issues and the aforementioned

experimental challenges represent the area where

we expect forthcoming improvements, leading to a

better understanding of metabolic peculiarities

encoded in the genome of P. falciparum.

FUTUREDIRECTIONS
Obligate intracellular parasitism of P. falciparum
represents a significant challenge for medical treat-

ment, as it is virtually impossible to avoid impact of

antimalarial drugs on the host. Thus, high selectivity

is an essential prerequisite for all potential drug can-

didates. However, many of the genes and enzymes

predicted as being essential in P. falciparum do possess

a variable level of sequence identity to their human

counterparts [10, 12, 13], suggesting that an interfer-

ence with them may also affect uninfected host

cells. To assess this phenomenon insilico, the ‘reduced

fitness’ approach was applied by Bazzani et al. [10]

to the CBM of P. falciparum embedded into the

model of a human hepatocyte. This method can

estimate quantitatively how production of biomass

would be affected in the host and the parasite’s meta-

bolic networks when the flux through a targeted

reaction is gradually reduced to the same extent in

both models. Although it shows a purely theoretical

sensitivity of the host and the parasite to inhibition of

a certain enzymatic activity, this approach should be

considered with caution as it neglects some import-

ant aspects, which cannot be captured by CBMs.

FBA is indeed suitable for simulation of the out-

comes for gene knockout experiments, when tar-

geted enzymatic activity is abolished completely.

However, a realistic simulation of the effects of

reduced enzymatic activity (i.e. action of a drug)

requires careful consideration of kinetic and thermo-

dynamics properties. Ultimately, even if one assumes

identical kinetic properties for inhibited enzymes in

the infected host cell and its parasite, sensitivity of the

flux through the catalyzed reaction to the same

amount of inhibitor can be different simply if the

expression level of this enzyme is not the same in

these organisms [79].

Metabolic control analysis (MCA) considers all

the relevant properties to provide a more realistic

estimation about the extent to which flux through

a reaction of interest is sensitive to the action of an

inhibitor [80–82]. Using the methodologies from

MCA, one can also predict whether the inhibition

of a target enzyme will have a selective effect on the

parasite relative to its host. Using kinetic modelling

and MCA, Bakker et al. [83] have demonstrated

that glyceraldehyde-3-phosphate dehydrogenase

and phosphoglycerate kinase may represent promis-

ing targets for the treatment of sleeping sickness due

to drastically different susceptibility of glycolytic

fluxes to inhibition of these enzymes in human and

in African trypanosome.

A major limiting factor for application of MCA to

metabolic models of P. falciparum is the need to inte-

grate the kinetic parameters of enzymes in the model

and the concentration profile of key metabolites [84].

To date, such experimental information exists only

for a modest part of the CBMs of a relatively small

number of organisms [85], which is of limited

applicability [86, 87]. The recently developed

ORACLE framework can be used to perform

MCA under significant uncertainty to provide a

guidance and a quantitative ranking for drug target

identification [84]. Kinetic modelling and MCA

represent the next promising field of research for a

fine-grained evaluation of the pathways that contain

in silico predicted drug targets. These efforts may also

provide a valuable guidance for further development

in the functional genomics of P. falciparum, whereas
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analytical technologies will provide the information

necessary for building a kinetic model of its meta-

bolic network.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/

Key Points

� Modelling efforts in P. falciparum focused on revealing indispens-
able metabolic functions have expanded the list of putatively
essential genes and enzymes.

� Interpretation of high-throughput data in the context of CBMs
yields new, non-intuitive insights about functions of metabolic
genes and offers testable hypotheses for experimental research.

� Kinetic modelling approaches will enable the integration of a
broadrange of data from functional genomics, such asmetabolo-
mics, and address the limitations of the CBMs.

� Reliable kinetic modes of metabolic networks will accelerate
drug target identification and rational drug development.
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