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Abstract: Activin A (ActA) is considered to play a major role in cancer-induced cachexia (CC).
Indeed, circulating ActA levels are elevated and predict survival in patients with CC. However,
the mechanisms by which ActA mediates CC development and in particular skeletal muscle (SM)
atrophy in humans are not yet fully understood. In this work, we aimed to investigate the effects of
ActA on human SM and in mouse models of CC. We used a model of human muscle cells in culture
to explore how ActA acts towards human SM. In this model, recombinant ActA induced myotube
atrophy associated with the decline of MyHC-β/slow, the main myosin isoform in human muscle
cells studied. Moreover, ActA inhibited the expression and activity of MEF2C, the transcription factor
regulating MYH7, the gene which codes for MyHC-β/slow. This decrease in MEF2C was involved in
the decline of MyHC-β/slow expression, since inhibition of MEF2C by a siRNA leads to the decrease
in MyHC-β/slow expression. The relevance of this ActA/MEF2C pathway in vivo was supported by
the parallel decline of MEF2C expression and SM mass, which are both blunted by ActA inhibition,
in animal models of CC. In this work, we showed that ActA is a potent negative regulator of SM
mass by inhibiting MyHC-β/slow synthesis through downregulation of MEF2C. This observation
highlights a novel interaction between ActA signaling and MEF2C transcriptional activity which
contributes to SM atrophy in CC models.
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1. Introduction

Activin A (ActA), a member of the transforming growth factor-β (TGF-β) family,
is expressed in a wide range of tissues and is involved in the regulation of multiple
biological systems, such as embryogenesis, cell growth and differentiation, and immune
and inflammation responses [1]. More recently, ActA has been implicated in cancer-induced
cachexia (CC). Indeed, inhibitors of the activin-type IIB receptor (ActRIIB), which is shared
with myostatin (Mstn), another member of TGF-β family, preserve skeletal muscle (SM)
mass and prolong survival in murine models of CC [2–7]. In humans, elevated ActA is
found in the bloodstream of patients with cancer disease and decreases after removal of
cancerous tumor [8–10]. In addition, high circulating levels or tumor expression of ActA are
associated with more aggressive and invasive tumors and the presence of metastasis [9–17].
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Thereafter, we and others have shown that high circulating levels of ActA were associated
with cachexia in cancer patients [18]. ActA levels correlated positively with the severity of
cachexia and negatively with lean body mass [16,18–22]. In addition, ActA is predictive of
survival in cancer patients [15,17,23]. Taken together, these results led us to hypothesize
that ActA could influence survival of cancer patients by contributing to the development of
cachexia and loss of SM mass. However, mechanisms through which ActA could mediate
CC development and SM atrophy in particular are not yet fully understood.

Several experiments support the atrophying effect of ActA towards SM. Inhibin null
mice, characterized by elevated circulating levels of ActA, develop a marked cachexia-like
wasting syndrome associated with decreased survival [24]. This cachectic syndrome is
characterized by an important loss of SM, heart, and fat mass. In the same way, the elevation
of ActA levels locally or systemically, without underlying disease, leads to a dramatic
decrease in SM mass and force, anorexia, and reduces life span [2,25–29]. Mechanistically,
in vivo studies reveal that ActA exerts its effects on SM through the ActRIIB mainly by
activating the pSmad2/3 pathway [26]. It results in an inhibition of Akt/mTOR pathway
activation, leading to a slowdown of protein synthesis [26,27]. ActA also exerts a pro-
fibrotic effect on SM [26]. In vitro studies have revealed that ActA impairs myogenesis and
myotube differentiation [1,30]. Therefore, ActA alters SM mass and function by inducing
SM atrophy, fibrosis, and impairing myogenesis.

To study the mechanisms of action of ActA on SM, the model used had to be consid-
ered. Indeed, although activins and Mstn are well conserved across species, their relative
importance in the regulation of SM seems different across species. While a post-natal
inhibition of Mstn induces a marked SM mass expansion in mice, small or no effects are
observed on lean mass in healthy primates or humans [31–33]. In these species, only the
inhibition of both at once, ActA and Mstn, provides a significant increase in lean mass.
Interestingly, Latres et al. showed that while circulating levels of Mstn are higher (8-fold) in
mice in comparison to monkeys and humans, circulating levels of ActA are higher (4-fold)
in monkeys or humans in comparison to mice. Altogether, these data suggest that although
Mstn is the main factor limiting SM growth in mice, ActA seems to have a predominant
role in the regulation of SM in humans. All preclinical data are therefore not transposable
to humans. For this reason, the effects of ActA on SM should be investigated in human
muscle tissue or cells.

Given the elevation of circulating ActA levels during CC and its SM atrophying effect,
well demonstrated in murine models, we aimed to investigate the effects of ActA on human
SM. We used a model of human muscle cells in culture to explore how ActA acts towards
human skeletal muscle. A better knowledge of mechanisms involved in ActA-induced SM
atrophy in humans could provide a new target for therapeutic intervention, potentially
useful in the care of CC.

2. Experimental Procedure
2.1. Cell Culture, Treatment, and Transfection

Adult human skeletal muscle-derived cells (SkMDC) obtained from a 41-year-old
donor (Cook Myosite, Pittsburgh, PA, USA) were cultured in growth medium consisting of
DMEM with GLUTAMAX™, 20% FBS, 0.5% Ultroser G (Pall, Cergy, France), 1% antibiotic-
antimycotic, and 1% nonessential amino acids at 37 ◦C in a 5% CO2 incubator. SkMDC
mean population doubling was determined at each passage and cells were used before
the thirteenth division. After 4 days of proliferation, when the seeding density reached
70–80%, growth medium was replaced by the fusion medium consisting of DMEM with
GLUTAMAX™, 2% horse serum, 1% FBS, 1% antibiotic-antimycotic, and 1% nonessential
amino acids. All the experiments were performed in triplicates in six-well plates and
independently replicated three or five times as indicated (n = 3 or 5).

After 4–5 days of differentiation, SkMDC were treated with human recombinant ActA
(100 ng/mL or as indicated) (R&D Systems, Abingdon, UK) or by vehicle (HCl 4 mM) (Ctrl)
for 48 h. The fusion medium with ActA or the vehicle was renewed after 24 h.
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For small interfering RNA (siRNA) experiments, SkMDC were transfected after 4 days
of differentiation with either a specific On-Targetplus SiRNA SMART-pool against human
MEF2C (25 nM) (SiMEF2C) or a negative control (On-Targetplus non-targeting pool SiR-
NAs) (25 nM) (SiRNA [−]) (all from Dharmacon, Thermo Fisher Scientific, Waltham, MA,
USA). The fusion medium was renewed after 24 h.

For miR mimic experiments, cells were transfected after 5 days of differentiation with a
synthetic mimicking mature endogenous miR-1 (miR-1 mimic, 10–100 nM, from Qiagen) or
negative control (On-Target plus non-targeting pool) (25 nM). Transfection was performed
by using Lipofectamine® RNAiMAX Reagent (Life Technologies, Carlsbad, CA, USA). Cells
were collected 48 h post-transfection. Cells were rinsed twice in phosphate buffered saline
(PBS) before RNA and protein extraction.

2.2. Cell Viability

Cell viability was determined using the CellTiter-Glo® luminescent cell viability kit
(Promega Corporation, Madison, WI, USA) in accordance with the manufacturer’s in-
structions. This method is based on the measurement of ATP production by the cells,
proportional to the number of viable cells, detected by luciferin–luciferase reaction.

2.3. Myotube Morphological Analysis

Myotubes were labeled with mouse monoclonal anti-myosin-heavy chain (MyHC)
antibody (MF20, 1:20 dilution) and resolved with secondary antibodies conjugated to Alexa-
Fluor 488 (1:400 dilution) (Invitrogen, Cergy-Pontoise, France). Images were captured with
a high-resolution cooled digital XC30 camera coupled to a BX-50 microscope (Olympus,
Rungis, France) at a resolution of 0.64 µm/pixel. The myotube diameter was measured on
100 myotubes in each condition (from 3 independent experiments). Myotubes were defined
by the presence of minimum 5 nuclei. For each myotube, five random measurements were
performed along the length of the myotube using the image processing software ImageJ
1.47v, and the average of these five measurements was considered as one single value.

2.4. Direct miRNA or mRNA Quantification by RT-qPCR

Total RNA and miRNA were extracted from cultured myotubes or frozen muscle
samples using TriPure Isolation Reagent (Roche Diagnostics, Basel, Switzerland), as de-
scribed by the manufacturer. Reverse transcription and real-time quantitative PCR were
performed as previously described [34]. Relative mRNA levels were calculated using
the comparative threshold cycle (Ct) method and normalized by the expression of the
housekeeping gene GAPDH for in vitro data, and Cyclophiline or Tbp for in vivo data. The
primer sequences used for amplification during real-time qPCR are listed in Table 1. For
miR quantification, 1 µg of total RNA was reverse transcribed by using the miScript II RT
PCR kit (Qiagen, Hilden, Germany), and 10 ng of total RNA equivalent was amplified with
miScript Syb Green PCR kit (Qiagen, Hilden, Germany) using commercial miRNA-specific
forward primers (Qiagen, Hilden, Germany) and a reverse universal primer (provided in
the miScript II RT PCR kit).

Table 1. Primer sequence used for amplification during real-time qPCR.

Gene
Primers 5′-3′

Accession No.
Forward Reverse

Human

MYH7 GAGCAAGCCAACACCAACCT TGTGGCAAAGCTACTCCTCCATT NM_000257.3
MYH1 TCCACTTTAAGGTCGCATCTCT GTTCTGGGCTTCAATTCGCTC NM_005963.3
MYH2 AGCCCTTGGAATGAGGCTGA GCTCCGCCACAAAGACAGAT NM_017534.5
MEF2C TTCCAGTATGCCAGCACCG GGCCCTTCTTTCTCAACGTCTC NM_002397.4

MB AGATTAAGCCCCTGGCACAGT GATGCATTCCGAGATGAACTC NM_005368.2
MYOM-1 GCAGCCTCAGCCTACGATTA TGACATGCTTTTGACGTCCTG NM_003803.3
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Table 1. Cont.

Gene
Primers 5′-3′

Accession No.
Forward Reverse

PPARGC1A CGGGATGATGGAGACAGCTA CTTGGTGGAAGCAGGGTCAA NM_001354825.1
MyoD CGACGGCATGATGGACTACA GGCAGTCTAGGCTCGACAC NM_002478.4
MyoG GCCATCCAGTACATCGAGCG ATCTGTAGGGTCAGCCGTGA NM_002479.5
Myf5 AACTACTATAGCCTGCCGGG GATCCTGGAGAGGCAACCCA NM_005593.2
MRF4 CTTGAGGGTGCGGATTTCCT AAGCGCAGGCTCAGTTACTT NM_002469.2

HDAC4 TTGGATGTCACAGACTCCGC CCTTCTCGTGCCACAAGTCT NM_006037.3
TRIM63 CATGTGCAAGGAGCACGAAG GCCACCAGCATGGAGATACA NM_032588.3
Atrogin1 TCACAGCTCACATCCCTGAG AGACTTGCCGACTCTTTGGA NM_058229.3
MUSA1 GTCATACTGCAGTGGGGGAAA CGTGTCACACACATACATGGC NM_032145.4
GAPDH CGCTGAGTACGTCGTGGAGTC GCAGGAGGCATTGCTGATGA

Mice

MYH7 GGTGCCAAGGGCCTGAATGAGGAG GGTCTGAGGGCTTCACGGGCAC
MEF2C GCTGTTCCAGTACGCCAGCAC NM_025282.3
GAPDH TGCACCACCAACTGCTTA GGATGCAGGGATGATGTTC NM_001289726.1

Tbp Mm01277042_m1

2.5. Western Blotting

Myotube proteins were homogenized in ice-cold pH 7.0 buffer containing 50 mM of
Tris-HCl, 150 mM of NaCl, 5 mM of EDTA, 2% NP40, 0.1% SDS, 1 mM of phenylmethyl-
sulfonyl fluoride, 10 µg/mL of leupeptin, 10 µg/mL of aprotinin, and 1 mM of sodium
orthovanadate. Homogenates were centrifuged at 16,000× g for 20 min at 4 ◦C, and su-
pernatants were immediately stored at 80 ◦C. Fifteen micrograms of muscle cells proteins
were resolved by SDS polyacrylamide gel 10% electrophoresis and transferred to PVDF
membranes. Membranes were probed with the following primary antibodies: pSmad2,
Smad2/3, and MEF2C (all from Cell signaling Technology, Leiden, The Netherlands) and
MyHC-β/slow (Sigma-Aldrich). Signals were revealed by Enhanced Chemiluminescence®

Western Blotting Detection Plus (GE Healthcare, Machelen, Belgium), then quantified and
normalized to total protein loading assessed by staining membranes using Coomassie blue.

2.6. Mouse Models of Cancer Cachexia
2.6.1. C26 and Baf3 Models

Mice from Charles River Laboratories (Chatillon-sur-Chalaronne, France) were housed
at two mice per cage with a 12-h light/dark cycle and fed an irradiated normal chow diet
(AO4-10, 2.9 kcal/g, Safe, Augy, France). CD2F1 male mice (8-week-old) were injected
subcutaneously (intrascapular) with C26 cells (1 × 106 cells in 0.1 mL of saline, C26 group;
n = 8) or a saline solution (Ctrl group; n = 8), as previously described [35]. Balb/c female
mice (6-week-old) were injected into the tail vein with BaF3 cells (1 × 106 cells in 0.1 mL
of saline, BaF3 group; n = 8) or saline solution (Ctrl group; n = 8) after anesthesia, as
previously described [35]. At the end of the experiment (10 days for the C26 model and
14 days for the BaF model), tissue samples were harvested following anesthesia (ketamine
and xylazine, or isoflurane gas, Abbot, Wavre, Belgium). Tissues were weighed and frozen
in liquid nitrogen. All the samples were stored at −80 ◦C. The experiments were approved
by and performed in accordance with the guidelines of the local ethics committee from the
Université catholique de Louvain. Housing conditions were as specified by the Belgian Law
of 29 May 2013, regarding the protection of laboratory animals (Agreement No. LA1230314).
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2.6.2. KPC Model

Under a protocol approved by the Institutional Animal Care and Use Committee
of Indiana University School of Medicine, KPC and age-matched genotype control mice
were housed up to five per cage in a pathogen-free facility on a 12-h light cycle, with
ad libitum access to autoclaved food and sterile water. KPC (KrasG12D; Trp53R172H; Pdx1-
Cre) mice are a genetically engineered mouse model that mimics human PDAC (pancreatic
ductal adenocarcinoma) [14]. For activin inhibition, early-stage male KPC mice with
tumors measuring 5–7 mm and body condition score from 3–6 were treated with either
ACVR2B/Fc (15 mg/kg body weight i.p.) or the same volume of phosphate buffered
saline (vehicle control), administered every 5 days until euthanasia. Mice were euthanized
when tumors reached >10 mm and the body condition score ≥ 8. The body condition
score was determined by summing the points from each domain as follows: body posture
(0—normal, 1—mildly hunched, 2—moderately hunched, 3—very hunched); activity level
(0—normal, 1—slightly reduced, 2—moving slowly, 3—moving reluctantly or not at all);
and eye appearance (0—eye closed <25%, 1—eye closed 25–50%, 2—eye closed 51–75%,
3—eye closed 76–100%). Endpoints in KPC mice were compared with no-tumor, genotype
controls of age-matched siblings, co-housed with KPC mice. Tissues were collected and
weighed, then snap frozen in liquid nitrogen for protein or RNA extraction. Frozen plasma
and tissue were stored at−80 ◦C. Activin A levels were determined by activin A Quantikine
ELISA (R&D Systems, Abingdon, UK). This was a sub-study of a larger study currently
in press (Zhong, X., Narasimhan, A., Silverman, L.M., Young, A.R., Shahda, S., Liu, S.,
Wan, J., Liu, Y., Koniaris, L.G., Zimmers, T.A. Sex specificity of pancreatic cancer cachexia
phenotypes, mechanisms, and treatment in mice and humans—Role of Activin A. JCSM,
in press).

2.7. Statistical Analysis

The results are presented as means± SEM for the indicated number of cell experiments
or mice. Statistical analyses were performed using an unpaired t-test to compare two
conditions or one-way ANOVA to compare three or more conditions. Statistical analyses
were performed using GraphPad Prism 7 Software, San Diego, CA, USA). Significance was
set at p < 0.05. *, p < 0.05, **, p < 0.01, and ***, p < 0.001.

3. Results
3.1. Activin A Causes Atrophy of Human Skeletal Muscle Cells

To explore the effect of ActA on human SM, primary well-differentiated human
myotubes were exposed to recombinant ActA (100 ng/mL) for 48 h. In these conditions,
ActA caused a significant decrease in myotube diameter (−21%, p = 0.010) (Figure 1A).
The effect of ActA on the size of myotubes was dose-dependent (Figure 1A). The chosen
dose of ActA (100 ng/mL) was the optimal dose to obtain a significant myotube atrophy
without altering cell viability. The myotube atrophy caused by ActA was associated with a
marked increase in Smad2 phosphorylation already observed after one hour of treatment
(Figure 1B). ActA therefore caused atrophy of human-differentiated myotubes, mediated
by an activation of the Smad2/3 pathway, as already shown for Mstn [30].
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Figure 1. Activin A causes atrophy of human skeletal muscle cells. (A) Diameter of myotubes exposed
to an increasing dose of recombinant activin A (ActA) or vehicle (Ctrl) for 48 h. Data are expressed as
a percentage of the values for the control. (B) pSmad2/Smad2/3 ratio measured by western blot, in
cells collected 1 h after exposure to recombinant ActA (100 ng/mL) or vehicle. Data are reported as
means ± SEM (n = 3/condition). ** p < 0.01 vs. Ctrl.

3.2. Activin A-Induced Myotube Atrophy Is Characterized by a Decrease in Myosin-Heavy
Chain-β/Slow Content

Since contractile proteins myosin and actin are the two most abundant structural
proteins in SM cells, we investigated the consequences of ActA treatment on myosin-
heavy chains (MyHC) and their gene expression. Interestingly, ActA led to a decrease in
MyHC-β/slow content, the most abundant myosin isoform in slow muscle fibers (−44%,
p = 0.013) (Figure 2A). This decline in MyHC content was caused by a decreased expression
of the MYH7 gene (−45%, p = 0.0001), encoding the MyHC-β/slow, whereas no significant
changes were observed in the expression of MYH1 or MYH2 genes, encoding, respectively,
MyHC-2X and MyHC-2A, the most abundant myosins in fast fibers (Figure 2B) [36,37]. In
contrast to mice, human SM are composed mainly (>90%) of slow and fast 2A fibers [38]. In
our myotubes, obtained from rectus abdominis muscle, MYH7 expression was predominant
and was 7 and 70 times more expressed than MYH1 or MYH2, respectively (Figure 2C).
Accordingly, ActA therefore induced a decrease in gene expression and protein content of
MyHC-β/slow, the most abundant myosin isoform in human SM cells studied.
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β/slow content. (A) Myosin-heavy chain-β/slow content measured by western blot, 48 h after
exposure to recombinant ActA or vehicle. (B) MYH1, MYH2, and MYH7 mRNA levels measured
by RT-qPCR, 48 h after exposition to recombinant ActA or vehicle. (C) MYH1, MYH2, and MYH7
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* p < 0.05 and *** p < 0.001 vs. Ctrl, ### p < 0.001.
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3.3. Activin A-Induced Myotube Atrophy Is Associated with a Downregulation of MEF2C
Expression and Activity

Since MEF2C is the main transcription factor regulating the expression of MYH7,
the gene encoding for MyHC-β/slow protein, we characterized the effect of ActA on
MEF2C. ActA caused a marked decrease in MEF2C protein content (−85%, p = 0.0497) and
its gene expression (−48%, p = 0.020) (Figure 3A,B). To investigate if a downregulation
of MEF2C expression led to a decrease in its activity, we quantified mRNA levels of its
main targets. As we observed, ActA caused a decrease in mRNA levels of MB (−51%,
p = 0.041), MYOM-1 (−42%, p = 0.0006) and PPARGC1A (−55%, p = 0.041), encoding,
respectively, for myoglobin, myomesin-1, and peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC1-α) (Figure 3C). ActA is known to decrease some SM-
specific microRNAs or myomiRs (miRs) involved in SM development, regeneration, and
phenotype. We observed a significant decrease in miR-1 (−82%, p = 0.015), which is also a
target of MEF2C (Figure 3D).
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Figure 3. Activin A-induced myotube atrophy is associated with a downregulation of MEF2C
expression and activity. (A) MEF2C content measured by western blot, (B,C,E) MEF2C, MB, MYOM-1,
PPARGC1A, MyoD, MyoG, Myf5, MRF4, and HDAC4 mRNA levels measured by RT-qPCR and (D)
miR-1 expression, all measured 48 h after exposure to recombinant ActA or vehicle. Data are reported
as means ± SEM (n = 5/condition). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. Ctrl.

To identify the factors responsible for the downregulation of MEF2C expression by
ActA, we quantified mRNA level of upstream myogenic regulating factors (MRFs), such
as MyoD, myogenin, and Myf5 [38–41]. ActA induced a significant downregulation of
MyoD (−50%, p < 0.028) and MyoG (−51%, p = 0.001) without affecting Myf5 expression
(Figure 3E). Since MEF2C activity is also regulated by myogenic regulatory factor (MRF)4
and histone deacetylase (HDAC)4, we investigated their expression in response to ActA.
ActA caused no significant change in MRF4 or HDAC4 expression (Figure 3E).

Therefore, the decrease in MyHC-β/slow synthesis caused by ActA is associated with
the downregulation of expression and activity of MEF2C, the main transcriptional factor
of MYH7.

3.4. MEF2C Is Required to Maintain MyHC-β/Slow Gene Expression and Protein Content in
Differentiated Myotubes

The parallel downregulation of MEF2C and MYH7 gene expression in response to
increasing concentrations of ActA (Figure 4A,B) supports the role of decreased MEF2C in
the decline of MYH7 in our model.
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Figure 4. MEF2C is required to maintain MyHC-β/slow gene expression and protein content in
differentiated myotubes. (A,B) MEF2C and MYH7 mRNA levels measured by RT-qPCR 48 h after
exposure to increasing the dose of recombinant ActA or vehicle. (C,E,G) MEF2C and myosin-
heavy chain-β/slow content measured by western blot and (D–F) MEF2C and MYH7 mRNA levels
measured by RT-qPCR, 72 h after transfection of myotubes with a siRNA against MEF2C (SiMEF2C)
or a negative control (non-targeting siRNA (SiRNA(−)). (H) MiR-1 expression measured by RT-qPCR
and (I) MEF2C and myosin-heavy chain-β/slow content measured by western blot in myotubes, 48 h
after transfection with miR-1 mimic (miR-1) in increasing concentrations (10,50,100 nM) or negative
control (non-targeting SiRNA (NT-SiRNA)). Data are reported as means ± SEM (n = 3/condition),
for miR-1 experiment (n = 1/condition). ## p < 0.01, ** p < 0.01, and *** p < 0.001 vs. SiRNA(−).

To highlight the obligatory role of MEF2C in the MYH7 transcription, we examined
the impact of the inhibition of MEF2C by a specific siRNA on MyHC-β slow content.
Seventy-two hours after transfection, MEF2C silencing was effective as demonstrated
by the severe decrease in MEF2C mRNA (−94%, p = 0.0002) and protein level (−100%,
p = 0.009) (Figure 4C–E). The abolition of MEF2C led to the decrease in slow MyHC-β/slow
content (−48%, p = 0.009) (Figure 4C,F,G), pointing out the crucial role of MEF2C as a
major transcriptional regulator of MYH7, and therefore involved in the maintenance of
MyHC-β/slow content.

We then investigated whether forced expression of MEF2C could increase MyHC-
β/slow expression in differentiated myotubes. To force the expression but also the activity
of MEF2C, we overexpressed miR-1 in myotubes. Indeed, miR-1 is a muscle-specific
miR, particularly expressed during differentiation of myoblasts into myotubes. MiR-1
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is involved in myogenesis by positively regulating the expression of myogenic factors,
such as MyoD, myogenin, and MEF2C. On the one hand, miR-1 targets HDAC4, the
main repressor of MEF2C activity, and on the other hand, miR-1 is also a transcriptional
target of MEF2C, leading to a positive regulation loop of MEF2C activity [42]. Given these
observations, we investigated whether overexpression of miR-1 could increase MEF2C and
MyHC-β/slow content. The transfection of miR-1 mimic in differentiated myotubes was
effective, as illustrated by the increased expression of miR-1 (Figure 4H). More importantly,
overexpression of miR-1 induced a dose-dependent increase in MEF2C and MyHC-β/slow
content (Figure 4I). MiR-1 was therefore sufficient to induce MEF2C expression and activity
together with an increase in MyHC synthesis, strengthening the link between MEF2C and
MyHC-β/slow content.

3.5. The Activin A-Induced Myotube Atrophy Is Not Associated with Increased Classical E3
Ubiquitin Ligases

The SM upregulation of different E3 ubiquitin ligases, also called atrogenes, such as
TRIM63, Atrogin1, or MUSA1, has been highlighted in several models of SM atrophy, in
particular in CC [43]. The ActA-induced reduction of MyHC-β/slow content could be due
to a rise in degradation by proteolysis. However, whether an elevation of proteolysis or
expression levels of atrogenes is observed in ActA-induced SM atrophy remains controver-
sial. Inconsistencies in results observed in studies seem to be dependent on the model used.
To clarify ActA effects on regulation of atrogenes expression in human SM, we quantified
the mRNA level of the most characterized ones, namely TRIM63, Atrogin1, and MUSA1
in myotubes, 48 h after treatment with recombinant ActA (100 ng/mL). ActA induced a
decrease in TRIM63 expression (−34%, p < 0.05), an increase in Atrogin1 expression (+55%,
p < 0.05), and no changes in MUSA1 expression (Figure 5). Consistent with in vivo models,
ActA does not upregulate atrogenes targeting the MyHC, such as TRIM63. However, ActA
upregulates Atrogin1, which targets factors regulating protein synthesis. Taking together,
these observations do not support a stimulation of MyHC proteolysis by ActA.
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Figure 5. The activin A-induced myotube atrophy is not associated with an increase in classical E3
ubiquitin ligases. TRIM63, Atrogin1, and MUSA1 mRNA levels measured by RT-qPCR, 48 h after
exposure to recombinant ActA or vehicle. Data are reported as means ± SEM (n = 3/condition).
* p < 0.05 vs. Ctrl.

3.6. Cancer Cachexia Is Associated with Downregulation of Muscle MEF2C Expression and
Activity Which Is Blunted by Inhibition of Activin A

Given the potential role of ActA in CC [2,18,26,27] and its inhibitory effect on MEF2C
expression, we investigated the muscle expression of MEF2C in animal models of CC.
The C26 model is a well-described model of CC caused by subcutaneous implantation of
colon adenocarcinoma cells and is associated with elevated levels of circulating ActA [27],
partially due to high tumoral expression of INHBA (data not shown). As expected, C26 mice
exhibited a marked body weight loss and muscle atrophy, as demonstrated by the decrease
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in muscle weight (−18%; p < 0.0001) (Figure 6A). In atrophied muscle, the MEF2C mRNA
level was profoundly decreased (−58%; p < 0.0001) together with a decreasing trend in the
MYH7 mRNA level (−36%; p = 0.051) (Figure 6B–E). To extend the observations to other CC
animal models, we quantified the muscle expression of these genes in an acute leukemia
model (BaF3 model). Consistent with our results obtained in C26 mice, we observed a
dramatic decrease in MEF2C (−94%; p < 0.0001) and MYH7 (−53%; p < 0.0001) mRNA
levels in atrophied muscles of BaF3 mice (Figure 6G–J). In both CC models, myogenesis
was impaired, as supported by the changes in MyoD and MyoG expression (data not
shown), while MYH1 and MYH2 expression was decreased (Figure 6C,D,H,I) as observed
in previous works [44–46].
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Figure 6. Cancer cachexia is associated with downregulation of muscle MEF2C expression and
activity which is blunted by inhibition of activin A. (A) Gastrocnemius weight and (B–E) muscle
MEF2C, MYH1, MYH2, and MYH7 mRNA levels, 11 days after subcutaneous implantation of C26
cells (C26) or saline solution (Ctrl). (F) Gastrocnemius weight and (G–J) muscle MEF2C, MYH1,
MYH2, and MYH7 mRNA levels, 14 days after tail intravenous injection of BaF3 cells (Baf3) or saline
solution (Ctrl). (K) Plasma ActA levels, (L) quadriceps weight, (M) muscle MEF2C mRNA levels, and
(N) tumor weight, in KPC mice treated by ACVR2B/Fc (KPC + 2B/Fc) or phosphate buffered saline
(KPC). Data are reported as means ± SEM (n = 4–10/groups). * p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001, ns: not significant.
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We then investigated whether the anti-atrophic effect exerted by ActA inhibition in CC
models is associated with restoration of MEF2C expression [2,14]. To answer this question,
we systemically administrated an inhibitor of ActA activity (ACVR2B/Fc) or phosphate-
buffered saline (Ctrl) to male genetically engineered KPC mice bearing autochthonous
tumors. KPC mice exhibited a huge elevation of circulating ActA levels, which were
maintained after the administration of ACVR2B/Fc (Figure 6K). As expected, KPC mice
developed an SM atrophy, as demonstrated by the decrease in muscle weight (−32%;
p < 0.0001), in association with a downregulation of MEF2C muscle expression (−59%;
p = 0.0015) (Figure 6L,M). Interestingly, the inhibition of ActA activity led to preserving
muscle mass, together with MEF2C muscle expression in KPC mice, without effects on
tumor growth (Figure 6L–N).

Taken together, our in vivo data show that MEF2C expression and its target, MYH7,
are downregulated in animal models of CC. In addition, the tumor-induced elevation of
circulating ActA levels seems to be involved in the decrease in MEF2C muscle expression,
since the inhibition of ActA activity allowed muscle mass and MEF2C expression to be
preserved, supporting the relevance of our in vitro observations.

4. Discussion

In the present work, we characterized the effects of ActA on human-differentiated
myotubes. We showed that ActA induces human muscle cell atrophy, which is associated
with the decline in MyHC-β/slow content, the main myosin isoform in the human muscle
cells studied. The decline of MyHC-β/slow content results from inhibition of its synthesis
caused by a downregulation of MYH7 mRNA. MEF2C and miR-1, the two main regulators
of MYH7 expression, are inhibited by ActA, which suggests their role in the decreased
MYH7 mRNA. Indeed, MEF2C is mandatory to maintain MYH7 and MyHC-β/slow ex-
pression in differentiated myotubes. The relevance of this pathway in vivo is supported by
the parallel decline of MEF2C expression and muscle mass, which are both inhibited by
an ActA antagonist in animal models of CC. Our observation therefore highlights a new
signaling pathway by which ActA causes muscle atrophy, in particular during CC.

4.1. Activin A Causes Human Muscle Cell Atrophy by Altering Myogenesis and
MyHC-β/Slow Synthesis

We showed that ActA induces human SM cell atrophy together with the decline
in MyHC-β/slow content and the downregulation of several MRFs, such as MyoD and
myogenin, as already shown by others in muscle cells exposed to Mstn [30,47,48]. Since
these MRFs are mandatory for the differentiation of myoblasts to myotubes, our results
suggest that myotube atrophy caused by ActA results from blunting of the myogenesis [49].
Myogenesis is the process that leads to SM formation during embryogenesis. In adults,
satellite cells remain quiescent and are activated to proliferate and differentiate for SM
regeneration in case of injury [37]. More recently, it has been suggested that alterations
in the regenerative process might contribute to SM wasting during catabolic situations,
such as CC [45,49]. While ActA negatively regulates SM mass to avoid excessive growth
during development, a systemic or local increase in ActA could impair the regeneration
process necessary to maintain SM mass during catabolic situations, leading to SM atro-
phy [1]. Impaired myogenesis in response to ActA has already been reported by previous
studies. In vitro, ActA alters myogenesis by inhibiting the differentiation of myoblasts
to myotubes in murine and human muscle cells [30,47]. In addition, ActA may medi-
ate the inhibition on myogenesis caused by pro-inflammatory cytokines such IL-1α and
TNF-α [50]. However, our results indicate that ActA may inhibit the myogenesis program,
even in well-differentiated myotubes. As demonstrated for Mstn in human myotubes, it
is likely that this inhibition results from activation of the Smad pathway (30). Therefore,
the SM cell atrophy that we observed in human myotubes exposed to ActA may result
from inhibition of myogenesis. Although we found mainly a decrease in MyHC-β/slow
content in response to ActA, others reported a decrease in both fast and slow MyHCs in
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human-differentiated myotubes [51]. The discrepancy between these data and ours could
result from differences in the nature of the muscle used for the primary culture and from
the interindividual variability which influences the phenotype, namely the proportion of
fast or slow fibers in the original muscle. Our data do not exclude the possibility that ActA
downregulates the expression of other MyHCs than the MyHC-β/slow, depending on the
starting phenotype. Therefore, additional studies on a large number of subjects would be
necessary to clearly characterize the effect of ActA on different types of fibers.

4.2. Activin A Inhibits MyHC-β/Slow Synthesis by Downregulating MEF2C

By seeking to identify the mechanism responsible for the inhibition of MyHC-β/slow
synthesis in response to ActA, we were able to demonstrate a decrease in MEF2C expression,
a transcription factor cardinal for the MYH7 expression, the gene encoding MyHC-β/slow.
MEF2 is a transcription factor of the MADS box family, which is involved in the develop-
ment of several human cells, including muscle, neural, chondroid, immune, and endothelial
cells [42]. The MEF2 family includes four factors: MEF2A, B, C, and D. MEF2A and C, the
most expressed in SM, play a major role in myogenesis during development and regenera-
tion and in myofiber phenotype determination by promoting a slow gene program [42]. In
particular, the transcriptional activity of MEF2A and C is essential for regeneration [52]. As
MEF2 factors and MRFs, in particular MyoD and myogenin, regulate each other’s expres-
sion in positive feedback loops, ActA could decrease MEF2C expression by downregulating
these upstream MRFs, as we observed [42]. Furthermore, it is worth noting that MEF2 acts
synergistically with MRFs to regulate muscle-specific gene expression [41].

Not only expression but also activity of MEF2C is decreased in human myotubes
exposed to ActA. This conclusion is supported by the parallel decrease in MEF2C and
its main targets, MYH7, but also MB, MYOM-1, and PPARGC1A, encoding, respectively,
for MyHC-β/slow, myoglobin, myomesin-1, and PGC1-α, and myomiR, such as miR-1
(Figure 7). These changes caused by ActA might impair structural but also metabolic
capacities of differentiated myotubes. Indeed, myomesin-1 is a protein localized in M-lines
and involved in structural organization of the sarcomere, myoglobin plays a major role in
oxygen storage and diffusion in myotubes, whereas PGC1-α is involved in mitochondrial
biogenesis and fiber-type determination [38,53,54].

The crucial role of MEF2C for the synthesis of MyHC-β/slow was clearly demon-
strated by two observations that we made. First, the transfection of myotubes with miR-1
mimic led to a clear dose-dependent increase in MEF2C and MyHC-β/slow content. Sec-
ond, transfection of siRNA targeting MEF2C in myotubes led to a decrease in MEF2C and
MyHC-β/slow content. MEF2C appears therefore as an essential factor regulating the tran-
scription of slow-fiber-specific genes, in particular MYH7 and its product MyHC-β/slow.

Although MEF2C knock down decreased MYH7 expression and MyHC-β/slow con-
tent, we could not demonstrate that overexpression of MEF2C restores MyHC-β/slow
content in myotubes exposed to ActA (data not shown). These results suggest that ActA
impairs MEF2C activity, whatever its expression. Different hypotheses could be proposed
to explain how ActA inhibits MEF2C transcriptional activity. Firstly, MEF2C acts in com-
bination with several co-factors which are potentially also downregulated by ActA and
which are required in sufficiency to insure the MEF2C transcriptional activity. Secondly,
independently of its expression, MEF2C activity may also be inhibited directly by the
Smad pathway, which is stimulated by ActA [55,56]. Indeed, Smad3 can suppress the
function of MEF2, by disturbing the synergy between MyoD and MEF2 and by preventing
its association with its coactivators, such as GRIP-1 [56]. Alternatively, Smad3 may favor
the MEF2 export from the nucleus to the cytoplasm, making MEF2 unavailable to transcrip-
tional complex and preventing transcription of downstream targets, a mechanism used
by TGF-β1 which also inhibits myogenesis through Smad activation [55]. Taken together,
these data support that ActA downregulates not only MEF2C expression but could also
repress MEF2C activity via Smad2/3 signaling. Further experiments will be necessary to
delineate whether forced MEF2C, specifically in nuclei of myotubes, could protect SM cells
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against ActA atrophic effects. Nevertheless, in tumor-bearing mice, the preservation of
SM mass induced by the inhibition of ActA is associated with the preservation of muscle
MEF2C expression. This observation strengthens the link between the elevation of ActA
and MEF2C downregulation in cancer-induced SM atrophy.
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phosphorylation of Smad2/3, downregulates MEF2C expression and activity, leading to a decrease in
MEF2C target expression (MYH7, peroxisome proliferator-activated receptor-γ activator-α (PGC-1α);
microRNA (miR)-1), causing a decrease in MyHC-β/slow synthesis and muscle atrophy. ActA does
not alter expression of negative regulators of MEF2C, such as myogenic regulatory factor 4 (MRF4) or
class II histone deacetylases (HDAC).

4.3. Activin A Targets miR-1 Expression, a Positive Regulator of MEF2C Expression and Activity

The regulation of MEF2 activity is complex and involves not only upstream MRFs,
but also some miRs. By seeking the contribution of some miRs for the inhibition of
MyHC-β/slow synthesis by ActA, we were able to demonstrate a decrease in miR-1. MiRs
are small, noncoding RNA, which post-transcriptionally regulate gene and consequently
protein expression. MyomiR are miRs specifically expressed in SM and involved in the
regulation of SM development, regeneration, and phenotype [37,38]. Among them, miR-1
is a conserved muscle-specific miR, particularly expressed during the differentiation of
myoblasts into myotubes [57]. Our attention was focused on miR-1 for at least two reasons.
First, miR-1 is involved in myogenesis by positively regulating the expression of myogenic
factors, such as MyoD and MEF2 [57]. Among myogenic factors, MEF2C has a specific
interaction with miR-1, since miR-1 is a transcriptional target of MEF2C but also targets
HDAC4, the main repressor of MEF2C activity [42,57]. Consistent with these data, we
showed that overexpression of miR-1 in human myotubes increases MEF2C expression
and activity, as supported by the increase in MyHC-β/slow content. Second, miR-1 has
previously been shown to be regulated by ActA/Mstn signaling, which suggests its role
in the regulation of muscle mass. Whereas increased miR-1 is associated with muscle
hypertrophy caused in vivo by Mstn deletion (unpublished) and in vitro by ActA/Mstn
inhibition [58], decreased miR-1 is observed in situations of muscle atrophy induced by
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Mstn in C2C12 myotubes [58]. The decrease in miR-1 that we observed in response to ActA
is not so unexpected, since miR-1 is positively regulated by myogenic factors (MyoD and
MEF2C) and the mTOR pathway, both known to be repressed by ActA [57,59].

4.4. Activin A Does Not Upregulate Classical E3 Ubiquitin Ligases Targeting
Myosin-Heavy Chain

To investigate the possibility for ActA to stimulate proteolysis of MyHC-β/slow,
we quantified the expression of the main atrogenes in human myotubes. In our condi-
tions, ActA negatively regulates TRIM63, but stimulates Atrogin1, and has no effect on
MUSA1. The opposite regulation of these atrogenes by ActA is not so surprising since
their targets are different. Whereas TRIM63 targets structural proteins such as MyHC,
actin, troponin I, and myosin light chain, Atrogin1 targets factors regulating cell growth
and protein synthesis, such as MyoD and eIF3f [43]. Previous observations support our
results. Indeed, systemic elevation of ActA increases Atrogin1 expression without any
changes in TRIM63 expression in vivo [26]. Similarly, human myotubes exposed to Mstn
exhibit a dose-dependent downregulation of TRIM63 and Atrogin1 [30]. All together, these
data suggest that accelerated structural protein degradation is not the main mechanism
responsible for SM atrophy caused by ActA/Mstn signaling.

4.5. The Downregulation of MEF2C Expression and Activity in Animal Models of Cancer Cachexia
Is Reversed by an Activin A Antagonist

The inhibition of MEF2C transcriptional activity by ActA that we identified in my-
otubes is particularly relevant for CC, a situation characterized by high levels of ActA
in mice and in humans [14,18,20,27]. Indeed, we observed a marked downregulation of
MEF2C and MYH7 expression in atrophied muscle of animal models of CC. In addition, the
preservation of SM mass, induced by inhibition of ActA, is associated with the preservation
of muscle MEF2C expression in tumor-bearing mice. These observations strengthened the
link between the elevation of ActA and MEF2C downregulation in cancer-induced SM
atrophy. The contribution of low MEF2C expression to the SM atrophy observed in CC is
supported by several observations. The loss and gain of function studies reveal indeed that
MEF2C play a role in the control of SM mass and fiber-type determination [41]. Consti-
tutional muscle-specific deletion of MEF2C leads to major hints in SM development and
early lethality. However, if the deletion occurs in adulthood, mice exhibit a low proportion
of slow fibers [38,39]. By contrast, overexpression of MEF2C increases the expression of
PGC-1α and the proportion of slow fibers [38]. Recently, a downregulation of MEF2C
muscle expression was observed in other conditions associated with SM atrophy, such
as fasting and unloading [60–62], suggesting that downregulation of MEF2C could be a
generalized mechanism involved in SM atrophy. Even more interesting, overexpression
of MEF2C or an increase in its activity causes SM hypertrophy and prevents SM atrophy
in the case of CC and denervation [61,63]. Together with our data, these observations
indicate that the role of MEF2C goes well beyond the myogenesis and regeneration, and
may touch more broadly on the SM mass control. Taken together, these data provide new
potential therapeutic targets to treat SM atrophy or impaired regeneration occurring during
cancer-induced cachexia.

Although previous studies in animals highlighted a preferential atrophy of fast fibers
in cancer cachexia, we reported in our two preclinical models a decrease in the MYH7
which characterizes slow fibers [2,64]. However, our focus on MyHC-β/slow must not
omit the fact that fast MyHCs are also decreased in these models, in agreement with a
recent review [5] which concluded that cancer cachexia is associated with a decrease in the
size of slow and fast fibers in both mice and humans. Although our work investigated the
potential role of MEF2C in slow fiber atrophy during cancer cachexia, the atrophy of fast
fibers and the role of factors other than ActA to explain it is more than likely.
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5. Conclusions

Although ActA actions towards SM have widely been assessed in in vivo studies, and
particularly in preclinical models of CC, few data exist regarding the direct effects and
mechanisms of actions of ActA on muscle cells. In addition, given the differences across
species regarding the respective role of Mstn and ActA toward skeletal muscle, we used a
model of primary culture of human cells to investigate the effects of ActA in humans. In this
work, we showed that ActA is a potent negative regulator of SM mass by causing inhibition
of MyHC-β/slow synthesis. This resulted from the downregulation of MRFs and MEF2C
directly involved in the transcription of MYH7, the gene coding for MyHC-β/slow, the
main myosin isoform in human muscle studied. We identified therefore a novel interaction
between ActA/pSmad2/3 signaling and MEF2C transcriptional activity that could mediate
SM cell atrophy in response to ActA.

Author Contributions: Conceptualization, A.L. and J.-P.T.; methodology A.L., J.-P.T. and P.L.; soft-
ware, A.L.; validation, A.L. and P.L.; formal analysis, A.L.; investigation, A.L., L.B.B., T.A.Z., X.Z.
and P.L.; data curation, A.L. and P.L.; writing—original draft preparation, A.L.; writing—review
and editing, A.L.; supervision, J.-P.T.; funding acquisition, A.L. and J.-P.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was funded by grants from Fonds de la Recherche clinique (St-Luc-UCLouvain,
Belgium), from Fonds de la Recherche Scientifique Médicale (FRSM-FNRS, Belgium), from Fonds
spéciaux de Recherche (FSR) (UCLouvain, Belgium) and by grants to TAZ from the National In-
stitutes of Health (P01CA236778, P30CA082709), the Veterans Administration (I01BX004177 and
I01CX002046), and the IU Melvin and Bren Simon Comprehensive Cancer Center.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki and the study protocol was approved by the Ethics Committee of the Université
catholique de Louvain (protocol code: 2017/UCL/MD/005, approved on the 15 May 2017) and the
Institutional Animal Care and Use Committee of Indiana University School of Medicine (protocol
code: 11240/MD/R/HZ/E/AR, approved on the 1 February 2019) for studies involving animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bloise, E.; Ciarmela, P.; Dela Cruz, C.; Luisi, S.; Petraglia, F.; Reis, F.M. Activin A in Mammalian Physiology. Physiol. Rev.

2019, 99, 739–780. [CrossRef] [PubMed]
2. Zhou, X.; Wang, J.L.; Lu, J.; Song, Y.; Kwak, K.S.; Jiao, Q.; Rosenfeld, R.; Chen, Q.; Boone, T.; Simonet, W.S.; et al. Reversal of

cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010, 142, 531–543. [CrossRef]
[PubMed]

3. Klimek, M.E.B.; Aydogdu, T.; Link, M.J.; Pons, M.; Koniaris, L.G.; Zimmers, T.A. Acute inhibition of myostatin-family proteins
preserves skeletal muscle in mouse models of cancer cachexia. Biochem. Biophys. Res. Commun. 2010, 391, 1548–1554. [CrossRef]
[PubMed]

4. Busquets, S.; Toledo, M.; Orpí, M.; Massa, D.; Porta, M.; Capdevila, E.; Padilla, N.; Frailis, V.; López-Soriano, F.J.; Han, H.Q.; et al.
Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle
wasting and physical performance. J. Cachexia Sarcopenia Muscle 2012, 3, 37–43. [CrossRef]

5. Levolger, S.; Wiemer, E.A.C.; van Vugt, J.L.A.; Huisman, S.A.; van Vledder, M.G.; van Damme-van Engel, S.; Ambagtsheer, G.;
IJzermans, J.N.M.; de Bruin, R.W.F. Inhibition of activin-like kinase 4/5 attenuates cancer cachexia associated muscle wasting. Sci.
Rep. 2019, 9, 9826. [CrossRef]

6. Nissinen, T.A.; Hentilä, J.; Penna, F.; Lampinen, A.; Lautaoja, J.H.; Fachada, V.; Holopainen, T.; Ritvos, O.; Kivelä, R.; Hulmi, J.J.
Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses.
J. Cachexia Sarcopenia Muscle 2018, 9, 514–529. [CrossRef]

7. Hatakeyama, S.; Summermatter, S.; Jourdain, M.; Melly, S.; Minetti, G.C.; Lach-Trifilieff, E. ActRII blockade protects mice from
cancer cachexia and prolongs survival in the presence of anti-cancer treatments. Skelet. Muscle 2016, 6, 26. [CrossRef]

8. Han, H.Q.; Zhou, X.; Mitch, W.E.; Goldberg, A.L. Myostatin/activin pathway antagonism: Molecular basis and therapeutic
potential. Int. J. Biochem. Cell Biol. 2013, 45, 2333–2347. [CrossRef]

http://doi.org/10.1152/physrev.00002.2018
http://www.ncbi.nlm.nih.gov/pubmed/30540228
http://doi.org/10.1016/j.cell.2010.07.011
http://www.ncbi.nlm.nih.gov/pubmed/20723755
http://doi.org/10.1016/j.bbrc.2009.12.123
http://www.ncbi.nlm.nih.gov/pubmed/20036643
http://doi.org/10.1007/s13539-011-0049-z
http://doi.org/10.1038/s41598-019-46178-9
http://doi.org/10.1002/jcsm.12310
http://doi.org/10.1186/s13395-016-0098-2
http://doi.org/10.1016/j.biocel.2013.05.019


Cells 2022, 11, 1119 16 of 18

9. Wu, S.; Qi, Y.; Niu, L.M.; Xie, D.X.; Cui, X.L.; Liu, Z.H. Activin A as a novel biomarker for colorectal adenocarcinoma in humans.
Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4371–4378.

10. Leto, G.; Incorvaia, L.; Badalamenti, G.; Tumminello, F.M.; Gebbia, N.; Flandina, C.; Crescimanno, M.; Rini, G. Activin A
circulating levels in patients with bone metastasis from breast or prostate cancer. Clin. Exp. Metastasis 2006, 23, 117–122.
[CrossRef]

11. Yoshinaga, K.; Mimori, K.; Yamashita, K.; Utsunomiya, T.; Inoue, H.; Mori, M. Clinical significance of the expression of activin A
in esophageal carcinoma. Int. J. Oncol. 2003, 22, 75–80. [CrossRef] [PubMed]

12. Hofland, J.; van Weerden, W.M.; Steenbergen, J.; Dits, N.F.; Jenster, G.; de Jong, F.H. Activin A stimulates AKR1C3 expression and
growth in human prostate cancer. Endocrinology 2012, 153, 5726–5734. [CrossRef] [PubMed]

13. Chang, K.P.; Kao, H.K.; Liang, Y.; Cheng, M.H.; Chang, Y.L.; Liu, S.C.; Lin, Y.C.; Ko, T.Y.; Lee, Y.S.; Tsai, C.L.; et al. Overexpression
of activin A in oral squamous cell carcinoma: Association with poor prognosis and tumor progression. Ann. Surg. Oncol.
2010, 17, 1945–1956. [CrossRef] [PubMed]

14. Zhong, X.; Pons, M.; Poirier, C.; Jiang, Y.; Liu, J.; Sandusky, G.E.; Shahda, S.; Nakeeb, A.; Schmidt, C.M.; House, M.G.; et al. The
systemic activin response to pancreatic cancer: Implications for effective cancer cachexia therapy. J. Cachexia Sarcopenia Muscle
2019, 10, 1083–1101. [CrossRef]

15. Hoda, M.A.; Rozsas, A.; Lang, E.; Klikovits, T.; Lohinai, Z.; Torok, S.; Berta, J.; Bendek, M.; Berger, W.; Hegedus, B.; et al. High
circulating activin A level is associated with tumor progression and predicts poor prognosis in lung adenocarcinoma. Oncotarget
2016, 7, 13388–13399. [CrossRef]

16. Paajanen, J.; Ilonen, I.; Lauri, H.; Jarvinen, T.; Sutinen, E.; Ollila, H.; Rouvinen, E.; Lemstrom, K.; Rasanen, J.; Ritvos, O.; et al.
Elevated Circulating Activin A Levels in Patients With Malignant Pleural Mesothelioma Are Related to Cancer Cachexia and
Reduced Response to Platinum-based Chemotherapy. Clin. Lung Cancer 2020, 21, e142–e150. [CrossRef]

17. Togashi, Y.; Kogita, A.; Sakamoto, H.; Hayashi, H.; Terashima, M.; de Velasco, M.A.; Sakai, K.; Fujita, Y.; Tomida, S.;
Kitano, M.; et al. Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer. Cancer
Lett. 2015, 356, 819–827. [CrossRef]

18. Loumaye, A.; de Barsy, M.; Nachit, M.; Lause, P.; Frateur, L.; van Maanen, A.; Trefois, P.; Gruson, D.; Thissen, J.P. Role of Activin
A and myostatin in human cancer cachexia. J. Clin. Endocrinol. Metab. 2015, 100, 2030–2038. [CrossRef]

19. Lerner, L.; Tao, J.; Liu, Q.; Nicoletti, R.; Feng, B.; Krieger, B.; Mazsa, E.; Siddiquee, Z.; Wang, R.; Huang, L.; et al. MAP3K11/GDF15
axis is a critical driver of cancer cachexia. J. Cachexia Sarcopenia Muscle 2015, 7, 467–482. [CrossRef]

20. Lerner, L.; Hayes, T.G.; Tao, N.; Krieger, B.; Feng, B.; Wu, Z.; Nicoletti, R.; Chiu, M.I.; Gyuris, J.; Garcia, J.M. Plasma growth differ-
entiation factor 15 is associated with weight loss and mortality in cancer patients. J. Cachexia Sarcopenia Muscle 2015, 6, 317–324.
[CrossRef]

21. Lerner, L.; Gyuris, J.; Nicoletti, R.; Gifford, J.; Krieger, B.; Jatoi, A. Growth differentiating factor-15 (GDF-15): A potential biomarker
and therapeutic target for cancer-associated weight loss. Oncol. Lett. 2016, 12, 4219–4223. [CrossRef] [PubMed]

22. Talar-Wojnarowska, R.; Wozniak, M.; Borkowska, A.; Olakowski, M.; Malecka-Panas, E. Clinical significance of activin A and
myostatin in patients with pancreatic adenocarcinoma and progressive weight loss. J. Physiol. Pharmacol. 2020, 71, 25. [CrossRef]

23. Loumaye, A.; de Barsy, M.; Nachit, M.; Lause, P.; van Maanen, A.; Trefois, P.; Gruson, D.; Thissen, J.P. Circulating Activin A
predicts survival in cancer patients. J. Cachexia Sarcopenia Muscle 2017, 8, 768–777. [CrossRef] [PubMed]

24. Matzuk, M.M.; Finegold, M.J.; Mather, J.P.; Krummen, L.; Lu, H.; Bradley, A. Development of cancer cachexia-like syndrome and
adrenal tumors in inhibin-deficient mice. Proc. Natl. Acad. Sci. USA 1994, 91, 8817–8821. [CrossRef]

25. Gilson, H.; Schakman, O.; Kalista, S.; Lause, P.; Tsuchida, K.; Thissen, J.P. Follistatin induces muscle hypertrophy through satellite
cell proliferation and inhibition of both myostatin and activin. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E157–E164. [CrossRef]

26. Chen, J.L.; Walton, K.L.; Winbanks, C.E.; Murphy, K.T.; Thomson, R.E.; Makanji, Y.; Qian, H.; Lynch, G.S.; Harrison, C.A.;
Gregorevic, P. Elevated expression of activins promotes muscle wasting and cachexia. FASEB J. 2014, 28, 1711–1723. [CrossRef]

27. Chen, J.L.; Walton, K.L.; Qian, H.; Colgan, T.D.; Hagg, A.; Watt, M.J.; Harrison, C.A.; Gregorevic, P. Differential effects of
interleukin-6 and activin A in the development of cancer-associated cachexia. Cancer Res. 2016, 76, 5372–5382. [CrossRef]

28. Yaden, B.C.; Wang, Y.X.; Wilson, J.M.; Culver, A.E.; Milner, A.; Datta-Mannan, A.; Shetler, P.; Croy, J.E.; Dai, G.; Krishnan, V.
Inhibition of activin A ameliorates skeletal muscle injury and rescues contractile properties by inducing efficient remodeling in
female mice. Am. J. Pathol. 2014, 184, 1152–1166. [CrossRef]

29. Walton, K.L.; Chen, J.L.; Arnold, Q.; Kelly, E.; La, M.; Lu, L.; Lovrecz, G.; Hagg, A.; Colgan, T.D.; Qian, H.; et al. Activin A-Induced
Cachectic Wasting Is Attenuated by Systemic Delivery of Its Cognate Propeptide in Male Mice. Endocrinology 2019, 160, 2417–2426.
[CrossRef]

30. Trendelenburg, A.U.; Meyer, A.; Rohner, D.; Boyle, J.; Hatakeyama, S.; Glass, D.J. Myostatin reduces Akt/TORC1/p70S6K
signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol.-Cell Physiol. 2009, 296, C1258–C1270. [CrossRef]

31. Latres, E.; Mastaitis, J.; Fury, W.; Miloscio, L.; Trejos, J.; Pangilinan, J.; Okamoto, H.; Cavino, K.; Na, E.; Papatheodorou, A.; et al.
Activin A more prominently regulates muscle mass in primates than does GDF8. Nat. Commun. 2017, 8, 15153. [CrossRef]
[PubMed]

32. Garber, K. No longer going to waste. Nat. Biotechnol. 2016, 34, 458–461. [CrossRef] [PubMed]

http://doi.org/10.1007/s10585-006-9010-5
http://doi.org/10.3892/ijo.22.1.75
http://www.ncbi.nlm.nih.gov/pubmed/12469187
http://doi.org/10.1210/en.2011-2065
http://www.ncbi.nlm.nih.gov/pubmed/23024260
http://doi.org/10.1245/s10434-010-0926-2
http://www.ncbi.nlm.nih.gov/pubmed/20309641
http://doi.org/10.1002/jcsm.12461
http://doi.org/10.18632/oncotarget.7796
http://doi.org/10.1016/j.cllc.2019.10.013
http://doi.org/10.1016/j.canlet.2014.10.037
http://doi.org/10.1210/jc.2014-4318
http://doi.org/10.1002/jcsm.12077
http://doi.org/10.1002/jcsm.12033
http://doi.org/10.3892/ol.2016.5183
http://www.ncbi.nlm.nih.gov/pubmed/27895795
http://doi.org/10.26402/jpp.2020.1.10
http://doi.org/10.1002/jcsm.12209
http://www.ncbi.nlm.nih.gov/pubmed/28712119
http://doi.org/10.1073/pnas.91.19.8817
http://doi.org/10.1152/ajpendo.00193.2009
http://doi.org/10.1096/fj.13-245894
http://doi.org/10.1158/0008-5472.CAN-15-3152
http://doi.org/10.1016/j.ajpath.2013.12.029
http://doi.org/10.1210/en.2019-00257
http://doi.org/10.1152/ajpcell.00105.2009
http://doi.org/10.1038/ncomms15153
http://www.ncbi.nlm.nih.gov/pubmed/28452368
http://doi.org/10.1038/nbt.3557
http://www.ncbi.nlm.nih.gov/pubmed/27153267


Cells 2022, 11, 1119 17 of 18

33. Woodhouse, L.; Gandhi, R.; Warden, S.J.; Poiraudeau, S.; Myers, S.L.; Benson, C.T.; Hu, L.; Ahmad, Q.I.; Linnemeier, P.;
Gomez, E.V.; et al. A Phase 2 Randomized Study Investigating the Efficacy and Safety of Myostatin Antibody LY2495655 versus
Placebo in Patients Undergoing Elective Total Hip Arthroplasty. J. Frailty Aging 2016, 5, 62–70. [CrossRef] [PubMed]

34. Gueugneau, M.; d’Hose, D.; Barbe, C.; de Barsy, M.; Lause, P.; Maiter, D.; Bindels, L.B.; Delzenne, N.M.; Schaeffer, L.;
Gangloff, Y.G.; et al. Increased Serpina3n release into circulation during glucocorticoid-mediated muscle atrophy. J. Cachexia
Sarcopenia Muscle 2018, 9, 929–946. [CrossRef]

35. Bindels, L.B.; Neyrinck, A.M.; Claus, S.P.; Le Roy, C.I.; Grangette, C.; Pot, B.; Martinez, I.; Walter, J.; Cani, P.D.; Delzenne,
N.M. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J.
2016, 10, 1456–1470. [CrossRef]

36. Ciciliot, S.; Rossi, A.C.; Dyar, K.A.; Blaauw, B.; Schiaffino, S. Muscle type and fiber type specificity in muscle wasting. Int. J.
Biochem. Cell Biol. 2013, 45, 2191–2199. [CrossRef]

37. Blaauw, B.; Schiaffino, S.; Reggiani, C. Mechanisms modulating skeletal muscle phenotype. Compr. Physiol. 2013, 3, 1645–1687.
[CrossRef]

38. Schiaffino, S.; Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 2011, 91, 1447–1531. [CrossRef]
39. Potthoff, M.J.; Arnold, M.A.; McAnally, J.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. Regulation of skeletal muscle sarcomere

integrity and postnatal muscle function by Mef2c. Mol. Cell. Biol. 2007, 27, 8143–8151. [CrossRef]
40. Dong, C.; Yang, X.Z.; Zhang, C.Y.; Liu, Y.Y.; Zhou, R.B.; Cheng, Q.D.; Yan, E.K.; Yin, D.C. Myocyte enhancer factor 2C and its

directly-interacting proteins: A review. Prog. Biophys. Mol. Biol. 2017, 126, 22–30. [CrossRef]
41. Schiaffino, S.; Dyar, K.A.; Calabria, E. Skeletal muscle mass is controlled by the MRF4-MEF2 axis. Curr. Opin. Clin. Nutr. Metab.

Care 2018, 21, 164–167. [CrossRef] [PubMed]
42. Potthoff, M.J.; Olson, E.N. MEF2: A central regulator of diverse developmental programs. Development 2007, 134, 4131–4140.

[CrossRef] [PubMed]
43. Sandri, M. Protein breakdown in cancer cachexia. Semin. Cell Dev. Biol. 2016, 54, 11–19. [CrossRef] [PubMed]
44. Penna, F.; Costamagna, D.; Fanzani, A.; Bonelli, G.; Baccino, F.M.; Costelli, P. Muscle wasting and impaired myogenesis in tumor

bearing mice are prevented by ERK inhibition. PLoS ONE 2010, 5, e13604. [CrossRef]
45. Penna, F.; Ballaro, R.; Beltra, M.; De Lucia, S.; Garcia Castillo, L.; Costelli, P. The Skeletal Muscle as an Active Player Against

Cancer Cachexia. Front. Physiol. 2019, 10, 41. [CrossRef]
46. Acharyya, S.; Butchbach, M.E.; Sahenk, Z.; Wang, H.; Saji, M.; Carathers, M.; Ringel, M.D.; Skipworth, R.J.; Fearon, K.C.;

Hollingsworth, M.A.; et al. Dystrophin glycoprotein complex dysfunction: A regulatory link between muscular dystrophy and
cancer cachexia. Cancer Cell 2005, 8, 421–432. [CrossRef]

47. Souza, T.A.; Chen, X.; Guo, Y.; Sava, P.; Zhang, J.; Hill, J.J.; Yaworsky, P.J.; Qiu, Y. Proteomic identification and functional validation
of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators. Mol. Endocrinol. 2008, 22, 2689–2702.
[CrossRef]

48. Rios, R.; Carneiro, I.; Arce, V.M.; Devesa, J. Myostatin is an inhibitor of myogenic differentiation. Am. J. Physiol.-Cell Physiol.
2002, 282, C993–C999. [CrossRef]

49. Snijders, T.; Nederveen, J.P.; McKay, B.R.; Joanisse, S.; Verdijk, L.B.; van Loon, L.J.; Parise, G. Satellite cells in human skeletal
muscle plasticity. Front. Physiol. 2015, 6, 283. [CrossRef]

50. Trendelenburg, A.U.; Meyer, A.; Jacobi, C.; Feige, J.N.; Glass, D.J. TAK-1/p38/nNFkappaB signaling inhibits myoblast differentia-
tion by increasing levels of Activin A. Skelet. Muscle 2012, 2, 3. [CrossRef]

51. Lach-Trifilieff, E.; Minetti, G.C.; Sheppard, K.; Ibebunjo, C.; Feige, J.N.; Hartmann, S.; Brachat, S.; Rivet, H.; Koelbing, C.;
Morvan, F.; et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from
atrophy. Mol. Cell. Biol. 2014, 34, 606–618. [CrossRef] [PubMed]

52. Liu, N.; Nelson, B.R.; Bezprozvannaya, S.; Shelton, J.M.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. Requirement of MEF2A, C,
and D for skeletal muscle regeneration. Proc. Natl. Acad. Sci. USA 2014, 111, 4109–4114. [CrossRef] [PubMed]

53. Frontera, W.R.; Ochala, J. Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 2015, 96, 183–195. [CrossRef]
[PubMed]

54. Vanek, T.; Kohli, A. Biochemistry, Myoglobin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019.
55. De Angelis, L.; Borghi, S.; Melchionna, R.; Berghella, L.; Baccarani-Contri, M.; Parise, F.; Ferrari, S.; Cossu, G. Inhibition of

myogenesis by transforming growth factor beta is density-dependent and related to the translocation of transcription factor
MEF2 to the cytoplasm. Proc. Natl. Acad. Sci. USA 1998, 95, 12358–12363. [CrossRef]

56. Liu, D.; Kang, J.S.; Derynck, R. TGF-beta-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation.
EMBO J. 2004, 23, 1557–1566. [CrossRef]

57. Chen, J.F.; Mandel, E.M.; Thomson, J.M.; Wu, Q.; Callis, T.E.; Hammond, S.M.; Conlon, F.L.; Wang, D.Z. The role of microRNA-1
and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006, 38, 228–233. [CrossRef]

58. Graham, Z.A.; De Gasperi, R.; Bauman, W.A.; Cardozo, C.P. Recombinant myostatin reduces highly expressed microRNAs in
differentiating C2C12 cells. Biochem. Biophys. Rep. 2017, 9, 273–280. [CrossRef]

59. Sun, Y.; Ge, Y.; Drnevich, J.; Zhao, Y.; Band, M.; Chen, J. Mammalian target of rapamycin regulates miRNA-1 and follistatin in
skeletal myogenesis. J. Cell Biol. 2010, 189, 1157–1169. [CrossRef]

http://doi.org/10.14283/jfa.2016.81
http://www.ncbi.nlm.nih.gov/pubmed/26980371
http://doi.org/10.1002/jcsm.12315
http://doi.org/10.1038/ismej.2015.209
http://doi.org/10.1016/j.biocel.2013.05.016
http://doi.org/10.1002/cphy.c130009
http://doi.org/10.1152/physrev.00031.2010
http://doi.org/10.1128/MCB.01187-07
http://doi.org/10.1016/j.pbiomolbio.2017.02.002
http://doi.org/10.1097/MCO.0000000000000456
http://www.ncbi.nlm.nih.gov/pubmed/29389722
http://doi.org/10.1242/dev.008367
http://www.ncbi.nlm.nih.gov/pubmed/17959722
http://doi.org/10.1016/j.semcdb.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26564688
http://doi.org/10.1371/journal.pone.0013604
http://doi.org/10.3389/fphys.2019.00041
http://doi.org/10.1016/j.ccr.2005.10.004
http://doi.org/10.1210/me.2008-0290
http://doi.org/10.1152/ajpcell.00372.2001
http://doi.org/10.3389/fphys.2015.00283
http://doi.org/10.1186/2044-5040-2-3
http://doi.org/10.1128/MCB.01307-13
http://www.ncbi.nlm.nih.gov/pubmed/24298022
http://doi.org/10.1073/pnas.1401732111
http://www.ncbi.nlm.nih.gov/pubmed/24591619
http://doi.org/10.1007/s00223-014-9915-y
http://www.ncbi.nlm.nih.gov/pubmed/25294644
http://doi.org/10.1073/pnas.95.21.12358
http://doi.org/10.1038/sj.emboj.7600179
http://doi.org/10.1038/ng1725
http://doi.org/10.1016/j.bbrep.2017.01.003
http://doi.org/10.1083/jcb.200912093


Cells 2022, 11, 1119 18 of 18

60. Shum, A.M.; Mahendradatta, T.; Taylor, R.J.; Painter, A.B.; Moore, M.M.; Tsoli, M.; Tan, T.C.; Clarke, S.J.; Robertson, G.R.; Polly, P.
Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting.
Aging 2012, 4, 133–143. [CrossRef]

61. Judge, S.M.; Deyhle, M.R.; Neyroud, D.; Nosacka, R.L.; D’Lugos, A.C.; Cameron, M.E.; Vohra, R.S.; Smuder, A.J.; Roberts, B.M.;
Callaway, C.S.; et al. MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates
with Cachexia in Patients with Cancer. Cancer Res. 2020, 80, 1861–1874. [CrossRef]

62. Rullman, E.; Fernandez-Gonzalo, R.; Mekjavic, I.B.; Gustafsson, T.; Eiken, O. MEF2 as upstream regulator of the transcriptome
signature in human skeletal muscle during unloading. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R799–R809.
[CrossRef] [PubMed]

63. Moretti, I.; Ciciliot, S.; Dyar, K.A.; Abraham, R.; Murgia, M.; Agatea, L.; Akimoto, T.; Bicciato, S.; Forcato, M.; Pierre, P.; et al.
MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat. Commun. 2016, 7, 12397. [CrossRef]
[PubMed]

64. Martin, A.; Freyssenet, D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: Lessons from
human and animal studies. J. Cachexia Sarcopenia Muscle 2021, 12, 252–273. [CrossRef] [PubMed]

http://doi.org/10.18632/aging.100436
http://doi.org/10.1158/0008-5472.CAN-19-1558
http://doi.org/10.1152/ajpregu.00452.2017
http://www.ncbi.nlm.nih.gov/pubmed/29995456
http://doi.org/10.1038/ncomms12397
http://www.ncbi.nlm.nih.gov/pubmed/27484840
http://doi.org/10.1002/jcsm.12678
http://www.ncbi.nlm.nih.gov/pubmed/33783983

	Introduction 
	Experimental Procedure 
	Cell Culture, Treatment, and Transfection 
	Cell Viability 
	Myotube Morphological Analysis 
	Direct miRNA or mRNA Quantification by RT-qPCR 
	Western Blotting 
	Mouse Models of Cancer Cachexia 
	C26 and Baf3 Models 
	KPC Model 

	Statistical Analysis 

	Results 
	Activin A Causes Atrophy of Human Skeletal Muscle Cells 
	Activin A-Induced Myotube Atrophy Is Characterized by a Decrease in Myosin-Heavy Chain-/Slow Content 
	Activin A-Induced Myotube Atrophy Is Associated with a Downregulation of MEF2C Expression and Activity 
	MEF2C Is Required to Maintain MyHC-/Slow Gene Expression and Protein Content in Differentiated Myotubes 
	The Activin A-Induced Myotube Atrophy Is Not Associated with Increased Classical E3 Ubiquitin Ligases 
	Cancer Cachexia Is Associated with Downregulation of Muscle MEF2C Expression and Activity Which Is Blunted by Inhibition of Activin A 

	Discussion 
	Activin A Causes Human Muscle Cell Atrophy by Altering Myogenesis and MyHC-/Slow Synthesis 
	Activin A Inhibits MyHC-/Slow Synthesis by Downregulating MEF2C 
	Activin A Targets miR-1 Expression, a Positive Regulator of MEF2C Expression and Activity 
	Activin A Does Not Upregulate Classical E3 Ubiquitin Ligases Targeting Myosin-Heavy Chain 
	The Downregulation of MEF2C Expression and Activity in Animal Models of Cancer Cachexia Is Reversed by an Activin A Antagonist 

	Conclusions 
	References

